Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros











Intervalo de año de publicación
1.
Data Brief ; 55: 110568, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39183967

RESUMEN

The plant family Zingiberaceae consists of many medicinally important tropical herbs. Here, we provide a contig level genome assembly for Hedychium spicatum, one of the medicinally utilized species in this family. We used genome assembly to identify candidate Simple Sequence Repeat (SSR) markers in the nuclear, chloroplast and mitochondrial compartments. We identified a total of 60,695 SSRs, which consisted of di-, tri-, tetra-, penta- and complex repeat types, and primers were designed for 14,851 SSR loci from both coding and non-coding parts of the genome. A total of 62 sets of candidate SSR primers were tested, out of which a final set of 20 SSR markers were characterized and they met the criteria of amplification success and retention of the repeat motif and homology. Out of these 20 markers, we genotyped 11 markers by amplifying and sizing 99 accessions of H. spicatum from 13 different geographic locations. The 11 markers were also characterised for four congeneric species, H. ellipticum, H. gomezianum, H. venustum, and H. yunnanense. All 11 SSR markers were found to be polymorphic and showed cross-species amplification. The total number of alleles per locus varied from 5 to 25. SSR markers continue to be a valuable tool for researchers because of their cost-effectiveness and simplicity. The cross-species amplification and variability of the SSR markers generated here further extend the utility of the markers to other Hedychium spp. The markers presented in this dataset can be used for a variety of studies, such as population genetics of invasive Hedychium species, QTL mapping, DNA fingerprinting, parentage analysis and genetic diversity assessments.

2.
Mol Ecol Resour ; 24(1): e13885, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37902171

RESUMEN

Multi-locus sequence data are widely used in fungal systematic and taxonomic studies to delimit species and infer evolutionary relationships. We developed and assessed the efficacy of a multi-locus pooled sequencing method using PacBio long-read high-throughput sequencing. Samples included fresh and dried voucher specimens, cultures and archival DNA extracts of Agaricomycetes with an emphasis on the order Cantharellales. Of the 283 specimens sequenced, 93.6% successfully amplified at one or more loci with a mean of 3.3 loci amplified. Our method recovered multiple sequence variants representing alleles of rDNA loci and single copy protein-coding genes rpb1, rpb2 and tef1. Within-sample genetic variation differed by locus and taxonomic group, with the greatest genetic divergence observed among sequence variants of rpb2 and tef1 from corticioid Cantharellales. Our method is a cost-effective approach for generating accurate multi-locus sequence data coupled with recovery of alleles from polymorphic samples and multi-organism specimens. These results have important implications for understanding intra-individual genomic variation among genetic loci commonly used in species delimitation of fungi.


Asunto(s)
Agaricales , Análisis de Secuencia de ADN , Filogenia , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Hongos
3.
mSphere ; 8(4): e0007123, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37341484

RESUMEN

Aspergillus fumigatus is a ubiquitous mold and a common human fungal pathogen. Recent molecular population genetic and epidemiological analyses have revealed evidence for long-distance gene flow and high genetic diversity within most local populations of A. fumigatus. However, little is known about the impact of regional landscape factors in shaping the population diversity patterns of this species. Here we sampled extensively and investigated the population structure of A. fumigatus from soils in the Three Parallel Rivers (TPR) region in Eastern Himalaya. This region is remote, undeveloped and sparsely populated, bordered by glaciated peaks more than 6,000 m above sea level, and contained three rivers separated by tall mountains over very short horizontal distances. A total of 358 A. fumigatus strains from 19 sites along the three rivers were isolated and analyzed at nine loci containing short tandem repeats. Our analyses revealed that mountain barriers, elevation differences, and drainage systems all contributed low but statistically significant genetic variations to the total A. fumigatus population in this region. We found abundant novel alleles and genotypes in the TPR population of A. fumigatus and significant genetic differentiation between this population and those from other parts of Yunnan and the globe. Surprisingly, despite limited human presence in this region, about 7% of the A. fumigatus isolates were resistant to at least one of the two medical triazoles commonly used for treating aspergillosis. Our results call for greater surveillance of this and other human fungal pathogens in the environment. IMPORTANCE The extreme habitat fragmentation and substantial environmental heterogeneity in the TPR region have long known to contribute to geographically shaped genetic structure and local adaptation in several plant and animal species. However, there have been limited studies of fungi in this region. Aspergillus fumigatus is a ubiquitous pathogen capable of long-distance dispersal and growth in diverse environments. In this study, using A. fumigatus as a model, we investigated how localized landscape features contribute to genetic variations in fungal populations. Our results revealed that elevation and drainage isolation rather than direct physical distances significantly impacted genetic exchange and diversity among the local A. fumigatus populations. Interestingly, within each local population, we found high allelic and genotypic diversities, and with evidence ~7% of all isolates being resistant to two medical triazoles, itraconazole and voriconazole. Given the high frequency of ARAF found in mostly natural soils of sparsely populated sites in the TPR region, close monitoring of their dynamics in nature and their effects on human health is needed.


Asunto(s)
Aspergillus fumigatus , Triazoles , Humanos , Antifúngicos/farmacología , China , Repeticiones de Microsatélite , Suelo
4.
Front Virol ; 3: 1128253, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37041983

RESUMEN

The antibody response to SARS-CoV-2 shows biased immunoglobulin heavy chain variable (IGHV) gene usage, allowing definition of genetic signatures for some classes of neutralizing antibodies. We investigated IGHV gene usage frequencies by sorting spike-specific single memory B cells from individuals infected with SARS-CoV-2 early in the pandemic. From two study participants and 703 spikespecific B cells, the most used genes were IGHV1-69, IGHV3-30-3, and IGHV3-30. Here, we focused on the IGHV3-30 group of genes and an IGHV3-30-3-using ultrapotent neutralizing monoclonal antibody, CAB-F52, which displayed broad neutralizing activity also in its germline-reverted form. IGHV3-30-3 is encoded by a region of the IGH locus that is highly variable at both the allelic and structural levels. Using personalized IG genotyping, we found that 4 of 14 study participants lacked the IGHV3-30-3 gene on both chromosomes, raising the question if other, highly similar IGHV genes could substitute for IGHV3-30-3 in persons lacking this gene. In the context of CAB-F52, we found that none of the tested IGHV3-33 alleles, but several IGHV3-30 alleles could substitute for IGHV3-30-3, suggesting functional redundancy between the highly homologous IGHV3-30 and IGHV3-30-3 genes for this antibody.

5.
Mol Ecol Resour ; 2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36906916

RESUMEN

For both undivided and subdivided populations, the consensus method to maintain genetic diversity is the Optimal Contribution (OC) method. For subdivided populations, this method determines the optimal contribution of each candidate to each subpopulation to maximize global genetic diversity (which implicitly optimizes migration between subpopulations) while balancing the relative levels of coancestry between and within subpopulations. Inbreeding can be controlled by increasing the weight given to within-subpopulation coancestry (λ). Here we extend the original OC method for subdivided populations that used pedigree-based coancestry matrices, to the use of more accurate genomic matrices. Global levels of genetic diversity, measured as expected heterozygosity and allelic diversity, their distributions within and between subpopulations, and the migration pattern between subpopulations, were evaluated via stochastic simulations. The temporal trajectory of allele frequencies was also investigated. The genomic matrices investigated were (i) the matrix based on deviations of the observed number of alleles shared by two individuals from the expected number under Hardy-Weinberg equilibrium; and (ii) a matrix based on a genomic relationship matrix. The matrix based on deviations led to higher global and within-subpopulation expected heterozygosities, lower inbreeding and similar allelic diversity than the second genomic and pedigree-based matrices when a relatively high weight was given to the within-subpopulation coancestries (λ ≥ 5). Under this scenario, allele frequencies moved only slightly away from the initial frequencies. Therefore, the recommended strategy is to use the former matrix in the OC methodology giving a high weight to the within-subpopulation coancestry.

6.
Immunity ; 56(3): 635-652.e6, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36796364

RESUMEN

Human T cell receptors (TCRs) are critical for mediating immune responses to pathogens and tumors and regulating self-antigen recognition. Yet, variations in the genes encoding TCRs remain insufficiently defined. Detailed analysis of expressed TCR alpha, beta, gamma, and delta genes in 45 donors from four human populations-African, East Asian, South Asian, and European-revealed 175 additional TCR variable and junctional alleles. Most of these contained coding changes and were present at widely differing frequencies in the populations, a finding confirmed using DNA samples from the 1000 Genomes Project. Importantly, we identified three Neanderthal-derived, introgressed TCR regions including a highly divergent TRGV4 variant, which mediated altered butyrophilin-like molecule 3 (BTNL3) ligand reactivity and was frequent in all modern Eurasian population groups. Our results demonstrate remarkable variation in TCR genes in both individuals and populations, providing a strong incentive for including allelic variation in studies of TCR function in human biology.


Asunto(s)
Antígenos , Receptores de Antígenos de Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T/genética , Genes Codificadores de los Receptores de Linfocitos T
7.
Immunity ; 56(1): 193-206.e7, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36574772

RESUMEN

The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , COVID-19/genética , Anticuerpos Antivirales , Polimorfismo Genético , Anticuerpos Neutralizantes , Células Germinativas
8.
Am Nat ; 201(1): 52-64, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36524929

RESUMEN

AbstractPollen dispersal is a key evolutionary and ecological process, but the degree to which variation in the density of concurrently flowering conspecific plants (i.e., coflowering density) shapes pollination patterns remains understudied. We monitored coflowering density and corresponding pollination patterns of the insect-pollinated palm Oenocarpus bataua in northwestern Ecuador and found that the influence of coflowering density on these patterns was scale dependent: high neighborhood densities were associated with reductions in pollen dispersal distance and gametic diversity of progeny arrays, whereas we observed the opposite pattern at the landscape scale. In addition, neighborhood coflowering density also impacted forward pollen dispersal kernel parameters, suggesting that low neighborhood densities encourage pollen movement and may promote gene flow and genetic diversity. Our work reveals how coflowering density at different spatial scales influences pollen movement, which in turn informs our broader understanding of the mechanisms underlying patterns of genetic diversity and gene flow within populations of plants.


Asunto(s)
Arecaceae , Polinización , Polen/genética , Flujo Génico , Reproducción/genética , Arecaceae/genética , Variación Genética , Repeticiones de Microsatélite
9.
Anim Biotechnol ; 34(4): 1030-1039, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34904511

RESUMEN

Bovine lymphocyte antigen (BoLA) DRB3 locus in healthy and mastitis affected cattle has been genotyped by a polymerase chain reaction and restriction fragment length polymorphisms (PCR-RLFP) using RsaI restriction enzyme, followed by sequencing. In 130 farm animals, 25 BoLA DRB3 alleles have been detected by PCR-RFLP. Three distinct allelic patterns significantly associated with mastitis in Karan Fries crossbred and Sahiwal indicus cattle have been identified, whereas, four other allelic patterns were significantly high in frequency among healthy animals. Sequencing of RFLP genotypes revealed 25 and 47 alleles among healthy Sahiwal and Karan Fries, respectively, while 17 and 38 patterns observed in mastitis affected Sahiwal and Karan Fries animals, respectively. From Tajima's D-test of neutrality, it was concluded that alleles associated with mastitis were expanding in the population, whereas those of healthy were under contraction. Phylogenetic analysis carried out to delineate the evolutionary relationship of the farm and field animals at DRB3 locus, differentiating allelic patterns into six different clusters. Among the phylogenetic lineages, five patterns DRB3*028:01, DRB3*011:03, DRB3*031:01, DRB3*001:01 and DRB3*043:01, were previously reported, whereas one novel allelic variant was observed in indicus and crossbred cattle. This information will help in further exploring the association between BoLA-DRB3 genetic diversity and disease resistance in distinct cattle breeds, important in designing breeding strategies for increasing the distribution of favorable alleles.


Asunto(s)
Enfermedades de los Bovinos , Mastitis , Femenino , Bovinos/genética , Animales , Frecuencia de los Genes/genética , Antígenos de Histocompatibilidad Clase II/genética , Alelos , Filogenia , Genotipo , Mastitis/genética , Enfermedades de los Bovinos/genética
10.
Gut Microbes ; 14(1): 2152306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36469575

RESUMEN

Individuals infected with Helicobacter pylori harbor unique and diverse populations of quasispecies, but diversity between and within different regions of the human stomach and the process of bacterial adaptation to each location are not yet well understood. We applied whole-genome deep sequencing to characterize the within- and between-stomach region genetic diversity of H. pylori populations from paired antrum and corpus biopsies of 15 patients, along with single biopsies from one region of an additional 3 patients, by scanning allelic diversity. We combined population deep sequencing with more conventional sequencing of multiple H. pylori single colony isolates from individual biopsies to generate a unique dataset. Single colony isolates were used to validate the scanning allelic diversity pipelines. We detected extensive population allelic diversity within the different regions of each patient's stomach. Diversity was most commonly found within non-coding, hypothetical, outer membrane, restriction modification system, virulence, lipopolysaccharide biosynthesis, efflux systems, and chemotaxis-associated genes. Antrum and corpus populations from the same patient grouped together phylogenetically, indicating that most patients were initially infected with a single strain, which then diversified. Single colonies from the antrum and corpus of the same patients grouped into distinct clades, suggesting mechanisms for within-location adaptation across multiple H. pylori isolates from different patients. The comparisons made available by combined sequencing and analysis of isolates and populations enabled comprehensive analysis of the genetic changes associated with H. pylori diversification and stomach region adaptation.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Infecciones por Helicobacter/microbiología , Estómago/microbiología , Genómica
11.
Mol Ecol ; 31(24): 6390-6406, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36208104

RESUMEN

Pathogen-mediated selection and sexual selection are important drivers of evolution. Both processes are known to target genes of the major histocompatibility complex (MHC), a gene family encoding cell-surface proteins that display pathogen peptides to the immune system. The MHC is also a model for understanding processes such as gene duplication and trans-species allele sharing. The class II MHC protein is a heterodimer whose peptide-binding groove is encoded by an MHC-IIA gene and an MHC-IIB gene. However, our literature review found that class II MHC papers on infectious disease or sexual selection included IIA data only 18% and 9% of the time, respectively. To assess whether greater emphasis on MHC-IIA is warranted, we analysed MHC-IIA sequence data from 50 species of vertebrates (fish, amphibians, birds, mammals) to test for polymorphism and positive selection. We found that the number of MHC-IIA alleles within a species was often high, and covaried with sample size and number of MHC-IIA genes assayed. While MHC-IIA variability tended to be lower than that of MHC-IIB, the difference was only ~25%, with ~3 fewer IIA alleles than IIB. Furthermore, the unexpectedly high MHC-IIA variability showed clear signatures of positive selection in most species, and positive selection on MHC-IIA was stronger in fish than in other surveyed vertebrate groups. Our findings underscore that MHC-IIA can be an important target of selection. Future studies should therefore expand the characterization of MHC-IIA at both allelic and genomic scales, and incorporate MHC-IIA into models of fitness consequences of MHC variation.


Asunto(s)
Complejo Mayor de Histocompatibilidad , Polimorfismo Genético , Animales , Filogenia , Complejo Mayor de Histocompatibilidad/genética , Vertebrados/genética , Alelos , Mamíferos/genética , Peces/genética , Selección Genética , Genes MHC Clase II/genética
12.
Front Immunol ; 13: 856497, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003377

RESUMEN

Allelic diversity of human leukocyte antigen (HLA) class II genes may help maintain humoral immunity against infectious diseases. In this study, we investigated germline genetic variation in classical HLA class II genes and employed a systematic, unbiased approach to explore the relative contribution of this genetic variation in the antibody repertoire to various common pathogens. We leveraged a well-defined cohort of 800 adults representing the general Arab population in which genetic material is shared because of the high frequency of consanguineous unions. By applying a high-throughput method for large-scale antibody profiling to this well-defined cohort, we were able to dissect the overall effect of zygosity for classical HLA class II genes, as well as the effects associated with specific HLA class II alleles, haplotypes and genotypes, on the antimicrobial antibody repertoire breadth and antibody specificity with unprecedented resolution. Our population genetic studies revealed that zygosity of the classical HLA class II genes is a strong predictor of antibody responses to common human pathogens, suggesting that classical HLA class II gene heterozygosity confers a selective advantage. Moreover, we demonstrated that multiple HLA class II alleles can have additive effects on the antibody repertoire to common pathogens. We also identified associations of HLA-DRB1 genotypes with specific antigens. Our findings suggest that HLA class II gene polymorphisms confer specific humoral immunity against common pathogens, which may have contributed to the genetic diversity of HLA class II loci during hominine evolution.


Asunto(s)
Anticuerpos , Genes MHC Clase II , Antígenos HLA , Inmunidad Adaptativa/genética , Adulto , Alelos , Anticuerpos/genética , Frecuencia de los Genes , Genes MHC Clase II/genética , Antígenos HLA/genética , Haplotipos , Humanos
13.
Microbiol Spectr ; 10(3): e0038222, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35546576

RESUMEN

Alternaria alternata is an opportunistic human fungal pathogen and a ubiquitous phytopathogen capable of causing diseases to >100 agricultural crops and ornamental plants. To control plant diseases caused by A. alternata, triazole fungicides have been widely used both in open crop and vegetable fields and in indoor growth facilities such as greenhouses. At present, the effect of fungicide use on triazole resistance development in A. alternata populations is not known. Here, we isolated 237 A. alternata strains from nine greenhouses around metropolitan Kunming in Yunnan, southwest China, determined their genotypes using 10 short tandem repeat markers, and quantified their susceptibility to four triazoles (difenoconazole, tebuconazole, itraconazole, and voriconazole). Abundant allelic and genotypic diversities were detected among these A. alternata strains. Significantly, over 17% of the strains were resistant to difenoconazole, and both known and new drug-resistance mutations were found in the triazole target gene cyp51. Our findings of high-level genetic variation of A. alternata in greenhouses coupled with high-frequency fungicide resistance call for greater attention to continued monitoring and to developing alternative plant fungal disease management strategies in greenhouses. IMPORTANCE Alternaria alternata is among the most common fungi in our environments, such as indoor facilities, the soil, and outdoor air. It can cause diseases in >100 crop and ornamental plants. Furthermore, it can cause human infections. However, our understanding of its genetic diversity and antifungal susceptibility is very limited. Indeed, the critical threshold values for resistance have not been defined for most antifungal drugs in this species. Greenhouses are known to have heavy applications of agricultural fungicides. In this study, we analyzed strains of A. alternata from nine greenhouses near metropolitan Kunming in southwestern China. Our study revealed very high genetic diversity and identified strains with high MIC values against two agricultural and two medical triazole antifungals within each of the nine greenhouses. Our study calls for greater attention to this emerging threat to food security and human health.


Asunto(s)
Antifúngicos , Fungicidas Industriales , Alternaria , Antifúngicos/farmacología , China , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Estructuras Genéticas , Humanos , Triazoles/farmacología
14.
Animals (Basel) ; 12(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35203164

RESUMEN

In the indigenous communities of central Veracruz, herds of creole sheep have been established and managed through traditional practices of crossing, but their genetic characteristics have never been examined in order to evaluate their state of endogamy, and to help the management programs to protect this genetic resource. The objective of the present study was to characterize the genetic diversity of three populations of creole sheep managed by indigenous communities in the central region of Veracruz, Mexico. Indigenous family producers of creole sheep were located and blood samples taken from 90 individual sheep from the municipalities of Tehuipango, Astacinga and Tlaquilpa, Veracruz. In the laboratory, the genomic DNA was extracted and genetic diversity characterized using four microsatellites (ILSTS11, ILSTS5, SRCRSP9 and OarFCB128) amplified by PCR and visualized on polyacrylamide gels. The four microsatellites were highly informative (PIC = 85%) and presented values of 0.6 to 0.81 of heterozygosity, with an average number of 16 alleles. According to the Hardy-Weinberg equilibrium model, three of the loci were not significant (p < 0.05), presumably this means that they do not deviate significantly from H-W predictions and there was slight genetic differentiation (FST = 0.025), along with a slight decrease in homozygotes (FIS = -0.021). According to the analysis of variance, 99% of the total variation was hosted at the individual level. It is concluded that the three creole sheep populations still present genetic diversity at the four loci and non-random pairings have occurred.

15.
Trends Genet ; 38(4): 307-309, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35135699

RESUMEN

Modern wheat shows phenomenal evolutional success and adaptability to a range of environments owing to polyploidization; however, during its hybridization process a major genetic gain has been overlooked. Recently, Gaurav et al. emphasized harnessing genetic diversity from wheat wild progenitor Aegilops tauschii for the improvement of hexaploid wheat through introgression or transgenesis.


Asunto(s)
Aegilops , Aegilops/genética , Triticum/genética
16.
Plant Mol Biol ; 108(4-5): 469-480, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34994920

RESUMEN

KEY MESSAGE: Association analysis resulted in the identification of specific StGWD alleles causing either an increase or decrease in starch phosphate content which was verified in diploid and tetraploid potato mapping populations. Potatoes are grown for various purposes like French fries, table potatoes, crisps and for their starch. One of the most important aspects of potato starch is that it contains a high amount of phosphate ester groups which are considered to be important for providing improved functionalization after derivatization processes. Little is known about the variation in phosphate content as such in different potato varieties and thus we studied the genetic diversity for this trait. From other studies it was clear that the phosphate content is controlled by a quantitative trait locus (QTL) underlying the candidate gene α-Glucan Water Dikinase (StGWD) on chromosome 5. We performed direct amplicon sequencing of this gene by Sanger sequencing. Sequences of two StGWD amplicons from a global collection of 398 commercial cultivars and progenitor lines were used to identify 16 different haplotypes. By assigning tag SNPs to these haplotypes, each of the four alleles present in a cultivar could be deduced and linked to a phosphate content. A high value for intra-individual heterozygosity was observed (Ho = 0.765). The average number of different haplotypes per individual (Ai) was 3.1. Pedigree analysis confirmed that the haplotypes are identical-by-descent (IBD) and offered insight in the breeding history of elite potato germplasm. Haplotypes originating from introgression of wild potato accessions carrying resistance genes could be traced. Furthermore, association analysis resulted in the identification of specific StGWD alleles causing either an increase or decrease in starch phosphate content varying from 12 nmol PO4/mg starch to 38 nmol PO4/mg starch. These allele effects were verified in diploid and tetraploid mapping populations and offer possibilities to breed and select for this trait.


Asunto(s)
Fosfatos/metabolismo , Fosfotransferasas (Aceptores Pareados)/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Almidón/metabolismo , Tetraploidía , Alelos , Variación Genética , Haplotipos , Linaje , Fosfotransferasas (Aceptores Pareados)/metabolismo , Polimorfismo de Nucleótido Simple
17.
Anim Biotechnol ; 33(7): 1746-1752, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33600274

RESUMEN

Among different cattle types, Bos indicus are known for their ability to better resist the tropical microbial infections comparatively, wherein MHC molecules play a significant role. In this study allelic diversity at MHC locus, DQA of Bos indicus, Bos taurus and crossbred of taurine-indicus has been explored to understand the possible role of MHC region in differential immune response. Thirty nine different DQA alleles were identified, out of which 14 were novel, along with documentation of duplication of DQA alleles. Indicus cattle population presented diverse types of DQA alleles compared to crossbred and exotic. Translated amino acid sequence analysis indicated, codon 64 and 50 of peptide binding sites being highly polymorphic and most of the indicus cattle presented alanine and arginine amino acid at position 64 and 50. Within breed genetic variation found to be higher than between breeds. Because of their ability to bind and subsequently respond to a wide array of antigens, the newly identified DQA alleles with high diversity present in the form of duplicated haplotypes in different combinations in cattle populations provided significant insights into probable role of this MHC locus in better tropical disease combating ability and genetic fitness of indicus cattle.


Asunto(s)
Genes MHC Clase II , Bovinos/genética , Animales , Alelos , Genes MHC Clase II/genética , Haplotipos/genética
18.
Plants (Basel) ; 10(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34834830

RESUMEN

In recent years, unilateral incompatibility (UI), which is an incompatibility system for recognizing and rejecting foreign pollen that operates in one direction, has been shown to be closely related to self-incompatibility (SI) in Brassica rapa. The stigma- and pollen-side recognition factors (SUI1 and PUI1, respectively) of this UI are similar to those of SI (stigma-side SRK and pollen-side SP11), indicating that SUI1 and PUI1 interact with each other and cause pollen-pistil incompatibility only when a specific genotype is pollinated. To clarify the genetic diversity of SUI1 and PUI1 in Japanese B. rapa, here we investigated the UI phenotype and the SUI1/PUI1 sequences in Japanese commercial varieties of Chinese cabbage. The present study showed that multiple copies of nonfunctional PUI1 were located within and in the vicinity of the UI locus region, and that the functional SUI1 was highly conserved in Chinese cabbage. In addition, we found a novel nonfunctional SUI1 allele with a dominant negative effect on the functional SUI1 allele in the heterozygote.

19.
BMC Genomics ; 22(1): 622, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34404342

RESUMEN

BACKGROUND: Sugarcane (Saccharum) is the most critical sugar crop worldwide. As one of the most enriched transcription factor families in plants, MYB genes display a great potential to contribute to sugarcane improvement by trait modification. We have identified the sugarcane MYB gene family at a whole-genome level through systematic evolution analyses and expression profiling. R2R3-MYB is a large subfamily involved in many plant-specific processes. RESULTS: A total of 202 R2R3-MYB genes (356 alleles) were identified in the polyploid Saccharum spontaneum genomic sequence and classified into 15 subgroups by phylogenetic analysis. The sugarcane MYB family had more members by a comparative analysis in sorghum and significant advantages among most plants, especially grasses. Collinearity analysis revealed that 70% of the SsR2R3-MYB genes had experienced duplication events, logically suggesting the contributors to the MYB gene family expansion. Functional characterization was performed to identify 56 SsR2R3-MYB genes involved in various plant bioprocesses with expression profiling analysis on 60 RNA-seq databases. We identified 22 MYB genes specifically expressed in the stem, of which RT-qPCR validated MYB43, MYB53, MYB65, MYB78, and MYB99. Allelic expression dominance analysis implied the differential expression of alleles might be responsible for the high expression of MYB in the stem. MYB169, MYB181, MYB192 were identified as candidate C4 photosynthetic regulators by C4 expression pattern and robust circadian oscillations. Furthermore, stress expression analysis showed that MYB36, MYB48, MYB54, MYB61 actively responded to drought treatment; 19 and 10 MYB genes were involved in response to the sugarcane pokkah boeng and mosaic disease, respectively. CONCLUSIONS: This is the first report on genome-wide analysis of the MYB gene family in sugarcane. SsMYBs probably played an essential role in stem development and the adaptation of various stress conditions. The results will provide detailed insights and rich resources to understand the functional diversity of MYB transcription factors and facilitate the breeding of essential traits in sugarcane.


Asunto(s)
Saccharum , Regulación de la Expresión Génica de las Plantas , Humanos , Filogenia , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/genética , Saccharum/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Front Genet ; 12: 558873, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33747032

RESUMEN

Most indigenous pig resources are known to originate from China. Thus, establishing conservation priorities for these local breeds is very essential, especially in the case of limited conservation funds. Therefore, in this study, we analyzed 445 individuals belonging to six indigenous breeds from the Taihu Lake Region, using a total of 131,300 SNPs. In order to determine the long-term guidelines for the management of these breeds, we analyzed the level of diversity in the metapopulation following a partition of diversity within and between breed subpopulations, using both measures of genic and allelic diversity. From the study, we found that the middle Meishan (MMS) pig population contributes the most (22%) to the total gene diversity while the Jiaxing black (JX) pig population contributes the most (27%) to the gene diversity between subpopulations. Most importantly, when we consider one breed is removed from the meta-population, the first two breeds prioritized should be JX pig breed and Fengjing pig breed followed by small Meishan (SMS), Mizhu (MI), and Erhualian (EH) if we pay more attention to the gene diversity between subpopulations. However, if the priority focus is on the total gene diversity, then the first breed to be prioritized would be the Shawutou (SW) pig breed followed by JX, MI, EH, and Fengjing (FJ). Furthermore, we noted that if conservation priority is to be based on the allelic diversity between subpopulations, then the MI breed should be the most prioritized breed followed by SW, Erhuanlian, and MMS. Summarily, our data show that different breeds have different contributions to the gene and allelic diversity within subpopulations as well as between subpopulations. Our study provides a basis for setting conservation priorities for indigenous pig breeds with a focus on different priority criteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA