Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 678(Pt B): 50-66, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39241447

RESUMEN

HYPOTHESIS: Water-soluble KDP (KH2PO4) crystals possess excellent optical properties and are employed as frequency converters in clean fusion energy. To improve their performances, there is an immediate necessity to lithograph surface nano-patterns on them. Although the Scanning Probe Microscope (SPM) provides a promising way to achieve this purpose through the water menisci, the driving mechanisms of the lithographic behaviors have not yet been revealed. SIMULATIONS AND EXPERIMENTS: Multi-scale investigations are constructed to explore the underlying driving mechanisms. The SPM probe-induced ion diffusion-transport behaviors are investigated by molecular dynamics. The ion adsorption-enrichment mechanisms are revealed by 18 adsorption models via the ab initio. The SPM probe-induced self-assembly experiments are performed to prove the local heavy concentration. A comprehensive model is developed to describe the lithography mechanisms of the probe-induced self-assembly nano-dots on water-soluble substrates. FINDINGS: It is interestingly found that the KDP growth units (H2PO4-) exhibit obvious adsorption-enrichment effect at 3.16 Å from the probe surface, causing local heavy concentration. The H2PO4- would spontaneously adsorb onto the probe surface, which is dominated by the Si-O bonding reactions. The nano-dots with the height of 27 âˆ¼ 48 nm and diameter of 2.0 âˆ¼ 2.7 µm are lithographed on the KDP substrate. The proposed model further confirms that the lithography processes are driven by the solution supersaturation, solute diffusion, and surface free energy.

2.
J Environ Manage ; 343: 118210, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37229865

RESUMEN

Developing a high-performance method that can effectively control pollution caused by low concentrations of antibiotics is urgently needed. Herein, a novel three-dimensional PPy/Zn3In2S6 nanoflower composites were prepared for the comprehensive treatment of low-concentration tetracycline (Tc) hydrochloride in wastewater based on the adsorption/photocatalysis of Zn3In2S6 and the conductivity of PPy. In this preparation method, adsorption enrichment and photocatalytic regeneration were conducted in two steps, eliminating the dilution and dispersion effects of aqueous solvents on photocatalytic species and antibiotics. Results showed that Zn3In2S6 could effectively adsorb 87.85% of Tc at pH of 4.5 and photocatalytically degrade Tc at pH of 10.5. Although the adsorption capacity of Zn3In2S6 was slightly reduced after being combined with PPy, its photocatalytic efficiency was substantially enhanced. Specifically, 0.5%PPy/Zn3In2S6 could degrade 99.92% of the surface-enriched Tc in 1 h and induce the regeneration of the adsorption sites. Furthermore, the adsorption capacity remained above 85% even after recycling PPy/Zn3In2S6 ten times. The photocatalytic degradation mechanism analysis revealed that the enrichment of Tc on 0.5%PPy/Zn3In2S6 negatively impacts the photocatalytic efficiency, while •O2- and •OH radicals were the main oxidative species that played an important role in the photoregeneration process.


Asunto(s)
Tetraciclina , Agua , Adsorción , Catálisis , Antibacterianos
3.
J Colloid Interface Sci ; 642: 757-770, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37043936

RESUMEN

The dispersing effect of carbon materials on nanoparticles can enhance the full exposure of their active sites. Herein, phosphorus (P)-doped activated carbon-supported trace cobalt ferrite composites (P-CoFe@BCX) were achieved by two-step pyrolysis for efficient peroxymonosulfate (PMS) activation and water pollution remediation. The removal efficiency of 2,4-dichlorophenoxyacetic acid (2,4-D) was optimized by adjusting the coupling ratio of carbon substrate and cobalt ferrite. P-CoFe@BC5/PMS oxidation system (0.10 g L-1, 0.50 mM) eliminated 98.3% of 2,4-D (20.0 mg L-1) within 60 min at unadjusted pH. The constructed adsorption enrichment and oxidative degradation pathways are highly efficient in utilizing reactive oxygen species (ROS), and the dual tracks of free and non-free radicals achieve the rapid degradation of 2,4-D. P-doped activated carbon acts as an electron shuttle to accelerate electron transfer between active sites and enhances the adsorption efficiency of 2,4-D and PMS onto the composites. In addition, the P-CoFe@BC5/PMS oxidation system still exhibited strong 2,4-D removal performance at a wide pH range of 2.0-10.0. The inhibitory effect of environmental components was related to their concentration, such as chloride, bicarbonate, sulfate and humic acid. Density functional theory calculations show that ROS tends to attack the CO bond on the 2,4-D branch chain, and the degradation products show lower biological toxicity. Hence, the constructed cobalt ferrite anchored P-doped activated carbon activated PMS system has great potential in treating organic wastewater.

4.
Carbohydr Polym ; 296: 119970, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36088009

RESUMEN

The design-on-demand of lignocellulose nanofibril-based materials for contaminant disposal is worth exploring. Herein, we mildly extract sulfated lignocellulose nanofibrils from bagasse via a deep eutectic solvent-based approach, and use them as a matrix for TiO2 nanoparticles (TNPs) towards adsorption-photocatalytic synergistic removal of tetracycline (TC). The resultant lignocellulose-based nanocomposite aerogel possessing a high specific surface area (95.3 m2/g), surface charge density (1.78 mmol/g) and well-preserved lignocellulosic structure, strongly adsorbed TC with a maximum adsorption capacity of 70 mg/g via a combination of intermolecular interactions (i.e., hydrogen bonding and π-π stacking) and electrostatic forces. Furthermore, the excellent photocatalytic activity of uniformly distributed TNPs in combination with the outstanding adsorption capacity of nanocomposite aerogel can synergistically remove TC in a dynamic and continuous process, during which ~90 % TC (10 mg/L) was efficiently removed within 40 min. HPLC-MS was performed to reveal the degradation pathways of TC. Meanwhile, our developed nanocomposite aerogel demonstrated favorable structural stability and recyclability, which together supported its durability for environmental remediation.


Asunto(s)
Compuestos Heterocíclicos , Contaminantes Químicos del Agua , Adsorción , Antibacterianos/química , Lignina , Sulfatos , Óxidos de Azufre , Tetraciclina/química , Contaminantes Químicos del Agua/química
5.
J Colloid Interface Sci ; 505: 719-727, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28662474

RESUMEN

A conducting polymer polypyrrole (Ppy) was first employed to decorate BiOI for fabricating an organic-inorganic hybridized Ppy-BiOI nanocomposite photocatalyst via a facile in situ precipitation strategy at room temperature. The composite and intimate interface was confirmed by FTIR, XPS, SEM, HRTEM and TEM-mapping. In comparison with pristine BiOI, the Ppy-BiOI hybrids present significantly enhanced photocatalytic activity for degradation of Rhodamine B (RhB) under visible light (λ>420nm). Particularly, the Ppy-BiOI composite exhibits an universal photocatalytic performance for removing diverse industrial pollutants and antibiotics, including bisphenol A, 2,4-dichlorophenol, tetracycline hydrochloride and chlortetracycline hydrochloride. The enhanced photocatalytic activity of Ppy-BiOI composite is found attributable to the bifunctional role that Ppy takes. Ppy-BiOI composite has an enhanced specific surface area, which benefits adsorption and generation of more active sites. Notably, high separation and transfer of the photogenerated charge carriers was achieved on the interface between Ppy and BiOI, and the photogenerated hole transfer action of Ppy is demonstrated. Therefore, synergistic effect of adsorption-enrichment and photocatalytic degradation is realized. Our work may offer a guideline to manipulate high-performance Bi-based composite photocatalyst by coupling conducting polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA