Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.419
Filtrar
1.
Elife ; 132024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088250

RESUMEN

The brain's ability to appraise threats and execute appropriate defensive responses is essential for survival in a dynamic environment. Humans studies have implicated the anterior insular cortex (aIC) in subjective fear regulation and its abnormal activity in fear/anxiety disorders. However, the complex aIC connectivity patterns involved in regulating fear remain under investigated. To address this, we recorded single units in the aIC of freely moving male mice that had previously undergone auditory fear conditioning, assessed the effect of optogenetically activating specific aIC output structures in fear, and examined the organization of aIC neurons projecting to the specific structures with retrograde tracing. Single-unit recordings revealed that a balanced number of aIC pyramidal neurons' activity either positively or negatively correlated with a conditioned tone-induced freezing (fear) response. Optogenetic manipulations of aIC pyramidal neuronal activity during conditioned tone presentation altered the expression of conditioned freezing. Neural tracing showed that non-overlapping populations of aIC neurons project to the amygdala or the medial thalamus, and the pathway bidirectionally modulated conditioned fear. Specifically, optogenetic stimulation of the aIC-amygdala pathway increased conditioned freezing, while optogenetic stimulation of the aIC-medial thalamus pathway decreased it. Our findings suggest that the balance of freezing-excited and freezing-inhibited neuronal activity in the aIC and the distinct efferent circuits interact collectively to modulate fear behavior.


Asunto(s)
Miedo , Corteza Insular , Optogenética , Animales , Miedo/fisiología , Masculino , Ratones , Corteza Insular/fisiología , Vías Nerviosas/fisiología , Amígdala del Cerebelo/fisiología , Condicionamiento Clásico/fisiología , Ratones Endogámicos C57BL , Células Piramidales/fisiología
2.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3828-3836, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099356

RESUMEN

This study aims to further elucidate the efficacy targets of celastrol(CEL) intervention in central inflammation in mice with obesity-depression comorbiditiy, based on the differential mRNA expression in the amygdala(AMY) and dorsal raphe nucleus(DRN) after CEL intervention. C57BL/6J mice were randomly divided into a normal diet group(Chow), a obesity-depression comorbidity(COM) group, and low-, medium-, and high-dose CEL groups(CEL-L, CEL-M, CEL-H, 0.5, 1.0, 2.0 mg·kg~(-1)). The Chow group received a normal diet, while the COM group and CEL-L, CEL-M, CEL-H groups received a high-fat diet combined with chronic stress from wet bedding. After 10 weeks of feeding, the mice were orally administered CEL for three weeks. Subsequently, the AMY and DRN of mice in the Chow, COM, and CEL-H groups were subjected to transcriptome analysis, and the intersection of target differentially expressed genes in both nuclei was visualized using a Venn diagram. The intersected genes were then imported into STRING for protein-protein interaction(PPI) analysis, and Gene Ontology(GO) analysis was performed using DAVID to identify the core targets regulated by CEL in the AMY and DRN. Independent samples were subjected to quantitative real-time PCR(qPCR) to validate the intersection genes. The results revealed that the common genes regulated by CEL in the AMY and DRN included chemokine family genes Ccl2, Ccl5, Ccl7, Cxcl10, Cxcr6, and Hsp70 family genes Hspa1a, Hspa1b, as well as Myd88, Il2ra, Irf7, Slc17a8, Drd2, Parp9, and Nampt. GO analysis showed that the top 5 nodes Ccl2, Cxcl10, Myd88, Ccl5, and Irf7 were all involved in immune-inflammation regulation(P<0.01). The qPCR results from independent samples showed that in the AMY, compared with the results in the Chow group, chemokine family genes, Hsp70, Myd88, Il2ra, Irf7, Slc17a8, Parp9, and Nampt were significantly up-regulated in the COM group, with Drd2 showing a decreasing trend; these pathological changes were significantly improved in the CEL-H group compared to the COM group. In the DRN, compared with the results in the Chow group, chemokine family genes, Hsp70, Myd88, Il2ra, Irf7, Parp9, and Nampt were significantly down-regulated, while Slc17a8 was significantly up-regulated in the COM group; compared with those in the COM group, Cxcr6, Irf7, and Drd2 were significantly up-regulated, while Slc17a8 was significantly down-regulated in the CEL-H group. In both the AMY and DRN, the expression of Irf7 by CEL showed both inhibition and activation in a dose-dependent manner(R~2 were 0.709 8 and 0.917 2, respectively). These findings suggest that CEL can effectively improve neuroinflammation by regulating bidirectional expression of the same target proteins, thereby intervening in the immune activation of the AMY and immune suppression of the DRN in COM mice.


Asunto(s)
Amígdala del Cerebelo , Depresión , Núcleo Dorsal del Rafe , Ratones Endogámicos C57BL , Obesidad , Triterpenos Pentacíclicos , Triterpenos , Animales , Ratones , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Masculino , Depresión/tratamiento farmacológico , Depresión/genética , Depresión/metabolismo , Obesidad/genética , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Triterpenos/farmacología , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/genética , Humanos
3.
Cell ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39121857

RESUMEN

Negative psychological states impact immunity by altering the gut microbiome. However, the relationship between brain states and microbiome composition remains unclear. We show that Brunner's glands in the duodenum couple stress-sensitive brain circuits to bacterial homeostasis. Brunner's glands mediated the enrichment of gut Lactobacillus species in response to vagus nerve stimulation. Cell-specific ablation of the glands markedly suppressed Lactobacilli counts and heightened vulnerability to infection. In the forebrain, we mapped a vagally mediated, polysynaptic circuit connecting the central nucleus of the amygdala to Brunner's glands. Chronic stress suppressed central amygdala activity and phenocopied the effects of gland lesions. Conversely, excitation of either the central amygdala or parasympathetic vagal neurons activated Brunner's glands and reversed the effects of stress on the gut microbiome and immunity. The findings revealed a tractable brain-body mechanism linking psychological states to host defense.

4.
bioRxiv ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39185241

RESUMEN

Peripuberty is a significant period of neurodevelopment with long-lasting effects on the brain and behavior. Blocking type 1 corticotropin-releasing factor receptors (CRFR1) in neonatal and peripubertal rats attenuates detrimental effects of early-life stress on neural plasticity, behavior, and stress hormone action, long after exposure to the drug has ended. CRFR1 antagonism can also impact neural and behavioral development in the absence of stressful stimuli, suggesting sustained alterations under baseline conditions. To investigate this further, we administered a CRFR1 antagonist (CRFR1a), R121919, to young adolescent male and female rats across 4 days. Following each treatment, rats were tested for locomotion, social behavior, mechanical allodynia, or PPI of the acoustic startle reflex. Acute CRFR1 blockade immediately reduced PPI in peripubertal males, but not females. In adulthood, each assay was repeated without CRFR1a exposure to test for long-term effects of the adolescent treatment, with males continuing to experience deficits in PPI, while females displayed altered locomotion, PPI, and social behavior. The amygdala was collected to measure long-term effects on gene expression in pathways related to neural plasticity and neurodevelopmental disorders. Relative expression of cannabinoid type 1 receptors (CB1R), which mediate sensorimotor and HPA function, was also measured. In the adult amygdala, peripubertal CRFR1a induced alterations in pathways related to neural plasticity and stress in males and lower expression of CB1R protein in females. Understanding how acute exposure to neuropharmacological agents can have sustained impacts on brain and behavior, in the absence of further exposures, has important clinical implications for adolescent psychiatric treatment protocols.

5.
Biol Psychiatry Glob Open Sci ; 4(5): 100342, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39092138

RESUMEN

Background: The amygdala is highly implicated in an array of psychiatric disorders but is not accessible using currently available noninvasive neuromodulatory techniques. Low-intensity transcranial focused ultrasound (TFUS) is a neuromodulatory technique that has the capability of reaching subcortical regions noninvasively. Methods: We studied healthy older adult participants (N = 21, ages 48-79 years) who received TFUS targeting the right amygdala and left entorhinal cortex (active control region) using a 2-visit within-participant crossover design. Before and after TFUS, behavioral measures were collected via the State-Trait Anxiety Inventory and an emotional reactivity and regulation task utilizing neutral and negatively valenced images from the International Affective Picture System. Heart rate and self-reported emotional valence and arousal were measured during the emotional reactivity and regulation task to investigate subjective and physiological responses to the task. Results: Significant increases in both self-reported arousal in response to negative images and heart rate during emotional reactivity and regulation task intertrial intervals were observed when TFUS targeted the amygdala; these changes were not evident when the entorhinal cortex was targeted. No significant changes were found for state anxiety, self-reported valence to the negative images, cardiac response to the negative images, or emotion regulation. Conclusions: The results of this study provide preliminary evidence that a single session of TFUS targeting the amygdala may alter psychophysiological and subjective emotional responses, indicating some potential for future neuropsychiatric applications. However, more work on TFUS parameters and targeting optimization is necessary to determine how to elicit changes in a more clinically advantageous way.


Transcranial focused ultrasound (TFUS) is an emerging brain stimulation technique with the ability to noninvasively alter the activity of deep brain regions. Studying the potential for TFUS to alter behavioral response and processing, this study employed MRI-guided TFUS targeting the right amygdala in older adults. We found that TFUS targeting the right amygdala increased self-reported arousal in response to negative images, providing preliminary evidence that a single session of TFUS may be capable of affecting emotional reactivity.

7.
Exp Ther Med ; 28(4): 399, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39171147

RESUMEN

Anxiety after surgery can be a major factor leading to postoperative cognitive dysfunction, particularly in elderly patients. The role of inhibitory neurons in the basolateral amygdala (BLA) in anxiety-like behaviors in aged mice following isoflurane anesthesia remains unclear. Therefore, the present study aimed to investigate the role of inhibitory neurons in isoflurane-treated mice. A total of 30 C57BL/6 mice (age, 13 months) were allocated into the control and isoflurane anesthesia groups (15 mice/group) and were then subjected to several neurological assessments. Behavioral testing using an elevated plus maze test showed that aged mice in the isoflurane anesthesia group displayed significant anxiety-like behavior, since they spent more time in the closed arm, exhibited more wall climbing behavior and covered more distance. In addition, whole-cell patch-clamp recording revealed that the excitability of the BLA excitatory neurons was notably increased following mice anesthesia with isoflurane, while that of inhibitory neurons was markedly reduced. Following mice treatment with diazepam, the excitability of the BLA inhibitory neurons was notably increased compared with that of the excitatory neurons, which was significantly attenuated. Overall, the results of the current study indicated that anxiety-like behavior could occur in aged mice after isoflurane anesthesia, which could be caused by a reduced excitability of the inhibitory neurons in the BLA area. This process could enhance excitatory neuronal activity in aged mice, thus ultimately promoting the onset of anxiety-like behaviors.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39182725

RESUMEN

BACKGROUND: Violence exposure during childhood and adolescence is associated with increased prevalence and severity of psychopathology. Neurobiological correlates suggest that abnormal maturation of emotion-related brain circuitry, such as amygdala-prefrontal cortex (PFC), may underlie the development of psychiatric symptoms after exposure; however, it remains unclear how amygdala-PFC circuit maturation is related to psychiatric risk in the context of violence. METHODS: This study analyzed individual differences in amygdala-PFC circuit maturity using data collected from the Philadelphia Neurodevelopmental Cohort (PNC; N=1,133 youth). Neurodevelopment models of amygdala-PFC resting-state functional connectivity were built using deep learning, trained to predict chronological age in typically developing youth (neither violence exposed nor having a psychiatric diagnosis). Using the brain age gap estimate (BrainAGE), an index of relative circuit maturation, patterns of atypical neurodevelopment were interrogated. RESULTS: Violence exposure was associated with delayed maturation of basolateral amygdala (BLA) - PFC circuits, driven by increased BLA - medial orbitofrontal cortex functional connectivity. Increased psychiatric symptoms, on the other hand, was associated with advanced maturation of BLA - PFC functional connectivity, driven by decreased BLA - dorsolateral PFC functional connectivity. CONCLUSIONS: Delayed frontoamygdala maturation after exposure to violence suggests atypical, yet adaptive, development of threat appraisal processes, potentially reflecting greater threat generalization characteristic of younger children. Advanced circuit maturation with increasing symptoms suggests divergent neurodevelopmental mechanisms underlying illness after emotion-circuits have adapted to adversity, exacerbated by pre-existing vulnerabilities to early maturation. Disentangling the effects of adversity and psychopathology on neurodevelopment is crucial for helping youth recover from violence and preventing illness from continuing into adulthood.

9.
Addict Behav ; 159: 108134, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39178637

RESUMEN

Mindfulness has garnered attention for its potential in alleviating cigarette cravings; however, the neural mechanisms underlying its efficacy remain inadequately understood. This study (N=46, all men) aims to examine the impact of a mindfulness strategy on regulating cue-induced craving and associated brain activity. Twenty-three smokers, consuming over 10 cigarettes daily for at least 2 years, were compared to twenty-three non-smokers. During a regulation of craving task, participants were asked to practice mindfulness during smoking cue-exposure or passively view smoking cues while fMRI scans were completed. A 2 (condition: mindfulness-cigarette and look-cigarette) × 2 (phase: early, late of whole smoking cue-exposure period) repeated measures ANOVA showed a significant interaction of the craving scores between condition and phase, indicating that the mindfulness strategy dampened late-phase craving. Additionally, within the smoker group, the fMRI analyses revealed a significant main effect of mindfulness condition and its interaction with time in several brain networks involving reward, emotion, and interoception. Specifically, the bilateral insula, ventral striatum, and amygdala showed lower activation in the mindfulness condition, whereas the activation of right orbitofrontal cortex mirrored the strategy-time interaction effect of the craving change. This study illuminates the dynamic interplay between mindfulness, smoking cue-induced craving, and neural activity, offering insights into how mindfulness may effectively regulate cigarette cravings.

10.
CNS Neurosci Ther ; 30(8): e70001, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39154359

RESUMEN

AIMS: The parabrachial nucleus (PBN) promotes wakefulness states under general anesthesia. Recent studies have shown that glutamatergic neurons within the PBN play a crucial role in facilitating emergence from anesthesia. Our previous study indicates that vesicular glutamate transporter 2 (vglut2) expression neurons of the PBN extend into the extended amygdala (EA). However, the modulation of PBNvglut2-EA in general anesthesia remains poorly understood. This study aims to investigate the role of PBNvglut2-EA in alterations of consciousness during sevoflurane anesthesia. METHODS: We first validated vglut2-expressing neuron projections from the PBN to the EA using anterograde tracing. Then, we conducted immunofluorescence staining of c-Fos to investigate the role of the EA involved in the regulation of consciousness during sevoflurane anesthesia. After, we performed calcium fiber photometry recordings to determine the changes in PBNvglut2-EA activity. Lastly, we modulated PBNvglut2-EA activity under sevoflurane anesthesia using optogenetics, and electroencephalogram (EEG) was recorded during specific optogenetic modulation. RESULTS: The expression of vglut2 in PBN neurons projected to the EA, and c-Fos expression in the EA was significantly reduced during sevoflurane anesthesia. Fiber photometry revealed that activity in the PBNvglut2-EA pathway was suppressed during anesthesia induction but restored upon awakening. Optogenetic activation of the PBNvglut2-EA delayed the induction of anesthesia. Meanwhile, EEG recordings showed significantly decreased δ oscillations and increased ß and γ oscillations compared to the EYFP group. Furthermore, optogenetic activation of the PBNvglut2-EA resulted in an acceleration of awakening from anesthesia, accompanied by decreased δ oscillations on EEG recordings. Optogenetic inhibition of PBNvglut2-EA accelerated anesthesia induction. Surprisingly, we found a sex-specific regulation of PBNvglut2-EA in this study. The activity of PBNvglut2-EA was lower in males during the induction of anesthesia and decreased more rapidly during sevoflurane anesthesia compared to females. Photoactivation of the PBNvglut2-EA reduced the sensitivity of males to sevoflurane, showing more pronounced wakefulness behavior and EEG changes than females. CONCLUSIONS: PBNvglut2-EA is involved in the promotion of wakefulness under sevoflurane anesthesia. Furthermore, PBNvglut2-EA shows sex differences in the changes of consciousness induced by sevoflurane anesthesia.


Asunto(s)
Amígdala del Cerebelo , Anestésicos por Inhalación , Ratones Endogámicos C57BL , Neuronas , Núcleos Parabraquiales , Sevoflurano , Proteína 2 de Transporte Vesicular de Glutamato , Vigilia , Sevoflurano/farmacología , Animales , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/biosíntesis , Vigilia/efectos de los fármacos , Vigilia/fisiología , Ratones , Anestésicos por Inhalación/farmacología , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Optogenética/métodos , Electroencefalografía
11.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128940

RESUMEN

The orbitofrontal cortex and amygdala collaborate in outcome-guided decision-making through reciprocal projections. While serotonin transporter knockout (SERT-/-) rodents show changes in outcome-guided decision-making, and in orbitofrontal cortex and amygdala neuronal activity, it remains unclear whether SERT genotype modulates orbitofrontal cortex-amygdala synchronization. We trained SERT-/- and SERT+/+ male rats to execute a task requiring to discriminate between two auditory stimuli, one predictive of a reward (CS+) and the other not (CS-), by responding through nose pokes in opposite-side ports. Overall, task acquisition was not influenced by genotype. Next, we simultaneously recorded local field potentials in the orbitofrontal cortex and amygdala of both hemispheres while the rats performed the task. Behaviorally, SERT-/- rats showed a nonsignificant trend for more accurate responses to the CS-. Electrophysiologically, orbitofrontal cortex-amygdala synchronization in the beta and gamma frequency bands during response selection was significantly reduced and associated with decreased hubness and clustering coefficient in both regions in SERT-/- rats compared to SERT+/+ rats. Conversely, theta synchronization at the time of behavioral response in the port associated with reward was similar in both genotypes. Together, our findings reveal the modulation by SERT genotype of the orbitofrontal cortex-amygdala functional connectivity during an auditory discrimination task.


Asunto(s)
Amígdala del Cerebelo , Discriminación en Psicología , Ritmo Gamma , Corteza Prefrontal , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Masculino , Corteza Prefrontal/fisiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/deficiencia , Amígdala del Cerebelo/fisiología , Ritmo Gamma/fisiología , Ratas , Discriminación en Psicología/fisiología , Ritmo beta/fisiología , Vías Nerviosas/fisiología , Recompensa , Percepción Auditiva/fisiología , Estimulación Acústica , Ratas Transgénicas
13.
J Affect Disord ; 365: 285-292, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134155

RESUMEN

BACKGROUND: Major depressive disorder (MDD) affects multiple functional neural networks. Neuroimaging studies using resting-state functional connectivity (FC) have focused on the amygdala but did not assess changes in connectivity between the left and right amygdala. The current study aimed to examine the inter-hemispheric functional connectivity (homotopic FC, HoFC) between different amygdalar sub-regions in patients with MDD compared to healthy controls, and to examine whether amygdalar sub-regions' HoFC also predicts response to Serotonin Selective Reuptake Inhibitors (SSRIs). METHOD: Sixty-seven patients with MDD and 64 matched healthy controls were recruited. An MRI scan focusing on resting state fMRI and clinical and cognitive evaluations were performed. An atlas seed-based approach was used to identify the lateral and medial sub-regions of the amygdala. HoFC of these sub-regions was compared between groups and correlated with severity of depression, and emotional processing performance. Baseline HoFC levels were used to predict response to SSRIs after 2 months of treatment. RESULTS: Patients with MDD demonstrated decreased inter-hemispheric FC in the medial (F3,120 = 4.11, p = 0.008, η2 = 0.096) but not in the lateral (F3,119 = 0.29, p = 0.82, η2 = 0.008) amygdala compared with healthy controls. The inter-hemispheric FC of the medial sub-region correlated with symptoms severity (r = -0.33, p < 0.001) and emotional processing performance (r = 0.38, p < 0.001). Moreover, it predicted treatment response to SSRIs 65.4 % of the cases. LIMITATIONS: The current study did not address FC changes in MDD biotypes. In addition, structural connectivity was not examined. CONCLUSIONS: Using a unique perspective of the amygdalar distinct areas elucidated differential inter-hemispheric FC patterns in MDD patients, emphasizing the role of interhemispheric communication in depression.

14.
Front Hum Neurosci ; 18: 1441915, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175660

RESUMEN

The human brain is sensitive to threat-related information even when we are not aware of this information. For example, fearful faces attract gaze in the absence of visual awareness. Moreover, information in different sensory modalities interacts in the absence of awareness, for example, the detection of suppressed visual stimuli is facilitated by simultaneously presented congruent sounds or tactile stimuli. Here, we combined these two lines of research and investigated whether threat-related sounds could facilitate visual processing of threat-related images suppressed from awareness such that they attract eye gaze. We suppressed threat-related images of cars and neutral images of human hands from visual awareness using continuous flash suppression and tracked observers' eye movements while presenting congruent or incongruent sounds (finger snapping and car engine sounds). Indeed, threat-related car sounds guided the eyes toward suppressed car images, participants looked longer at the hidden car images than at any other part of the display. In contrast, neither congruent nor incongruent sounds had a significant effect on eye responses to suppressed finger images. Overall, our results suggest that only in a danger-related context semantically congruent sounds modulate eye movements to images suppressed from awareness, highlighting the prioritisation of eye responses to threat-related stimuli in the absence of visual awareness.

15.
Cell Rep ; 43(9): 114669, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178115

RESUMEN

Maladaptive plasticity is linked to the chronification of diseases such as pain, but the transition from acute to chronic pain is not well understood mechanistically. Neuroplasticity in the central nucleus of the amygdala (CeA) has emerged as a mechanism for sensory and emotional-affective aspects of injury-induced pain, although evidence comes from studies conducted almost exclusively in acute pain conditions and agnostic to cell type specificity. Here, we report time-dependent changes in genetically distinct and projection-specific CeA neurons in neuropathic pain. Hyperexcitability of CRF projection neurons and synaptic plasticity of parabrachial (PB) input at the acute stage shifted to hyperexcitability without synaptic plasticity in non-CRF neurons at the chronic phase. Accordingly, chemogenetic inhibition of the PB→CeA pathway mitigated pain-related behaviors in acute, but not chronic, neuropathic pain. Cell-type-specific temporal changes in neuroplasticity provide neurobiological evidence for the clinical observation that chronic pain is not simply the prolonged persistence of acute pain.

16.
Brain Sci ; 14(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39199486

RESUMEN

Aggression is a fundamental behavior with essential roles in dominance assertion, resource acquisition, and self-defense across the animal kingdom. However, dysregulation of the aggression circuitry can have severe consequences in humans, leading to economic, emotional, and societal burdens. Previous inconsistencies in aggression research have been due to limitations in techniques for studying these neurons at a high spatial resolution, resulting in an incomplete understanding of the neural mechanisms underlying aggression. Recent advancements in optogenetics, pharmacogenetics, single-cell RNA sequencing, and in vivo electrophysiology have provided new insights into this complex circuitry. This review aims to explore the aggression-provoking stimuli and their detection in rodents, particularly through the olfactory systems. Additionally, we will examine the core regions associated with aggression, their interactions, and their connection with the prefrontal cortex. We will also discuss the significance of top-down cognitive control systems in regulating atypical expressions of aggressive behavior. While the focus will primarily be on rodent circuitry, we will briefly touch upon the modulation of aggression in humans through the prefrontal cortex and discuss emerging therapeutic interventions that may benefit individuals with aggression disorders. This comprehensive understanding of the neural substrates of aggression will pave the way for the development of novel therapeutic strategies and clinical interventions. This approach contrasts with the broader perspective on neural mechanisms of aggression across species, aiming for a more focused analysis of specific pathways and their implications for therapeutic interventions.

17.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39201521

RESUMEN

Postpartum depression (PPD) affects 174 million women worldwide and is characterized by profound sadness, anxiety, irritability, and debilitating fatigue, which disrupt maternal caregiving and the mother-infant relationship. Limited pharmacological interventions are currently available. Our understanding of the neurobiological pathophysiology of PPD remains incomplete, potentially hindering the development of novel treatment strategies. Recent hypotheses suggest that PPD is driven by a complex interplay of hormonal changes, neurotransmitter imbalances, inflammation, genetic factors, psychosocial stressors, and hypothalamic-pituitary-adrenal (HPA) axis dysregulation. This narrative review examines recent clinical studies on PPD within the past 15 years, emphasizing advancements in neuroimaging findings and blood biomarker detection. Additionally, we summarize recent laboratory work using animal models to mimic PPD, focusing on hormone withdrawal, HPA axis dysfunction, and perinatal stress theories. We also revisit neurobiological results from several brain regions associated with negative emotions, such as the amygdala, prefrontal cortex, hippocampus, and striatum. These insights aim to improve our understanding of PPD's neurobiological mechanisms, guiding future research for better early detection, prevention, and personalized treatment strategies for women affected by PPD and their families.


Asunto(s)
Biomarcadores , Depresión Posparto , Humanos , Depresión Posparto/metabolismo , Femenino , Animales , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Estrés Psicológico/metabolismo
18.
Cell Rep ; 43(8): 114468, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39106862

RESUMEN

Engrams, which are cellular substrates of memory traces, have been identified in various brain areas, including the amygdala. While most identified engrams are composed of excitatory, glutamatergic neurons, GABAergic inhibitory engrams have been relatively overlooked. Here, we report the identification of an inhibitory engram in the central lateral amygdala (CeL), a key area for auditory fear conditioning. This engram is primarily composed of GABAergic somatostatin-expressing (SST(+)) and, to a lesser extent, protein kinase C-δ-expressing (PKC-δ(+)) neurons. Fear memory is accompanied by a preferential enhancement of synaptic inhibition onto PKC-δ(+) neurons. Silencing this CeL GABAergic engram disinhibits the activity of targeted extra-amygdaloid areas, selectively increasing the expression of fear. Our findings define the behavioral function of an engram formed exclusively by GABAergic inhibitory neurons in the mammalian brain.


Asunto(s)
Miedo , Neuronas GABAérgicas , Memoria , Somatostatina , Animales , Miedo/fisiología , Memoria/fisiología , Ratones , Neuronas GABAérgicas/metabolismo , Somatostatina/metabolismo , Proteína Quinasa C-delta/metabolismo , Masculino , Núcleo Amigdalino Central/metabolismo , Núcleo Amigdalino Central/fisiología , Ratones Endogámicos C57BL , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología
19.
Biomedicines ; 12(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39200176

RESUMEN

Background: Ceftriaxone upregulates GLT1 glutamate transporter in the brain and may have anti-CFC and anti-OCD effects. Methods: Twenty WZ-5HT rats were used to investigate the effects of ceftriaxone on obsessive-compulsive (OCD)-like behaviour in the marble-burying (MB) test, freezing behaviour in contextual fear conditioning (CFC) and expression of GLT1 protein in the hippocampus or amygdala using immunoblots. Fifteen DBA/2J mice were used in the MB test. We also compared diazepam with ceftriaxone in open-field, beam-walking, and wire-hanging tests on 47 DBA/2J mice. Ceftriaxone (200 mg/kg) and saline were applied intraperitoneally, once daily for 7 (rats) or 5 (mice) consecutive days. A single dose of diazepam (1.5-3.0 mg/kg) or saline was injected 30 min before the behavioural tests. Results: Ceftriaxone significantly diminished OCD-like behaviour (↓ number of marbles buried) and freezing behaviour in CFC context session (↑ latencies, ↓ total duration, ↓ duration over four 2 min periods of the session) but increased GLT1 protein expression in the amygdala and hippocampus of rats. Diazepam induced sedation, ataxia and myorelaxation in mice. Ceftriaxone did not have these side effects. Conclusions: The results of this study confirm the anti-CFC and anti-OCD effects of ceftriaxone, which did not produce the unwanted effects typical of diazepam.

20.
Epilepsia ; 65(8): 2470-2482, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119787

RESUMEN

OBJECTIVE: Given its key homeostatic role affecting mitochondria, ionotropic and metabotropic receptors, and voltage-gated ion channels, sigma-1 receptor (Sig1R) represents an interesting target for epilepsy management. Antiseizure effects of the positive allosteric modulator E1R have already been reported in acute seizure models. Although modulation of serotonergic neurotransmission is considered the main mechanism of action of fenfluramine, its interaction with Sig1R may be of additional relevance. METHODS: To further explore the potential of Sig1R as a target, we assessed the efficacy and tolerability of E1R and fenfluramine in two chronic mouse models, including an amygdala kindling paradigm and the intrahippocampal kainate model. The relative contribution of the interaction with Sig1R was analyzed using combination experiments with the Sig1R antagonist NE-100. RESULTS: Whereas E1R exerted pronounced dose-dependent antiseizure effects at well-tolerated doses in fully kindled mice, only limited effects were observed in response to fenfluramine, without a clear dose dependency. In the intrahippocampal kainate model, E1R failed to influence electrographic seizure activity. In contrast, fenfluramine significantly reduced the frequency of electrographic seizure events and their cumulative duration. Pretreatment with NE-100 reduced the effects of E1R and fenfluramine in the kindling model. Surprisingly, pre-exposure to NE-100 in the intrahippocampal kainate model rather enhanced and prolonged fenfluramine's antiseizure effects. SIGNIFICANCE: In conclusion, the kindling data further support Sig1R as an interesting target for novel antiseizure medications. However, it is necessary to further explore the preclinical profile of E1R in chronic epilepsy models with spontaneous seizures. Despite the rather limited effects in the kindling paradigm, the findings from the intrahippocampal kainate model suggest that it is of interest to further assess a possible broad-spectrum potential of fenfluramine.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia , Fenfluramina , Excitación Neurológica , Receptores sigma , Receptor Sigma-1 , Animales , Receptores sigma/antagonistas & inhibidores , Receptores sigma/efectos de los fármacos , Ratones , Excitación Neurológica/efectos de los fármacos , Fenfluramina/farmacología , Epilepsia/tratamiento farmacológico , Masculino , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Relación Dosis-Respuesta a Droga , Piperazinas/farmacología , Piperazinas/uso terapéutico , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/fisiopatología , Hipocampo/efectos de los fármacos , Enfermedad Crónica , Ácido Kaínico/farmacología , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...