Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.147
Filtrar
1.
Am J Reprod Immunol ; 92(2): e13915, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39132825

RESUMEN

The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to the global COVID-19 pandemic, significantly impacting the health of pregnant women. Obstetric populations, already vulnerable, face increased morbidity and mortality related to COVID-19, aggravated by preexisting comorbidities. Recent studies have shed light on the potential correlation between COVID-19 and preeclampsia (PE), a leading cause of maternal and perinatal morbidity worldwide, emphasizing the significance of exploring the relationship between these two conditions. Here, we review the pathophysiological similarities that PE shares with COVID-19, with a particular focus on severe COVID-19 cases and in PE-like syndrome cases related with SARS-CoV-2 infection. We highlight cellular and molecular mechanistic inter-connectivity between these two conditions, for example, regulation of renin-angiotensin system, tight junction and barrier integrity, and the complement system. Finally, we discuss how COVID-19 pandemic dynamics, including the emergence of variants and vaccination efforts, has shaped the clinical scenario and influenced the severity and management of both COVID-19 and PE. Continued research on the mechanisms of SARS-CoV-2 infection during pregnancy and the potential risk of developing PE from previous infections is warranted to delineate the complexities of COVID-19 and PE interactions and to improve clinical management of both conditions.


Asunto(s)
COVID-19 , Preeclampsia , Complicaciones Infecciosas del Embarazo , SARS-CoV-2 , Humanos , COVID-19/fisiopatología , COVID-19/inmunología , Embarazo , Femenino , Preeclampsia/fisiopatología , Preeclampsia/epidemiología , Preeclampsia/inmunología , SARS-CoV-2/fisiología , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/virología , Sistema Renina-Angiotensina
2.
JACC Heart Fail ; 12(8): 1473-1486, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39111953

RESUMEN

Chronic Chagas cardiomyopathy (CCC) has unique pathogenic and clinical features with worse prognosis than other causes of heart failure (HF), despite the fact that patients with CCC are often younger and have fewer comorbidities. Patients with CCC were not adequately represented in any of the landmark HF studies that support current treatment guidelines. PARACHUTE-HF (Prevention And Reduction of Adverse outcomes in Chagasic Heart failUre Trial Evaluation) is an active-controlled, randomized, phase IV trial designed to evaluate the effect of sacubitril/valsartan 200 mg twice daily vs enalapril 10 mg twice daily added to standard of care treatment for HF. The study aims to enroll approximately 900 patients with CCC and reduced ejection fraction at around 100 sites in Latin America. The primary outcome is a hierarchical composite of time from randomization to cardiovascular death, first HF hospitalization, or relative change from baseline to week 12 in NT-proBNP levels. PARACHUTE-HF will provide new data on the treatment of this high-risk population. (Efficacy and Safety of Sacubitril/Valsartan Compared With Enalapril on Morbidity, Mortality, and NT-proBNP Change in Patients With CCC [PARACHUTE-HF]; NCT04023227).


Asunto(s)
Aminobutiratos , Antagonistas de Receptores de Angiotensina , Compuestos de Bifenilo , Cardiomiopatía Chagásica , Combinación de Medicamentos , Enalapril , Insuficiencia Cardíaca , Tetrazoles , Valsartán , Humanos , Compuestos de Bifenilo/uso terapéutico , Aminobutiratos/uso terapéutico , Enalapril/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Cardiomiopatía Chagásica/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Tetrazoles/uso terapéutico , Volumen Sistólico/fisiología , Fragmentos de Péptidos/sangre , Enfermedad Crónica , Péptido Natriurético Encefálico/sangre , Masculino , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Femenino , Resultado del Tratamiento
3.
Biochem Pharmacol ; 229: 116480, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128587

RESUMEN

Alamandine (ALA) exerts protective effects similar to angiotensin (Ang) (1-7) through Mas-related G protein-coupled receptor type D receptor (MrgDR) activation, distinct from Mas receptor (MasR). ALA induces anti-inflammatory effects in mice but its impact in human macrophages remains unclear. We aimed to investigate the anti-inflammatory effects of ALA in human macrophages. Interleukin (IL)-6 and IL-1ß were measured by ELISA in human THP-1 macrophages and human monocyte-derived macrophages exposed to lipopolysaccharide (LPS). Consequences of MasR-MrgDR heteromerization were investigated in transfected HEK293T cells. ALA decreased IL-6 and IL-1ß secretion in LPS-activated THP-1 macrophages. The ALA-induced decrease in IL-6 but not in IL-1ß was prevented by MasR blockade and MasR downregulation, suggesting MasR-MrgDR interaction. In human monocyte-derived M1 macrophages, ALA decreased IL-1ß secretion independently of MasR. MasR-MrgDR interaction was confirmed in THP-1 macrophages, human monocyte-derived macrophages, and transfected HEK293T cells. MasR and MrgDR formed a constitutive heteromer that was not influenced by ALA. ALA promoted Akt and ERK1/2 activation only in cells expressing MasR-MrgDR heteromers, and this effect was prevented by MasR blockade. While Ang-(1-7) reduced cellular proliferation in MasR -but not MrgDR- expressing cells, ALA antiproliferative effect was elicited in cells expressing MasR-MrgDR heteromers. ALA also induced an antiproliferative response in THP-1 cells and this effect was abolished by MasR blockade, reinforcing MasR-MrgDR interaction. MasR-MrgDR heteromerization is crucial for ALA-induced anti-inflammatory and antiproliferative responses in human macrophages. This study broaden our knowledge of the protective axis of the RAS, thus enabling novel therapeutic approaches in inflammatory-associated diseases.

4.
World J Gastroenterol ; 30(22): 2866-2880, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38947288

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by the highly pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily impacts the respiratory tract and can lead to severe outcomes such as acute respiratory distress syndrome, multiple organ failure, and death. Despite extensive studies on the pathogenicity of SARS-CoV-2, its impact on the hepatobiliary system remains unclear. While liver injury is commonly indicated by reduced albumin and elevated bilirubin and transaminase levels, the exact source of this damage is not fully understood. Proposed mechanisms for injury include direct cytotoxicity, collateral damage from inflammation, drug-induced liver injury, and ischemia/hypoxia. However, evidence often relies on blood tests with liver enzyme abnormalities. In this comprehensive review, we focused solely on the different histopathological manifestations of liver injury in COVID-19 patients, drawing from liver biopsies, complete autopsies, and in vitro liver analyses. We present evidence of the direct impact of SARS-CoV-2 on the liver, substantiated by in vitro observations of viral entry mechanisms and the actual presence of viral particles in liver samples resulting in a variety of cellular changes, including mitochondrial swelling, endoplasmic reticulum dilatation, and hepatocyte apoptosis. Additionally, we describe the diverse liver pathology observed during COVID-19 infection, encompassing necrosis, steatosis, cholestasis, and lobular inflammation. We also discuss the emergence of long-term complications, notably COVID-19-related secondary sclerosing cholangitis. Recognizing the histopathological liver changes occurring during COVID-19 infection is pivotal for improving patient recovery and guiding decision-making.


Asunto(s)
COVID-19 , Hígado , SARS-CoV-2 , Humanos , COVID-19/complicaciones , COVID-19/patología , COVID-19/virología , Hígado/patología , Hígado/virología , SARS-CoV-2/patogenicidad , Hepatopatías/patología , Hepatopatías/virología , Hepatopatías/etiología , Hepatocitos/patología , Hepatocitos/virología
5.
Biochim Biophys Acta Gen Subj ; 1868(10): 130684, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084330

RESUMEN

It is well-established that dysfunction of megalin-mediated albumin endocytosis by proximal tubule epithelial cells (PTECs) and the activation of the Renin-Angiotensin System (RAS) play significant roles in the development of Diabetic Kidney Disease (DKD). However, the precise correlation between these factors still requires further investigation. In this study, we aimed to elucidate the potential role of angiotensin II (Ang II), a known effector of RAS, as the mediator of albumin endocytosis dysfunction induced by high glucose (HG) in PTECs. To achieve this, we utilized LLC-PK1 and HK-2 cells, which are well-established in vitro models of PTECs. Using albumin-FITC or DQ-albumin as tracers, we observed that incubation of LLC-PK1 and HK-2 cells with HG (25 mM for 48 h) significantly reduced canonical receptor-mediated albumin endocytosis, primarily due to the decrease in megalin expression. HG increased the concentration of Ang II in the LLC-PK1 cell supernatant, a phenomenon associated with an increase in angiotensin-converting enzyme (ACE) expression and a decrease in prolyl carboxypeptidase (PRCP) expression. ACE type 2 (ACE2) expression remained unchanged. To investigate the potential impact of Ang II on HG effects, the cells were co-incubated with angiotensin receptor inhibitors. Only co-incubation with 10-7 M losartan (an antagonist for type 1 angiotensin receptor, AT1R) attenuated the inhibitory effect of HG on albumin endocytosis, as well as megalin expression. Our findings contribute to understanding the genesis of tubular albuminuria observed in the early stages of DKD, which involves the activation of the Ang II/AT1R axis by HG.


Asunto(s)
Albúminas , Angiotensina II , Endocitosis , Células Epiteliales , Glucosa , Túbulos Renales Proximales , Receptor de Angiotensina Tipo 1 , Endocitosis/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/efectos de los fármacos , Angiotensina II/farmacología , Glucosa/metabolismo , Glucosa/farmacología , Receptor de Angiotensina Tipo 1/metabolismo , Animales , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Humanos , Albúminas/metabolismo , Porcinos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Línea Celular , Losartán/farmacología
6.
Arch Physiol Biochem ; : 1-13, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016681

RESUMEN

OBJECTVE: The purpose of the research was to investigate the effects of aerobic training on renal function, oxidative stress, intrarenal renin-angiotensin system, and mortality of hypertensive and diabetic (SHR-STZ) rats. MATERIALS AND METHODS: Blood pressure, creatinine, urea levels, urinary glucose, urine volume, and protein excretion were reduced in trained SHR-STZ rats. RESULTS: Aerobic training not only attenuated oxidative stress but also elevated the activity of antioxidant enzymes in the kid'ney of SHR-STZ rats. Training increased intrarenal levels of angiotensin-converting enzymes (ACE and ACE2) as well as the neprilysin (NEP) activity, along with decreased intrarenal angiotensin II (Ang II) levels. Aerobic training significantly improved the survival of STZ-SHR rats. CONCLUSION: The protective role of aerobic training was associated with improvements in the renal antioxidative capacity, reduced urinary protein excretion along with reduced intrarenal Ang II and increased NEP activity. These findings might reflect a better survival under the combined pathological conditions, hypertension, and diabetes.

7.
Front Pharmacol ; 15: 1414406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070798

RESUMEN

COVID-19 causes more severe and frequently fatal disease in patients with pre-existing comorbidities such as hypertension and heart disease. SARS-CoV-2 virus enters host cells through the angiotensin-converting enzyme 2 (ACE2), which is fundamental in maintaining arterial pressure through the renin-angiotensin system (RAS). Hypertensive patients commonly use medications such as angiotensin-converting enzyme inhibitors (ACEi), which can modulate the expression of ACE2 and, therefore, potentially impact the susceptibility and severity of SARS-CoV-2 infection. Here we assessed whether treatment of ACE2-humanized (K18-hACE2) mice with the ACEi Lisinopril affects lung ACE2 levels and the outcome of experimental COVID-19. K18-hACE2 mice were treated for 21 days with Lisinopril 10 mg/kg and were then infected with 105 PFU of SARS-CoV-2 (Wuhan strain). Body weight, clinical score, respiratory function, survival, lung ACE2 levels, viral load, lung histology, and cytokine (IL-6, IL-33, and TNF-α) levels were assessed. Mice treated with Lisinopril for 21 days showed increased levels of ACE2 in the lungs. Infection with SARS-CoV-2 led to massive decrease in lung ACE2 levels at 3 days post-infection (dpi) in treated and untreated animals, but Lisinopril-treated mice showed a fast recovery (5dpi) of ACE2 levels. Higher ACE2 levels in Lisinopril-treated mice led to remarkably higher lung viral loads at 3 and 6/7dpi. Lisinopril-treated mice showed decreased levels of the pro-inflammatory cytokines IL-6 and TNF-α in the serum and lungs at 6/7dpi. Marginal improvements in body weight, clinical score and survival were observed in Lisinopril-treated mice. No differences between treated and untreated infected mice were observed in respiratory function and lung histology. Lisinopril treatment showed both deleterious (higher viral loads) and beneficial (anti-inflammatory and probably anti-constrictory and anti-coagulant) effects in experimental COVID-19. These effects seem to compensate each other, resulting in marginal beneficial effects in terms of outcome for Lisinopril-treated animals.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39063514

RESUMEN

To compare the acute effects of aquatic walking/running versus dry-land walking/running on blood glucose and plasma renin activity (PRA) in individuals with type 2 diabetes, participants with type 2 diabetes performed deep-water or dry-land walking and/or running sessions in a swimming pool or on an athletics track, respectively. Both sessions comprised seven blocks of 3 min at 85-90% of the heart rate deflection point (HRDP), interspersed with 2 min at <85% HRDP, totaling 35 min, with a 48 h interval between sessions. PRA and blood glucose were assessed before and immediately after the sessions. Generalized estimation equations were used to verify the session effects, with the Bonferroni post hoc test, considering the significance level as 0.05. Twelve individuals (53.2 ± 8.9 years) diagnosed with type 2 diabetes for 6.3 ± 6.34 years participated in the study. A reduction in PRA was found only after the aquatic session (-7.75 ng/mL/h; -69%; p: 0.034), while both aquatic and dry-land sessions similarly reduced the blood glucose levels (aquatic: -38 mg/dL, -21%; dry-land: -26 mg/dL, -14%; time effect, p = 0.007). Despite yielding similar glycemic reductions as dry-land walking/running, aquatic walking/running led to an expressive decrease in PRA among individuals with type 2 diabetes.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Renina , Caminata , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/terapia , Persona de Mediana Edad , Masculino , Renina/sangre , Femenino , Glucemia/análisis , Ejercicio Físico/fisiología , Carrera/fisiología , Adulto
9.
Mol Neurobiol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965171

RESUMEN

Demyelination is among the most conspicuous neurological sequelae of SARS-CoV-2 infection (COVID-19) in both the central (CNS) and peripheral (PNS) nervous systems. Several hypotheses have been proposed to explain the mechanisms underlying demyelination in COVID-19. However, none have considered the SARS-CoV-2's effects on the renin-angiotensin-aldosterone system (RAAS). Therefore, our objective in this review is to evaluate how RAAS imbalance, caused by direct and indirect effects of SARS-CoV-2 infection, could contribute to myelin loss in the PNS and CNS. In the PNS, we propose that demyelination transpires from two significant changes induced by SARS-CoV-2 infection, which include upregulation of ADAM-17 and induction of lymphopenia. Whereas, in the CNS, demyelination could result from RAAS imbalance triggering two alterations: (1) a decrease in angiotensin type II receptor (AT2R) activity, responsible for restraining defense cells' action on myelin; (2) upregulation of ADAM-17 activity, leading to impaired maturation of oligodendrocytes and myelin formation. Thus, we hypothesize that increased ADAM-17 activity and decreased AT2R activity play roles in SARS-CoV-2 infection-mediated demyelination in the CNS.

10.
Front Immunol ; 15: 1404384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953035

RESUMEN

Introduction: Schistosomiasis (SM) is a parasitic disease caused by Schistosoma mansoni. SM causes chronic inflammation induced by parasitic eggs, with collagen/fibrosis deposition in the granuloma process in the liver, spleen, central nervous system, kidneys, and lungs. Pulmonary arterial hypertension (PAH) is a clinical manifestation characterized by high pressure in the pulmonary circulation and right ventricular overload. This study investigated the production of functional autoantibodies (fAABs) against the second loop of the G-protein-coupled receptor (GPCR) in the presence of hepatic and PAH forms of human SM. Methods: Uninfected and infected individuals presenting acute and chronic manifestations (e.g., hepatointestinal, hepato-splenic without PAH, and hepato-splenic with PAH) of SM were clinically evaluated and their blood was collected to identify fAABs/GPCRs capable of recognizing endothelin 1, angiotensin II, and a-1 adrenergic receptor. Human serum was analyzed in rat cardiomyocytes cultured in the presence of the receptor antagonists urapidil, losartan, and BQ123. Results: The fAABs/GPCRs from chronic hepatic and PAH SM individuals, but not from acute SM individuals, recognized the three receptors. In the presence of the antagonists, there was a reduction in beating rate changes in cultured cardiomyocytes. In addition, binding sites on the extracellular domain functionality of fAABs were identified, and IgG1 and/or IgG3 antibodies were found to be related to fAABs. Conclusion: Our data suggest that fAABs against GPCR play an essential role in vascular activity in chronic SM (hepatic and PAH) and might be involved in the development of hypertensive forms of SM.


Asunto(s)
Autoanticuerpos , Receptores Acoplados a Proteínas G , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Humanos , Animales , Receptores Acoplados a Proteínas G/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Ratas , Masculino , Femenino , Adulto , Hipertensión Pulmonar/inmunología , Hipertensión Pulmonar/etiología , Persona de Mediana Edad , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/parasitología , Esquistosomiasis mansoni/inmunología , Schistosoma mansoni/inmunología , Esquistosomiasis/inmunología
11.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892464

RESUMEN

In this study, we investigated whether severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein may modify angiotensin-converting enzyme 2 (ACE2) activity in the plasma, heart, kidney, liver, lung, and six brain regions (amygdala, brain stem, cortex, hippocampus, hypothalamus, and striatum) of diabetic and hypertensive rats. We determine ACE2 activity in the plasma and lysates of heart, kidney, liver, lung, and six brain regions. MLN-4760 inhibits ACE2 activity in the plasma and all organs. On the other hand, soluble ACE2 (sACE2) activity increased in the plasma of diabetic rats, and there was no change in the plasma of hypertensive rats. ACE2 activity was augmented in the liver, brain stem, and striatum, while it decreased in the kidney, amygdala, cortex, and hippocampus of diabetic rats. ACE2 activity increased in the kidney, liver, and lung, while it decreased in the heart, amygdala, cortex, and hypothalamus of hypertensive rats. We measured the ACE2 content via enzyme-linked immunosorbent assay and found that ACE2 protein levels increased in the heart, while it decreased in the plasma, kidney, brain stem, cortex, hippocampus, hypothalamus, and striatum of diabetic rats. ACE2 protein levels decreased in the brain stem, cortex, hippocampus, and hypothalamus of hypertensive rats. Our data showed that the spike protein enhanced ACE2 activity in the liver and lungs of diabetic rats, as well as in the heart and three of the brain regions (cortex, hypothalamus, and striatum) of hypertensive rats.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Hipertensión , Glicoproteína de la Espiga del Coronavirus , Animales , Enzima Convertidora de Angiotensina 2/metabolismo , Ratas , Glicoproteína de la Espiga del Coronavirus/metabolismo , Masculino , Hipertensión/metabolismo , SARS-CoV-2 , Diabetes Mellitus Experimental/metabolismo , Encéfalo/metabolismo , Encéfalo/enzimología , COVID-19/metabolismo , COVID-19/virología , Carboxipeptidasas/metabolismo , Riñón/metabolismo , Riñón/enzimología , Humanos , Imidazoles , Leucina/análogos & derivados
12.
Hipertens Riesgo Vasc ; 41(3): 145-153, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38871574

RESUMEN

BACKGROUND: The COVID-19 pandemic has highlighted the vulnerability of particular patient groups to SARS-CoV-2 infection, including those with cardiovascular diseases, hypertension, and intestinal dysbiosis. COVID-19 affects the gut, suggesting diet and vitamin D3 supplementation may affect disease progression. AIMS: To evaluate levels of Ang II and Ang-(1-7), cytokine profile, and gut microbiota status in patients hospitalized for mild COVID-19 with a history of cardiovascular disease and treated with daily doses of vitamin D3. METHODS: We recruited 50 adult patients. We screened 50 adult patients and accessed pathophysiology study 22, randomized to daily oral doses of 10,000IU vitamin D3 (n=11) or placebo (n=11). Plasma levels of Ang II and Ang-(1-7) were determined by radioimmunoassay, TMA and TMAO were measured by liquid chromatography and interleukins (ILs) 6, 8, 10 and TNF-α by ELISA. RESULTS: The Ang-(1-7)/Ang II ratio, as an indirect measure of ACE2 enzymatic activity, increased in the vitamin D3 group (24±5pg/mL vs. 4.66±2pg/mL, p<0.01). Also, in the vitamin D3-treated, there was a significant decline in inflammatory ILs and an increase in protective markers, such as a substantial reduction in TMAO (5±2µmoles/dL vs. 60±10µmoles/dL, p<0.01). In addition, treated patients experienced less severity of infection, required less intensive care, had fewer days of hospitalization, and a reduced mortality rate. Additionally, improvements in markers of cardiovascular function were seen in the vitamin D3 group, including a tendency for reductions in blood pressure in hypertensive patients. CONCLUSIONS: Vitamin D3 supplementation in patients with COVID-19 and specific conditions is associated with a more favourable prognosis, suggesting therapeutic potential in patients with comorbidities such as cardiovascular disease and gut dysbiosis.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Colecalciferol , Suplementos Dietéticos , Disbiosis , Microbioma Gastrointestinal , Fragmentos de Péptidos , Humanos , Colecalciferol/administración & dosificación , Masculino , Femenino , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/epidemiología , Persona de Mediana Edad , COVID-19/complicaciones , Fragmentos de Péptidos/sangre , Anciano , Angiotensina I/sangre , Angiotensina II/sangre , Tratamiento Farmacológico de COVID-19 , Vitaminas/administración & dosificación , Metilaminas/sangre , Citocinas/sangre , Enzima Convertidora de Angiotensina 2/metabolismo , SARS-CoV-2 , Método Doble Ciego
13.
Vasc Biol ; 6(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38843387

RESUMEN

Abstract: Renin-angiotensin system plays a critical role in blood pressure control, and the abnormal activation of the AT1 receptor contributes to the development of renovascular hypertension. This study aimed to evaluate the underlying cellular signaling for AT1 receptor activation by Ang II and to compare this mechanism between aortas from 2K-1C and 2K rats. Effects of antagonists and inhibitors were investigated on Ang II-induced contractions in denuded or intact-endothelium aortas. The AT1 receptor antagonist abolished Ang II-induced contraction in 2K-1C and 2K rat aortas, while AT2 and Mas receptors antagonists had no effect. Endothelial nitric oxide synthase inhibition increased the maximal effect (Emax) of Ang II in 2K, which was not changed in 2K-1C aortas. It was associated with lower eNOS mRNA levels in 2K-1C. Endothelium removal increased the Emax of Ang II in 2K-1C and mainly in 2K rat aortas. Nox and COX inhibition did not alter Ang II-induced contraction in 2K and 2K-1C rat aortas. However, AT1 expression was higher in 2K-1C compared to 2K rat aortic rings, whereas expression of phosphorylated (active) IP3 receptors was lower in 2K-1C than in 2K rats. These results demonstrate that endothelium removal impairs Ang II-stimulated contraction in the aorta of 2K-1C rats, which is associated with the reduction of IP3 receptor phosphorylation and activation. In addition, eNOS plays a critical role in Ang II-induced contraction in 2K rat aortas. It is possible that the high Ang II plasma levels could desensitize AT1 receptor in 2K-1C rats, leading to impaired IP3 receptors activation.

14.
Food Res Int ; 189: 114570, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876598

RESUMEN

Edible insects are recognized as promising food sources due to their nutritional composition. Some species, such as Gryllus assimilis, contain proteins, lipids, and carbohydrates of high biological value, which regulate several metabolic functions, including the Renin-Angiotensin System (RAS). In this context, the present study aimed to assess the effects of dietary supplementation with whole Gryllus assimilis powder on the metabolism of malnourished mice. Thirty-two male Swiss mice were used and divided into four treatment groups. The groups were identified as (AIN93-M); AIN93-M + Gryllus assimilis diet (AIN93-M + GA); AIN93-M + Renutrition diet (AIN93-M + REN) and AIN93-M + Renutrition diet + Gryllus assimilis (AIN93-M + REN + GA). The results showed that whole Gryllus assimilis powder inclusion promotes recovery from protein-energy malnutrition, reduces adiposity, and improves glucose tolerance and insulin sensitivity. It also reduces total cholesterol, triglycerides, VLDL, and adipocyte area. We also observed a significant increase in the expression of RAS-related genes, such as ACE2 and MasR, followed by a reduction in Angiotensinogen and ACE. The main findings of the present study suggest the use of black cricket as a viable strategy for the prevention and treatment of protein-energy malnutrition, as well as the reduction of adiposity, and improvement of lipid and glycemic parameters, with antihypertensive potential.


Asunto(s)
Tejido Adiposo , Suplementos Dietéticos , Gryllidae , Desnutrición Proteico-Calórica , Sistema Renina-Angiotensina , Animales , Sistema Renina-Angiotensina/efectos de los fármacos , Masculino , Ratones , Desnutrición Proteico-Calórica/metabolismo , Desnutrición Proteico-Calórica/dietoterapia , Tejido Adiposo/metabolismo , Adiposidad , Resistencia a la Insulina
15.
Mol Biol Rep ; 51(1): 775, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904729

RESUMEN

Acute leukemias (ALs) are the most common cancers in pediatric population. There are two types of ALs: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Some studies suggest that the Renin Angiotensin System (RAS) has a role in ALs. RAS signaling modulates, directly and indirectly, cellular activity in different cancers, affecting tumor cells and angiogenesis. Our review aimed to summarize the role of RAS in ALs and to explore future perspectives for the treatment of these hematological malignancies by modulating RAS molecules. The database including Pubmed, Scopus, Cochrane Library, and Scielo were searched to find articles about RAS molecules in ALL and in pediatric patients. The search terms were "RAS", "Acute Leukemia", "ALL", "Angiotensin-(1-7)", "Pediatric", "Cancer", "Angiotensin II", "AML". In the bone marrow, RAS has been found to play a key role in blood cell formation, affecting several processes including apoptosis, cell proliferation, mobilization, intracellular signaling, angiogenesis, fibrosis, and inflammation. Local tissue RAS modulates tumor growth and metastasis through autocrine and paracrine actions. RAS mainly acts via two molecules, Angiotensin II (Ang II) and Angiotensin (1-7) [Ang-(1-7)]. While Ang II promotes tumor cell growth and stimulates angiogenesis, Ang-(1-7) inhibits the proliferation of neoplastic cells and the angiogenesis, suggesting a potential therapeutic role of this molecule in ALL. The interaction between ALs and RAS reveals a complex network of molecules that can affect the hematopoiesis and the development of hematological cancers. Understanding these interactions could pave the way for innovative therapeutic approaches targeting RAS components.


Asunto(s)
Angiotensina II , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Angiotensina II/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Transducción de Señal , Angiotensina I/metabolismo , Neovascularización Patológica/metabolismo , Animales , Fragmentos de Péptidos/metabolismo
16.
J Alzheimers Dis ; 99(2): 485-488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38701148

RESUMEN

Midlife cerebrovascular risk factors increase risk of late life cognitive impairment and dementia, while their presence in patients with dementia may lead to cognitive improvement or stabilization in late life. Defining the best measure of blood pressure (BP) to be associated with cognitive decline remains debatable, also due to possible bidirectionality. BP variability, pulse pressure, systolic and diastolic BP have been associated with cognitive status, dementia risk and Alzheimer's disease biomarkers. Proper BP control notwithstanding, BP variability increases risk for pathophysiological change in the Alzheimer's disease continuum, implying the need for selection of anti-hypertensive drugs with neurobiological evidence of benefits.


Asunto(s)
Presión Sanguínea , Demencia , Humanos , Presión Sanguínea/fisiología , Demencia/epidemiología , Factores de Riesgo , Trastornos del Conocimiento/etiología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/etiología , Hipertensión/complicaciones , Hipertensión/fisiopatología
17.
Arch Cardiol Mex ; 2024 May 09.
Artículo en Español | MEDLINE | ID: mdl-38724012

RESUMEN

Hypertension is a major risk of morbidity and mortality in patients when it is uncontrolled. In spite of improved therapies currently available for blood pressure control, their complications are far away from being accomplished. Therefore, chronic renal failure is frequently observed in hypertensive patients. Thus, insights on mechanisms that may contribute to arterial pressure control should be studied to prevent life-threatening cardiovascular disorders. Purinergic receptors have been recognized in the physiopathology of hypertension; this review summarizes their participation in the renal abnormalities of the kidney in hypertension. Several studies have suggested the activation of renal purinergic receptors under an elevated interstitial ATP milieu as a fundamental pathway that leads to generation and maintained hypertension. Elevated ATP concentration alters fundamental mechanisms involved in the long-term control of blood pressure such as pressure natriuresis, autoregulation of glomerular filtration rate and renal blood flow, as well as increased tubule-glomerular feedback responses, overall, these alterations decrease sodium excretion; in addition, the expression of ATP receptors is modified. Under a genetical background, ATP induces the production of vasoactive compounds, decreases renal function and induces tubulointerstitial injury before glomerular damage. Simultaneously, a deleterious interaction between angiotensin II and purinergic receptors lead to the progression of renal damage.


La hipertensión arterial descontrolada es un factor de riesgo muy relevante para el desarrollo de complicaciones cardiovasculares graves. A pesar de los recursos disponibles en la actualidad, el control de la hipertensión arterial y sus complicaciones dista mucho de lograrse. Por ello, sus secuelas continúan siendo catastróficas, como la insuficiencia renal crónica. De ahí la relevancia de reconocer factores que pudieran modificarse para evitar esta complicación. Recientemente se ha propuesto que los receptores purinérgicos contribuyen en forma importante en las alteraciones renales que ocurren en la hipertensión arterial; en esta revisión se resume brevemente su papel. En varios estudios se ha demostrado que cuando existen concentraciones elevadas de ATP en el intersticio renal, la activación de los receptores purinérgicos constituye una vía fundamental en la generación y la persistencia de hipertensión arterial. Las concentraciones elevadas de ATP alteran mecanismos fundamentales asociados en el control de la presión arterial, como el mecanismo de natriuresis de presión, la autorregulación del flujo renal y la filtración glomerular, así como el aumento en la sensibilidad del mecanismo de retroalimentación tubuloglomerular. La alteración de estos mecanismos contribuye a la disminución de la excreción urinaria de sodio. Además, se modifica la expresión de receptores de ATP (purinérgicos). Bajo la influencia de alteraciones genéticas, el ATP estimula la producción de compuestos vasoactivos y en conjunto producen una disminución de la función renal y lesión tubulointersticial antes de que se lesione el glomérulo. Al mismo tiempo, la interacción de la angiotensina II y los receptores purinérgicos favorece la progresión del daño renal.

18.
J Cell Physiol ; 239(6): e31265, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38577921

RESUMEN

The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.


Asunto(s)
Tejido Adiposo , Proto-Oncogenes Mas , Receptores Acoplados a Proteínas G , Sistema Renina-Angiotensina , Animales , Humanos , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Metabolismo Energético , Obesidad/metabolismo , Obesidad/patología , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiología , Transducción de Señal
19.
Int. j. morphol ; 42(2): 227-233, abr. 2024. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1558128

RESUMEN

SUMMARY: The angiotensin converting enzyme gene (ACE) has been associated with endurance and strength performance through its I/D polymorphism. Nevertheless, contradictory results exist between different populations. In this context, the purpose of this research was to determine the influence of the I/D polymorphism of the ACE gene on muscle strength in a sedentary Chilean sample. In this study 102 healthy male students (21.3 ± 2.2 years) completed the assessment. I/D genotyping, cardiovascular, anthropometric, grip strength and knee extensor peak strength were evaluated. The ACE polymorphism frequency was: II, 33.3 %; ID, 46.1 %; DD, 20.6 %. The results showed significant differences and large effect size in maximum (p = 0.004; d = 0.85) and relative handgrip strength (p = 0.004; d = 0.9) between genotype II vs DD. No difference was found for maximal or relative knee extensor strength between groups (p = 0.74), showing a low effect size (d = 0.20). In conclusion, this study provides insights into the role of the ACE gene in muscle strength and highlights the importance of investigating genetic variants in sedentary populations to better understand strength performance.


El gen de la enzima convertidora de angiotensina (ACE) se ha asociado con el rendimiento de resistencia y fuerza a través de su polimorfismo I/D. Sin embargo, existen resultados contradictorios entre diferentes poblaciones. En este contexto, el propósito de esta investigación fue determinar la influencia del polimorfismo I/D del gen ACE sobre la fuerza muscular en una muestra chilena sedentaria. En este estudio, fueron evaluados 102 estudiantes varones sanos (21,3 ± 2,2 años). Se realizaron aplicaron las siguientes evaluaciones: genotipado del polimorfismo I/D, cardiovascular, antropométrica, fuerza de prensión y fuerza máxima de extensión de rodilla. La frecuencia del polimorfismo I/D de ACE fue: II, 33,3 %; DNI, 46,1 %; DD, 20,6 %. Los resultados mostraron diferencias significativas y un gran tamaño del efecto en la fuerza máxima (p = 0,004; d = 0,85) y relativa de prensión manual (p = 0,004; d = 0,9) entre el genotipo II y el DD. No se encontraron diferencias en la fuerza máxima o relativa de los extensores de rodilla entre los grupos (p = 0,74), lo que muestra un tamaño de efecto bajo (d = 0,20). En conclusión, este estudio proporciona información sobre el papel del gen ACE en la fuerza muscular y destaca la importancia de investigar variantes genéticas en poblaciones sedentarias para comprender mejor el rendimiento de la fuerza.


Asunto(s)
Humanos , Adolescente , Adulto , Polimorfismo Genético , Peptidil-Dipeptidasa A/genética , Fuerza Muscular/genética , Conducta Sedentaria , Fuerza de la Mano , Genotipo
20.
Am J Physiol Cell Physiol ; 326(4): C1203-C1211, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581656

RESUMEN

Cardiometabolic diseases are often associated with heightened levels of angiotensin II (Ang II), which accounts for the observed oxidative stress, inflammation, and fibrosis. Accumulating evidence indicates a parallel upregulation of dipeptidyl dipeptidase 4 (DPP4) activity in cardiometabolic diseases, with its inhibition shown to mitigate oxidative stress, inflammation, and fibrosis. These findings highlight an overlap between the pathophysiological mechanisms used by Ang II and DPP4. Recent evidence demonstrates that targeted inhibition of DPP4 prevents the rise in Ang II and its associated molecules in experimental models of cardiometabolic diseases. Similarly, inhibitors of the angiotensin I-converting enzyme (ACE) or Ang II type 1 receptor (AT1R) blockers downregulate DPP4 activity, establishing a bidirectional relationship between DPP4 and Ang II. Here, we discuss the current evidence supporting the cross talk between Ang II and DPP4, along with the potential mechanisms promoting this cross regulation. A comprehensive analysis of this bidirectional relationship across tissues will advance our understanding of how DPP4 and Ang II collectively promote the development and progression of cardiometabolic diseases.


Asunto(s)
Angiotensina II , Enfermedades Cardiovasculares , Humanos , Dipeptidil Peptidasa 4 , Peptidil-Dipeptidasa A , Receptor de Angiotensina Tipo 1 , Inflamación , Fibrosis , Angiotensina I
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA