Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(8): e19226, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37664715

RESUMEN

A life-threatening manifestation of Covid-19 infection is a cytokine storm that requires hospitalization and supplemental oxygen. Various strategies to reduce inflammatory cytokines have had some success in limiting cytokine storm and improving survival. Agonists of adenosine A2A receptors (A2AR) reduce cytokine release from most immune cells. Apadenoson is a potent and selective anti-inflammatory adenosine analog that reduces inflammation. When administered by subcutaneous osmotic pumps to mice infected with SARS CoV-2, Apadenoson was found to improve the outcomes of infection as measured by a decrease in weight loss, improved clinical symptoms, reduced levels of proinflammatory cytokines and chemokines in bronchial lavage (BAL) fluid, and enhanced survival of K18-hACE2 transgenic mice. These results support further examination of A2AR agonists as therapies for treating cytokine storm due to COVID-19.

2.
Ann Nucl Cardiol ; 7(1): 63-66, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36994130

RESUMEN

In recent years, the requirement for pharmacological stress myocardial perfusion imaging (SPECT) has increased, and adenosine stress testing is now the mainstream. Selective adenosine A2A receptor agonists will be applied clinically in the future. By selectively activating only A2A receptors, it can reduce complications such as bronchospasm, hypotension, and bradycardia, which have been problems with adenosine stress tests. In addition, since this drug can be administered in bolus injection, it has the advantage of being able to perform the test at one root.

3.
Auton Neurosci ; 229: 102737, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33166836

RESUMEN

Adenosine and nitric oxide act on the fine-tuning regulation of neural cardiovascular control in the nucleus tractus solitarius (NTS). Although the interaction between adenosine and NO is well known in the periphery, the mechanisms by which adenosine interferes in the dynamics of nitrergic neurotransmission, related to neural control of circulation, are not completely understood and might be relevant for individuals predisposed to hypertension. In this study we evaluate the interaction between adenosinergic and nitrergic systems in cell culture from the dorsomedial medulla oblongata of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Using quantification of nitrite levels, RT-PCR analysis and RNA interference we demonstrate that adenosine A1 (A1R) and A2a receptor (A2aR) agonists induce a concentration-dependent decrease and increase of nitrite and nNOS mRNA levels in cultured cells from WKY and SHR, respectively. These effects in nitrite levels are attenuated by the administration of A1R and A2aR selective antagonists, CPT and ZM 241385. Furthermore, knockdown of A1R and A2aR show an increase and decrease of nNOS mRNA levels, respectively. Pretreatment with the nonselective inhibitor of NOS, L-NAME, abolishes nitrite-increased levels triggered by CGS 21680 in WKY and SHR cells. Finally, it is shown that the cAMP-PKA pathway is involved in A1R and A2aR-mediated decrease and increase in nitrite levels in SHR and WKY cells. Our results highlight the influence of adenosine on nitric oxide levels in cultured cells from dorsal medulla oblongata of neonate WKY and SHR rats. In part, the modulatory profile is different in the SHR strain.


Asunto(s)
Adenosina/metabolismo , Hipertensión/metabolismo , Bulbo Raquídeo/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Animales , Células Cultivadas , Femenino , Masculino , Agonistas del Receptor Purinérgico P1/farmacología , Antagonistas de Receptores Purinérgicos P1/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
4.
Curr Heart Fail Rep ; 15(3): 191-197, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29707741

RESUMEN

PURPOSE OF REVIEW: Several novel therapeutics being tested in patients with heart failure are based on myocardial energetics. This review will provide a summary of the recent trials in this area, including therapeutic options targeting various aspects of cellular and mitochondrial metabolism. RECENT FINDINGS: Agents that improve the energetic balance in myocardial cells have the potential to improve clinical heart failure status. The most promising therapies currently under investigation in this arena include (1) elamipretide, a cardiolipin stabilizer; (2) repletion of iron deficiency with intravenous ferrous carboxymaltose; (3) coenzyme Q10; and (4) the partial adenosine receptor antagonists capadenoson and neladenosone. Myocardial energetics-based therapeutics are groundbreaking in that they utilize novel mechanisms of action to improve heart failure symptoms, without causing the adverse neurohormonal side effects associated with current guideline-based therapies. The drugs appear likely to be added to the heart failure therapy armamentarium as adjuncts to current regimens in the near future.


Asunto(s)
Cardiotónicos/uso terapéutico , Ensayos Clínicos como Asunto , Insuficiencia Cardíaca/tratamiento farmacológico , Miocardio/metabolismo , Volumen Sistólico/efectos de los fármacos , Insuficiencia Cardíaca/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA