Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.108
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 359-368, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39096704

RESUMEN

Suitable H2O and H adsorption on the surface of transition metal chalcogenide cocatalyst is highly required to achieve their excellent alkaline H2-evolution rate. However, the weak adsorption of H2O and H atoms on NiTe surface greatly hinders its alkaline H2-evolution efficiency. Herein, an electron-deficient modulation strategy is proposed to synchronously improve the adsorption of H2O and H atoms on NiTe surface, which can greatly improve the alkaline photocatalytic H2 evolution of TiO2. In this case, highly electronegative oxygen atoms are introduced into the NiTe cocatalysts to induce the formation of electron-deficient Niδ+ and Teδ+ sites in the ultra-small-sized NiO1-xTex nanodots (0.5-2 nm), which can be uniformly loaded onto the TiO2 surface to prepare the NiO1-xTex/TiO2 photocatalysts by a facile complexation-photodeposition strategy. The resulting NiO1-xTex/TiO2 (0.6:0.4) photocatalyst exhibits the optimal activity (2143.36 µmol g-1 h-1), surpassing the activity levels of TiO2 and NiTe/TiO2 samples by 42.3 and 1.8 times, respectively. The experimental and theoretical investigations have revealed that the presence of highly electronegative O atoms in the NiO1-xTex cocatalyst can redistribute the charges of Ni and Te atoms for the formation of electron-deficient Niδ+ and Teδ+ active sites, thereby synchronously enhancing the adsorption of H2O on Niδ+ sites and H on Teδ+ sites and promoting alkaline photocatalytic H2 evolution. The current research about the synchronous optimization of the H2O and H adsorption offers a significant approach to design high-performance H2-evolution materials.

2.
J Conserv Dent Endod ; 27(8): 853-859, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39372564

RESUMEN

Introduction: Clinical evidence of platelet-rich fibrin (PRF) benefits on bone repair is still emerging, prompting researchers to experiment with different PRF formulations as osteoconductive scaffolds. Aims: This study compared the osteoconductive effects of injectable PRF (i-PRF) and leukocyte-rich PRF (L-PRF) on the differentiation of dental pulp stem cells (DPSCs) into osteoblasts. Materials and Methods: Blood samples were collected from the volunteers to prepare L-PRF and i-PRF conditioned media (CM) by centrifugation. DPSCs were isolated from impacted third molars and cultured. Proliferation of DPSCs in response to L-PRF and i-PRF was assessed by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Osteoinductive potential was evaluated through alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, growth factor levels (vascular endothelial growth factor [VEGF], transforming growth factor [TGF-beta]), and cytokine expression (interleukin 6 [IL-6], IL-8) after 7 days. Results: MTT assay results showed that both L-PRF and i-PRF increased DPSC proliferation relative to the control group. After 7 days in L-PRF and i-PRF CM, DPSCs exhibited increased ALP activity, higher red-colored calcium deposits with ARS staining, and elevated levels of VEGF and TGF-beta. In addition, higher concentrations of inflammatory cytokines IL-6 and IL-8 were observed in both L-PRF and i-PRF compared to the control. Conclusions: Using both L-PRF and i-PRF as scaffolds can enhance the osteoinductive ability of stem cells, offering a potential strategy for regenerative therapies.

3.
World J Gastrointest Surg ; 16(9): 2860-2869, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39351549

RESUMEN

BACKGROUND: Changes in alkaline phosphatase (ALP) and γ-glutamyltransferase (GGT) levels in patients with primary liver cancer (PLC) after radiofrequency ablation (RFA). Hepatocellular carcinoma is a malignant tumor with high incidence worldwide. As a common local treatment, RFA has attracted much attention for its efficacy and influence on liver function. AIM: To investigate the effect of serum ALP and GGT levels on the prognosis of patients with PLC treated by RFA. METHODS: The preoperative clinical data of 165 patients who were pathologically or clinically diagnosed with PLC and who received RFA in our hospital between October 2018 and June 2023 were collected. The chi-square test was used to compare the data between groups. The Kaplan-Meier method and Cox regression were used to analyze the associations between serum ALP and GGT levels and overall survival, progression-free survival (PFS) and clinical characteristics of patients before treatment. RESULTS: The 1-year survival rates of patients with normal (≤ 135 U/L) and abnormal (> 135 U/L) serum ALP before treatment were 91% and 79%, respectively; the 2-year survival rates were 90% and 68%, respectively; and the 5-year survival rates were 35% and 18%, respectively. The difference between the two groups was statistically significant (P = 0.01). Before treatment, the 1-year survival rates of patients with normal serum GGT levels (≤ 45 U/L) and abnormal serum GGT levels (> 45 U/L) were 95% and 87%, the 2-year survival rates were 85% and 71%, and the 5-year survival rates were 37% and 21%, respectively. The difference between the two groups was statistically significant (P < 0.001). Serum ALP [hazard ratio (HR) = 1.766, 95% confidence interval (95%CI): 1.068-2.921, P = 0.027] and GGT (HR = 2. 312, 95%CI: 1.367-3.912, P = 0.002) is closely related to the overall survival of PLC patients after RF ablation and is an independent prognostic factor. The 1-year PFS rates were 72% and 50%, the 2-year PFS rates were 52% and 21%, and the 5-year PFS rates were 14% and 3%, respectively. The difference between the two groups was statistically significant (P < 0001). The 1-year PFS rates were 81% and 56% in patients with normal and abnormal serum GGT levels before treatment, respectively; the 2-year PFS rates were 62% and 35%, respectively; and the 5-year PFS rates were 18% and 7%, respectively, with statistical significance between the two groups (P < 0.001). The serum ALP concentration (HR = 1. 653, 95%CI: 1.001-2.729, P = 0.049) and GGT (HR = 1.949, 95%CI: 1.296-2.930, P = 0.001) was closely associated with PFS after RFA in patients with PLC. The proportion of male patients with abnormal ALP levels is high, the Child-Pugh grade of liver function is poor, and the incidence of ascites is high. Among GGT-abnormal patients, the Child-Pugh grade of liver function was poor, the tumor stage was late, the proportion of patients with tumors ≥ 5 cm was high, and the incidence of hepatic encephalopathy was high. CONCLUSION: Serum ALP and GGT levels before treatment can be used to predict the prognosis of patients with PLC after RFA, and they have certain guiding significance for the long-term survival of patients with PLC after radiofrequency therapy.

4.
Ann Med Surg (Lond) ; 86(10): 6062-6070, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39359833

RESUMEN

Background: Data about the impact of albumin-to-alkaline phosphatase ratio (AAPR) on prognosis in hepatocellular cancer (HCC) patients are inconclusive and conflicting. Methods: The authors systematically searched literatures from seven databases (PubMed, Medline, Web of Science, Cochrane Library, Embase, Google Scholar, and CINAHL), updated to September 2023. Hazard ratios (HRs) and 95% CIs were pooled and synthesized using Comprehensive Meta-Analysis version 3 in order to assess the overall impact of AAPR on patient's prognosis. Results: In total, 8 studies involving 13 cohorts with 3774 cases were included. Pooled results from both univariate and multivariate analyses revealed that higher AAPR was an independent prognostic factor for overall survival (HR=0.429, 95% CI: 0.361-0.509, P=0.001; HR=0.476, 95% CI: 0.421-0.538, P=0.001; respectively). Similarly, pooled multivariate results showed that higher AAPR was associated with better disease-free survival (HR=0.558, 95% CI: 0.452-0.688, P=0.001). Moreover, pooled results from both univariate and multivariate analyses revealed that higher AAPR was an independent prognostic factor for recurrence-free survival (HR=0.540, 95% CI: 0.420-0.694, P=0.001; HR=0.647, 95% CI: 0.494-0.848, P=0.002; respectively). Subgroups analysis showed that elevated AAPR still significantly correlated with better overall survival across the confounding factors. Moreover, sensitivity analysis suggested the robustness of these findings and no publication bias was detected. Conclusions: In summary, higher AAPR could be considered as a reliable prognostic factor in patients with HCC, which could be used as a routine inspection of HCC patients to individualized prognosis prediction and clinical decision making.

5.
Curr Neurovasc Res ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39364868

RESUMEN

OBJECTIVE: Nearly half of Acute Ischemic Stroke (AIS) patients failed to achieve favorable outcomes despite successful reperfusion treatment. This phenomenon is referred to as Futile Recanalization (FR). Screening patients at risk of FR is vital for stroke management. Previous studies reported the diagnostic value of alkaline phosphatase (ALP) levels in certain aspects of stroke prognosis. However, the association between serum ALP level and FR among AIS patients treated with thrombectomy remained unclear. METHODS: We screened stroke patients who underwent thrombectomy at our center from January 2017 to June 2021, and those who achieved successful reperfusion (modified Thrombolysis in Cerebral Infarction score=3) were ultimately analyzed. Demographic information, vascular risk factors, and laboratory test results were collected at admission. The 3-month unfavorable outcome was defined as a modified Rankin Scale score of 3 to 6. The effect of ALP levels on FR was investigated with a logistic regression model. RESULTS: Of 788 patients who underwent thrombectomy, 277 achieved successful reperfusion. Among them, 142 patients (51.3%) failed to realize favorable outcomes at 3 months. After adjusting for confounding variables, higher ALP levels (p =0.002) at admission were independently associated with unfavorable outcomes at three months. Adding ALP values to conventional risk factors improved the performance of prediction models for FR. CONCLUSION: The current study found that the serum ALP levels at admission emerged as a potential biomarker for futile reperfusion in stroke patients undergoing thrombectomy. Further studies are warranted to confirm the clinical applicability of ALP level for futile recanalization prediction.

6.
Colloids Surf B Biointerfaces ; 245: 114289, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39366107

RESUMEN

Alkali proteases are crucial in numerous industries, especially in the laundry industry, but their inactivation by surfactants limits their effectiveness. This study employed substrate access tunnel engineering to improve the performance of WT bcPRO in surfactants. By modifying the key residues in the substrate pocket, the best variant N212S showed higher stability and activity in both AES and LAS. Molecular dynamics (MD) simulations provided insights into the enhanced stability and activity. The Asn212Ser mutation weakened the anti-correlation motion, increased the number of hydrogen bonds between amino acid residues, and made the protein structure more compact, contributing to its stability. Additionally, the mutation extended the substrate access tunnel and enabled additional interactions with the substrate, enhancing its catalytic activity in surfactants. This study demonstrates a strategy for reshaping the substrate access tunnel to improve protease stability and activity in surfactant environments, offering a promising protease candidate for the laundry industry.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39370597

RESUMEN

The alkaline hydrogen evolution reaction (HER) is limited by scarce proton availability, resulting in slower reaction kinetics compared to those under acidic conditions. Enhancing the local chemical environment of protons on the catalyst surface can improve the intrinsic reaction kinetics. Here, we design a Mo/MoO2 metallic heterojunction that creates an acidic-like environment with a proton-rich surface, significantly enhancing HER performance in alkaline electrolytes, as confirmed by in situ spectroscopy and electrochemical analysis. A self-standing Mo/MoO2 catalytic electrode is fabricated via a controlled pyrolysis-reduction strategy. This electrode exhibits exceptional HER activity, with low overpotentials of 65 mV at 10 mA cm-2 and 315 mV at 500 mA cm-2, a Tafel slope of 38.2 mV dec-1, and stability exceeding 60 h at -300 mA cm-2 in alkaline solution. The porous flake array structure of the Mo/MoO2 heterojunctions enhances the adjacent hydronium (H3O+) concentration, resulting in a ΔGH* value of 0.15 eV and a water dissociation energy barrier of 0.37 eV in an alkaline medium. The successful preparation of a large-area electrode (2 cm × 2 cm) demonstrates the scalability of this approach for fabricating molybdenum-based catalytic electrodes with enhanced HER activity in alkaline environments.

8.
Int J Clin Pediatr Dent ; 17(5): 528-531, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39355187

RESUMEN

Introduction: Early childhood caries (ECC) is a major common problem seen in children and is the most prevalent chronic disease that leads to discomfort, pain, and poor quality of life, affecting the health of children. Alkaline phosphatase (ALP) is a nonspecific phosphomonoesterase that functions through a phosphoery 1 intermediate to produce free inorganic phosphate. It has different isoenzymes produced by different cell types such as polymorphonuclear leukocytes, osteoblasts, macrophages, and fibroblasts within alveolar bone and/or salivary glands. Various studies show that higher ALP activity is related to periodontal disease and dental caries. Aim: This study aims to estimate and correlate salivary Alkaline Phosphatase enzyme activity in the saliva of children with and without ECC. Materials and methods: A total of 50 children were included in the study, divided into two groups-caries-active and caries-free, each consisting of 25 participants. Unstimulated saliva samples were collected and subjected to a spectrophotometer for analysis. ALP enzyme activity levels were estimated and correlated between caries-active and caries-free children. Results: The correlation between caries score and ALP activity was statistically significant, with a moderate correlation. The comparison of mean ALP activity between caries-active and caries-free groups was statistically significant. However, the comparison of ALP based on different age-groups and gender was not statistically significant. There was a statistically significant correlation between caries scores and the caries-active group. Conclusion: In conclusion, there is a substantial correlation between ALP enzyme levels and the severity of dental caries. An increase in ALP enzyme level is linked to a considerable rise in caries severity. Therefore, prevention may be possible with early detection. How to cite this article: Thimmegowda U, Kuri PN. Estimation and Correlation of Alkaline Phosphatase Enzymatic Activity in Saliva with and without Early Childhood Caries in South Indian Children: A Randomized Clinical Trial. Int J Clin Pediatr Dent 2024;17(5):528-531.

9.
Bioresour Technol ; : 131575, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39370010

RESUMEN

Microbial fuel cell (MFC) and subsequent struvite crystallization are available low-carbon environmental- friendly techniques for resource utilization of waste activated sludge (WAS). In this study, low temperature thermo-alkaline pretreatment (LTTAP) was innovatively proposed for enhancing MFC electricity generation and subsequent struvite crystallization from WAS. The results indicated that LTTAP at 75 °C and pH 10 not only substantially shortened the start-up time of MFC to 3-4 days, but also significantly increased maximum power density to 5.38 W/m3. Moreover, thermo-alkaline pretreated WAS effectively exhibited stable and high output voltage over long period, compared to unpretreated WAS. Furthermore pretreated WAS can provide an effective pH buffering function for MFC operation. In addition, about 90 % of phosphate in the pretreated WAS supernatant was recovered by struvite crystallization. The findings herein provided a new route for enhancing electricity production and nutrient recovery from WAS, which can realize the full-scale applicationof WAS resource utilization.

10.
Materials (Basel) ; 17(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39274788

RESUMEN

Diffusional limitations associated with zeolite microporous systems can be overcome by developing hierarchical zeolites, i.e., materials with a micro- and mesoporous framework. In this work, Y and ZSM-5 zeolites were modified using a surfactant-mediated hydrothermal alkaline method, with NaOH and cetyltrimethylammonium bromide (CTAB). For Y zeolite, after a mild acidic pretreatment, the effect of the NaOH+CTAB treatment time was investigated. For ZSM-5 zeolite, different concentrations of the base and acid solutions were tested in the two-step pretreatment preceding the hydrothermal treatment. The properties of the materials were studied with different physical-chemical techniques. Hierarchical Y zeolites were characterized by 3.3-5 nm pores formed during the alkaline treatment through the structure reconstruction around the surfactant aggregates. The effectiveness of the NaOH+CTAB treatment was highly dependent on the duration. For intermediate treatment times (6-12 h), both smaller and larger mesopores were also obtained. Hierarchical ZSM-5 zeolites showed a disordered mesoporosity, mainly resulting from the pretreatment rather than from the subsequent hydrothermal treatment. High mesoporosity was obtained when the concentration of the pretreating base solution was sufficiently high and that of the acid one was not excessive. Hierarchical materials can be obtained for both zeolite structures, but the pretreatment and treatment conditions must be tailored to the starting zeolite and the desired type of mesoporosity.

11.
Adv Mater ; : e2411134, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279569

RESUMEN

NiFe (oxy)hydroxides have been regarded as one of the state-of-the-art catalysts for oxygen evolution reaction (OER). Unfortunately, the sluggish hydrogen evolution reaction (HER) kinetics limit its application as bifunctional electrocatalyst for alkaline overall water splitting (OWS). Herein, a "two-pronged" strategy is proposed to construct highly active oxygen deficient Ni-Mo-Fe coordinate structures in NiFe (oxy)hydroxide (NFM-OVR/NF), which simultaneously reduces the energy barrier of Volmer and Heyrovsky steps during alkaline HER process and significantly accelerate the reaction kinetics. Consequently, NFM-OVR/NF delivers overpotentials as low as 25 and 234 mV to achieve 10 and 1000 mA cm-2 in 1.0 M KOH, respectively. Furthermore, benefiting from excellent HER and OER activity, NFM-OVR/NF exhibits a remarkable OWS activity with cell voltages of 1.44 V and 1.77 V at 10 and 1000 mA cm-2 in 1.0 M KOH, and displays ultralong-term stability for 600 h at 500 mA cm-2, while remaining durable for 300 h in an alkaline water electrolyzer in 30% KOH at 80 °C. The calculated price per gallon of gasoline equivalent for the produced H2 is $ 0.92, which is much lower than 2026 U.S. Department of Energy target ($ 2.00), demonstrating feasibility and practicability of NFM-OVR/NF for industrial applications.

12.
Front Plant Sci ; 15: 1406542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228830

RESUMEN

Soil salinization is one of the major factors limiting agricultural production. Utilizing beneficial microorganisms like Piriformospora indica (P. indica) to enhance plant tolerance to abiotic stresses is a highly effective method, but the influence of P. indica on the growth of soybean in natural saline-alkaline soil remains unclear. Therefore, we investigated the effects of non-inoculation, P. indica inoculation, and fertilization on the growth, antioxidant defense, osmotic adjustment, and photosynthetic gas exchange parameters of soybean under two different levels of saline-alkaline stress in non-sterilized natural saline-alkaline soil. The study found that: 1) P. indica inoculation significantly promoted soybean growth, increasing plant height, root length, and biomass. Under mildly saline-alkaline stress, the increases were 11.5%, 16.0%, and 14.8%, respectively, compared to non-inoculated treatment. Under higher stress, P. indica inoculation achieved the same level of biomass increase as fertilization, while fertilization only significantly improved stem diameter. 2) Under saline-alkaline stress, P. indica inoculation significantly increased antioxidant enzyme activities and reduced malondialdehyde (MDA) content. Under mildly stress, MDA content was reduced by 47.1% and 43.3% compared to non-inoculated and fertilized treatments, respectively. Under moderate stress, the MDA content in the inoculated group was reduced by 29.9% and 36.6% compared to non-inoculated and fertilized treatments, respectively. Fertilization only had a positive effect on peroxidase (POD) activity. 3) P. indica inoculation induced plants to produce more osmotic adjustment substances. Under mildly stress, proline, soluble sugars, and soluble proteins were increased by 345.7%, 104.4%, and 6.9%, respectively, compared to non-inoculated treatment. Under higher stress, the increases were 75.4%, 179.7%, and 12.6%, respectively. Fertilization had no significant positive effect on proline content. 4) With increasing stress, soybean photosynthetic capacity in the P. indica-inoculated treatment was significantly higher than in the non-inoculated treatment, with net photosynthetic rate increased by 14.8% and 37.0% under different stress levels. These results indicate that P. indica can enhance soybean's adaptive ability to saline-alkaline stress by regulating ROS scavenging capacity, osmotic adjustment substance content, and photosynthetic capacity, thereby promoting plant growth. This suggests that P. indica has great potential in improving soybean productivity in natural saline-alkaline soils.

13.
ChemSusChem ; : e202401659, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237459

RESUMEN

Sustainable hydrogen production is focused on anion exchange membrane (AEM) water electrolyzers (AEMWEs), which still require more development to achieve high performance and durability. Here, we propose a novel class of porous organic polymers (POPs) as durable solid-ionomers for AEMWEs, which was prepared by reacting the 4-methylpiperidone with trifunctional or a mixture of trifunctional:difunctional aromatic monomers (in a 2:3 mol ratio). The resulting POP ionomers exhibited exceptional electrochemical properties and remarkable alkaline stability. Particularly noteworthy are the corresponding AEMWEs, which showed an outstanding current density of 13.4 A cm-2 at 2.0 V under 80°C in 1 M KOH solution, which is the highest performance reported in the particulate-ionomers AEMWE state of the art. Moreover, they demonstrated durability at a current density of 0.5 A cm-2 for over 500 hours with a voltage decay rate of 120 µV h-1. This work offers valuable perspectives on the designing of robust and high-performance solid-state ionomers through low-cost electrophilic aromatic substitution reactions for high-performance energy conversion devices.

14.
Gene ; 933: 148924, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245231

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite with sexual reproduction in the intestinal epithelium of felines. The depletion of two gene repressors, AP2XI-2 and AP2XII-1, induces merozoite formation and gene expression towards sexual commitment. Based on RNA-seq datasets of AP2XI-2 and AP2XII-1 knock downs we identified subtelomeric (ST) TgB12 and hypothetical (HP) genes upregulated. Some of the differentially expressed genes (DEGs) are arranged in ST clusters. These DEG products are characterized by high isoelectric points (pI) and may encode small proteins. The potential roles of these clusters of DEG ST genes in environmental resistance or parasite sexual development of T. gondii is discussed.

15.
PeerJ ; 12: e17984, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247545

RESUMEN

Background: Sequestering carbon dioxide (CO2) in agricultural soils promises climate change mitigation as well as sustainable ecosystem services. In order to stabilize crop residues as soil carbon (C), addition of mineral nutrients in excess to crop needs is suggested as an inevitable practice. However, the effect of two macronutrients i.e., nitrogen (N) & phosphorus (P), on C cycling has been found contradictory. Mineral N usually decreases whereas mineral P increases the soil organic C (SOC) mineralization and microbial biomass. How the addition of these macronutrients in inorganic form to an organic-matter poor soil affect C cycling remains to be investigated. Methods: To reconcile this contradiction, we tested the effect of mineral N (120 kg N ha-1) and/or P (60 kg N ha-1) in presence or absence of maize litter (1 g C kg-1 soil) on C cycling in an organic-matter poor soil (0.87% SOC) in a laboratory incubation. Soil respiration was measured periodically during the incubation whereas various soil variables were measured at the end of the incubation. Results: Contrary to literature, P addition stimulated soil C mineralization very briefly at start of incubation period and released similar total cumulative CO2-C as in control soil. We attributed this to low organic C content of the soil as P addition could desorb very low amounts of labile C for microbial use. Adding N with litter built up the largest microbial biomass (144% higher) without inducing any further increase in CO2-C release compared to litter only addition. However, adding P with litter did not induce any increase in microbial biomass. Co-application of inorganic N and P significantly increased C mineralization in presence (19% with respect to only litter amended) as well as absence (41% with respect to control soil) of litter. Overall, our study indicates that the combined application of inorganic N and P stabilizes added organic matter while depletes the already unamended soil.


Asunto(s)
Nitrógeno , Fósforo , Microbiología del Suelo , Suelo , Suelo/química , Fósforo/química , Nitrógeno/metabolismo , Dióxido de Carbono/farmacología , Biomasa , Ciclo del Carbono , Carbono/metabolismo , Agricultura/métodos , Zea mays/química , Fertilizantes/análisis
16.
Carbohydr Polym ; 345: 122553, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227095

RESUMEN

The requirement to improve the efficiency of pesticide utilization has led to the development of sustainable and smart stimuli-responsive pesticide delivery systems. Herein, a novel avermectin nano/micro spheres (AVM@HPMC-Oxalate) with sensitive stimuli-response function target to the Lepidoptera pests midgut microenvironment (pH 8.0-9.5) was constructed using hydroxypropyl methylcellulose (HPMC) as the cost-effective and biodegradable material. The avermectin (AVM) loaded nano/micro sphere was achieved with high AVM loading capacity (up to 66.8 %). The simulated release experiment proved the rapid stimuli-responsive and pesticides release function in weak alkaline (pH 9) or cellulase environment, and the release kinetics were explained through release models and SEM characterization. Besides, the nano/micro sphere size made AVM@HPMC-Oxalate has higher foliar retention rate (1.6-2.1-fold higher than commercial formulation) which is beneficial for improving the utilization of pesticides. The in vivo bioassay proved that AVM@HPMC-Oxalate could achieve the long-term control of Plutella xylostella by extending UV shielding performance (9 fold higher than commercial formulation). After 3 h of irradiation, the mortality rate of P. xylostella treated by AVM@HPMC-Oxalate still up to 56.7 % ± 5.8 %. Moreover, AVM@HPMC-Oxalate was less toxic to non-target organisms, and the acute toxicity to zebrafish was reduced by 2-fold compared with AVM technical.


Asunto(s)
Ivermectina , Mariposas Nocturnas , Rayos Ultravioleta , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacología , Ivermectina/toxicidad , Animales , Mariposas Nocturnas/efectos de los fármacos , Insecticidas/química , Insecticidas/farmacología , Insecticidas/toxicidad , Celulosa/química , Celulosa/análogos & derivados , Derivados de la Hipromelosa/química , Concentración de Iones de Hidrógeno , Liberación de Fármacos
17.
Carbohydr Polym ; 345: 122584, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227112

RESUMEN

The dissolving pulp preparation from bleached kraft pulp while realizing the high-value application of hemicellulose fraction is of great significance for improving the overall economics of the process. This work proposed a two-step cascaded process of deep eutectic solvent (DES) pretreatment combined with mechanical refining for the co-production of dissolving pulp and arabinoxylan (AX) from bleached bamboo pulp. Results showed that using alkaline DES composed of quaternary ammonium hydroxide and urea prepared high-quality dissolving pulp (α-cellulose content of 97.7 %) while selectively extracting high-quality AX. The mechanical refining rapidly opened up the cellulose structure to increase its Fock reactivity to over 70.0 %. When 100 g bleached bamboo pulp was subjected to this technology route, the high yields of dissolving pulp (63.8 g) and AX (13.0 g) were respectively obtained. It was proposed that the tailored DES with different alkalinity could specifically produce dissolving pulp or AX which were more favorable for downstream application through distinct action pathways. The swelling effects of DES on the cellulose surface facilitated the subsequent mechanical fibrillation, allowing a synergistic enhancement of the reactivity. Thus, the integrated process provided a sustainable alternative for dissolving pulp upgrading while adding attractiveness by co-producing AX product stream.

18.
Adv Sci (Weinh) ; : e2408544, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229933

RESUMEN

Binder plays a crucial role in constructing high-performance electrodes for water electrolysis. While most research has been focused on advancing electrocatalysts, the application of binders in electrode design has yet to be fully explored. Herein, the in situ incorporation of polytetrafluoroethylene (PTFE) as a multifunctional binder, which increases electrochemical active sites, enhances mass transfer, and strengthens the mechanical and chemical robustness of oxygen evolution reaction (OER) electrodes, is reported. The NiFe-LDH@PTFE/NF electrode prepared by co-deposition of PTFE with NiFe-layered double hydroxide onto nickel foam demonstrates exceptional long-term stability with a minimal potential decay rate of 0.034 mV h-1 at 500 mA cm-2 for 1000 h. The alkaline water electrolyzer utilizing NiFe-LDH@PTFE/NF requires only 1.584 V at 500 mA cm-2 and sustains high energy efficiency over 1000 h under industrial operating conditions. This work opens a new path for stabilizing active sites to obtain durable electrodes for OER as well as other electrocatalytic systems.

19.
Biol Trace Elem Res ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218814

RESUMEN

Elevated arterial stiffness has been associated with exposure to heavy metals such as lead (Pb) and cadmium (Cd). However, the collective impact of multiple metals and the underlying mechanisms are not fully elucidated. The purpose of this study was to assess the combined effects of exposure to nine heavy metals on arterial stiffness and explore whether serum alkaline phosphatase (ALP) acts as a mediator in this relationship. In the retrospective analysis, data from 8,700 participants were retrieved from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2018. Arterial stiffness was measured by estimated pulse wave velocity (ePWV). The cumulative impact of exposure to multiple metals was examined using adaptive elastic-net, environmental risk score, weighted quantile sum regression, and quantile g-computation. Additionally, mediation analysis was conducted to explore the potential mediating role of serum ALP. We found that combined exposure to multiple metals was consistently associated with elevated ePWV, with Ba, Pb, and Sb exhibiting the greatest contributions. Notably, serum ALP partially mediated the associations between individual (Pb, Sb) and mixed metal exposure with ePWV, with mediation proportions at 10.76% for Pb, 18.22% for Sb, and 11.07% for mixed metal exposure. In conclusion, this study demonstrates a clear association between exposure to heavy metals, either individually or in combination, and heightened arterial stiffness. Furthermore, the findings suggest that serum ALP activity may act as a mediator in these relationships.

20.
Data Brief ; 56: 110800, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39234054

RESUMEN

The dataset presented here emanates from preliminary studies that compared the early-age compressive strengths of geopolymer mortars produced from construction and demolition wastes (CDW) commonly found in Qatar using different alkaline activators. Waste concrete, waste bricks and steel slag were used as aluminosilicate sources for the geopolymer mortars. Waste concrete was used as fine aggregate (75 µm to 4 mm), while solid or hollow red clay bricks were used together with steel slag as aluminosilicate powders. Solid red clay brick (75 µm to 1.4 mm) was also considered as fine aggregate. Different alkaline activators including solid powder or ground pellet forms of Ca(OH)2, CaO, and Ca(OH)2-NaOH, NaOH-CaCO3 and Na2SiO3-Na2CO3-Ca(OH)2 mixtures were employed by just adding water. Both solid powder Ca(OH)2 and viscous solutions of NaOH and NaOH-Na2SiO3 were also considered as alkaline activators. The geopolymer mortars included small amounts of some other additives such as gypsum, microsilica and aluminium sulfate to enhance the geopolymerization and hydration process. Random proportions of the materials were employed in the range-finding experiments, and the mortars produced were tested for compressive strength. The dataset shows the 7-day compressive strengths and densities of the 40 mixtures tested with mostly ambient temperature (20°C) curing. It also shows such data for mixtures in which variables such as curing at 40°C, mixing with hot water at 50 - 60°C temperature, grading of waste concrete aggregates, and collective grinding of the powdered materials were considered. The data indicates possible early-age compressive strengths of different geopolymer mortar mixture designs and the materials and mixture design methods that can be used to achieve desired early-age strengths from waste concrete and bricks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA