Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 587
Filtrar
1.
Bioelectrochemistry ; 160: 108783, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39079286

RESUMEN

A sensitive electrochemical DNA biosensor has been developed for the detection of Buprenorphine (Bu), a narcotic pain reliever. To achieve this, double-stranded DNA (ds-DNA) was immobilized on a pencil graphite electrode that was modified with gold nanoparticles (Au NPs/PGE). The gold nanoparticles enhanced the performance of the DNA biosensor. The constructed ds-DNA/Au NPs/ PGE exhibited a linear detection range spanning from 0.05 to 100 µM with an impressive detection limit of 20 nM for Bu detection. Additionally, the DNA biosensor demonstrated good response in real samples evaluations. Finally, the interaction between carbon and gold atoms with DNA was confirmed through molecular dynamics simulation, while the interaction between DNA and the Bu drug was confirmed through molecular docking method. In conclusion, the electrochemical DNA biosensor presented in this study demonstrates exceptional sensitivity and reliability in the detection of buprenorphine. The incorporation of gold nanoparticles, as well as the use of molecular dynamics simulations and docking methods, contributes to a comprehensive understanding of the interactions involved in this detection process.

2.
ACS Appl Mater Interfaces ; 16(31): 41379-41389, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39057191

RESUMEN

We report the synthesis of vertically aligned silicon nanowire (VA-SiNW) oligomer arrays coated with Au nanoparticle (NP) monolayers via a combination of colloidal lithography, metal-assisted chemical etching, and directed NP assembly. Arrays of SiNW monomers (i.e., isolated NWs), dimers, and tetramers are synthesized, decorated with AuNPs, and tested for their performance in surface-enhanced Raman spectroscopy. The ∼20 nm AuNPs easily enter within the ca. 40 nm gaps of the SiNW oligomers, thus reaching the hot spot region. At 785 nm excitation, the AuNPs@SiNW dimer arrays provide the highest Raman signal, in agreement with electromagnetic simulations showing a high electric field enhancement at the Au/Si interface within the dimer gap region.

3.
Chemosphere ; 363: 142834, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004149

RESUMEN

Graphitic carbon nitride mutated with metal nanoparticles has captivated great interest as an effective fluorescent sensor for the detection of harmful ions present in water. In the present work, bulk-gCN was synthesized using melamine as precursor, and further Au-gCN nanocomposite were fabricated via in-situ direct reduction deposition method. The structural, morphological, compositional, stability and optical properties of bulk gCN and Au-gCN nanocomposite were examined using various scattering and spectroscopic techniques such as HRTEM, XPS, XRD and SEM. The synthesized bulk gCN straggles during selectivity studies with different cations and anions because of its uneven surface morphology, however in Au-gCN gold nanoparticles are uniformly distributed on the gCN sheets which results in its enhanced selectivity over bulk gCN. This leads to the fabrication of an optical sensor for Fe3+ and Cr2O72- ions with limit of detection of 4.62 and 2.77 µM, respectively. The sensing of Fe3+ ions corresponds to the photoinduced electron transfer (PET) mechanism, while the detection of chromate species is associated with an inner filter effect (IFE). The practical applicability of the sensor was also evaluated for different environmental water samples. The high stability, sensitivity, and specificity of Au-gCN nanocomposite make it a potential fluorescent probe for Fe3+ and Cr2O72- ions in water samples.


Asunto(s)
Colorantes Fluorescentes , Oro , Grafito , Nanopartículas del Metal , Contaminantes Químicos del Agua , Grafito/química , Oro/química , Nanopartículas del Metal/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Colorantes Fluorescentes/química , Nanocompuestos/química , Compuestos de Nitrógeno/química , Compuestos de Nitrógeno/análisis , Cromatos/química , Cromatos/análisis , Agua/química , Hierro/química , Hierro/análisis , Límite de Detección
4.
J Colloid Interface Sci ; 675: 369-378, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38972124

RESUMEN

Regulating the electron structure and precise loading sites of metal-active sites within the highly conjugated and porous covalent-triazine frameworks (CTFs) is essential to promoting the nitrogen reduction reaction (NRR) performance for electrocatalytic ammonia (NH3) synthesis under ambient conditions. Herein, experimental method and density functional theory (DFT) calculations were conducted to deeply probe the effect on NRR of the modulation of modulating the electron structure and the loading site of gold nanoparticles (Au NPs) in a two-dimensional (2D) CTF. 2D CTF synthesized using melem and hexaketocyclohexane octahydrate as building blocks (denoted as M-HCO-CTF) served as a robust scaffold for loading Au NPs to form an M-HCO-CTF@AuNP hybrid. DFT results uncovered that well-defined Au sites with tunable local structure were the active site for driving the NRR, which can significantly suppress the conversion of H+ into *H adsorption and enhance the nitrogen (N2) adsorption/activation. The overlapped Au (3d) and *N2 (2p) orbitals lowered the free energy of the rate-determining step to form *NNH, thereby accelerating the NRR. The M-HCO-CTF@AuNPs electrocatalyst exhibited a large NH3 yield rate of 66.3 µg h-1 mg-1cat. and a high Faraday efficiency of 31.4 % at - 0.2 V versus reversible hydrogen electrode in 0.1 M HCl, superior to most reported CTF-based ones. This work can provide deep insights into the modulation of the electron structure of metal atoms within a porous organic framework for artificial NH3 synthesis through NRR.

5.
Molecules ; 29(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930837

RESUMEN

In this work, a novel formaldehyde sensor was constructed based on nanoporous, flower-like, Pb-containing Pd-Au nanoparticles deposited on the cathode in a double-cabin galvanic cell (DCGC) with a Cu plate as the anode, a multiwalled carbon nanotube-modified glassy carbon electrode as the cathode, a 0.1 M HClO4 aqueous solution as the anolyte, and a 3.0 mM PdCl2 + 1.0 mM HAuCl4 + 5.0 mM Pb(ClO4)2 + 0.1 M HClO4 aqueous solution as the catholyte, respectively. Electrochemical studies reveal that the stripping of bulk Cu can induce underpotential deposition (UPD) of Pb during the galvanic replacement reaction (GRR) process, which affects the composition and morphology of Pb-containing Pd-Au nanoparticles. The electrocatalytic activity of Pb-containing nanoparticles toward formaldehyde oxidation was examined in an alkaline solution, and the experimental results showed that formaldehyde mainly caused direct oxidation on the surface of Pb-containing Pd-Au nanoparticles while inhibiting the formation of CO poison to a large degree. The proposed formaldehyde sensor exhibits a linear amperometric response to formaldehyde concentrations from 0.01 mM to 5.0 mM, with a sensitivity of 666 µA mM-1 cm-2, a limit of detection (LOD) of 0.89 µM at triple signal-to-noise, rapid response, high anti-interference ability, and good repeatability.

6.
Molecules ; 29(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893515

RESUMEN

The adoption of green chemistry protocols in nanoparticle (NP) synthesis has exhibited substantial potential and is presently a central focus in research for generating versatile NPs applicable across a broad spectrum of applications. In this scientific contribution, we, for the first time, examined the ability of Aconitum Laeve (A. Laeve) crude extract to synthesize silver and gold nanoparticles (AgNPs@AL; AuNP@AL) and explored their potential applications in biological activities and the catalytic degradation of environmental pollutants. The synthesized NPs exhibited a distinctive surface plasmon resonance pattern, a spherical morphology with approximate sizes of 5-10 nm (TEM imaging), a crystalline architecture (XRD analysis), and potential functional groups identified by FTIR spectroscopy. The antibacterial activity was demonstrated by inhibition zones that measured 16 and 14 mm for the AgNPs@AL and AuNP@AL at a concentration of 80 µg/mL against Staphylococcus aureus and 14 and 12 mm against Escherichia coli, respectively. The antioxidant potential of the synthesized NPs was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-Oxide (PTIO), and 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. Our findings suggest that the AuNP@AL effectively countered the tested radicals considerably, displaying IC50 values of 115.9, 103.54, and 180.85 µg/mL against DPPH, PTIO, and ABTS, respectively. In contrast, the AgNPs@AL showed IC50 values of 144.9, 116.36, and 95.39 µg/mL against the respective radicals. In addition, both the NPs presented significant effectiveness in the photocatalytic degradation of methylene blue and rhodamine B. The overall observations indicate that A. Laeve possesses a robust capability to synthesize spherical nanoparticles, exhibiting excellent dispersion and showcasing potential applications in both biological activities and environmental remediation.


Asunto(s)
Aconitum , Antibacterianos , Antioxidantes , Oro , Nanopartículas del Metal , Extractos Vegetales , Plata , Nanopartículas del Metal/química , Plata/química , Oro/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Aconitum/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Catálisis , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/síntesis química , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Tecnología Química Verde , Escherichia coli/efectos de los fármacos
7.
J Colloid Interface Sci ; 672: 236-243, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838631

RESUMEN

This study reports the development of a photocatalytic electrochemical aptasensor for the purpose of detecting chloramphenicol (CAP) antibiotic residues in water by utilizing SYBR Green I (SG) and chemically exfoliated MoS2 (ce-MoS2) as synergistically signal-amplification platforms. The Au nanoparticles (AuNPs) were electrodeposited onto the surface of an indium tin oxide (ITO) electrode. After that, the thiolate-modified cDNA, also known as capture DNA, was combined with the aptamer. Subsequently, photosensitized SG molecules and ce-MoS2 nanomaterial were inserted into the groove of the resultant double-stranded DNA (dsDNA). The activation of the photocatalytic process upon exposure to light resulted in the generation of singlet oxygen. The singlet oxygen effectively split the dsDNA, resulting in significant enhancement in the current of [Fe(CN)6]3-/4-. When the CAP was present, both SG molecules and ce-MoS2 broke away from the dsDNA, which turned off the photosensitization response, leading to significant reduction in the current of [Fe(CN)6]3-/4-. Under the optimal conditions, the aptasensor exhibited a linear relationship between the current of [Fe(CN)6]3-/4- with logarithmic concentrations of CAP from 20 to 1000 nM, with a detection of limit (3σ) of 3.391 nM. The aptasensor also demonstrated good selectivity towards CAP in the presence of interfering antibiotics, such as tetracycline, streptomycin, levofloxacin, ciprofloxacin, and sulfadimethoxine. Additionally, the results obtained from the analysis of natural water samples using the proposed aptasensor were consistent with the findings acquired through the use of a liquid chromatograph-mass spectrometer. Therefore, with its simplicity and high selectivity, this aptasensor can potentially detect alternative antibiotics in environmental water samples by replacing the aptamers based on photosensitization.


Asunto(s)
Aptámeros de Nucleótidos , Benzotiazoles , Técnicas Biosensibles , Cloranfenicol , Diaminas , Disulfuros , Técnicas Electroquímicas , Molibdeno , Compuestos Orgánicos , Quinolinas , Cloranfenicol/análisis , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Molibdeno/química , Diaminas/química , Disulfuros/química , Benzotiazoles/química , Quinolinas/química , Compuestos Orgánicos/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Oro/química , Fármacos Fotosensibilizantes/química , Antibacterianos/análisis , Límite de Detección , Contaminantes Químicos del Agua/análisis , Procesos Fotoquímicos , Tamaño de la Partícula
8.
Molecules ; 29(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792086

RESUMEN

Photodynamic therapy (PDT) is a non-invasive anticancer treatment that uses special photosensitizer molecules (PS) to generate singlet oxygen and other reactive oxygen species (ROS) in a tissue under excitation with red or infrared light. Though the method has been known for decades, it has become more popular recently with the development of new efficient organic dyes and LED light sources. Here we introduce a ternary nanocomposite: water-soluble star-like polymer/gold nanoparticles (AuNP)/temoporfin PS, which can be considered as a third-generation PDT system. AuNPs were synthesized in situ inside the polymer molecules, and the latter were then loaded with PS molecules in an aqueous solution. The applied method of synthesis allows precise control of the size and architecture of polymer nanoparticles as well as the concentration of the components. Dynamic light scattering confirmed the formation of isolated particles (120 nm diameter) with AuNPs and PS molecules incorporated inside the polymer shell. Absorption and photoluminescence spectroscopies revealed optimal concentrations of the components that can simultaneously reduce the side effects of dark toxicity and enhance singlet oxygen generation to increase cancer cell mortality. Here, we report on the optical properties of the system and detailed mechanisms of the observed enhancement of the phototherapeutic effect. Combinations of organic dyes with gold nanoparticles allow significant enhancement of the effect of ROS generation due to surface plasmonic resonance in the latter, while the application of a biocompatible star-like polymer vehicle with a dextran core and anionic polyacrylamide arms allows better local integration of the components and targeted delivery of the PS molecules to cancer cells. In this study, we demonstrate, as proof of concept, a successful application of the developed PDT system for in vitro treatment of triple-negative breast cancer cells under irradiation with a low-power LED lamp (660 nm). We consider the developed nanocomposite to be a promising PDT system for application to other types of cancer.


Asunto(s)
Resinas Acrílicas , Oro , Nanopartículas del Metal , Fotoquimioterapia , Fármacos Fotosensibilizantes , Oro/química , Fotoquimioterapia/métodos , Nanopartículas del Metal/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Humanos , Resinas Acrílicas/química , Línea Celular Tumoral , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Porfirinas/química , Porfirinas/farmacología , Supervivencia Celular/efectos de los fármacos , Polímeros/química , Antineoplásicos/farmacología , Antineoplásicos/química
9.
Food Chem ; 452: 139537, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728891

RESUMEN

The chlortetracycline (CTC) residue in food poses a threat to human health. Therefore, developing sensitive, convenient and selective analytical methods for CTC detection is crucial. This study innovatively uses tin disulfide/bimetallic organic framework (SnS2/ZnCo-MOF) nanocomposites in conjunction with gold nanoparticles (AuNPs) to co-modify a glassy carbon electrode (GCE). Further, a molecularly imprinted polymer (MIP)-based electrochemical sensing platform Au-MIP/SnS2/ZnCo-MOF/Au/GCE (AZG) was fabricated for selective CTC detection. SnS2/ZnCo-MOF enhanced the stability and surface area of the AZG sensor. The presence of AuNPs facilitated electron transport between the probe and the electrode across the insulating MIP layer. The fixation of AuNPs and MIP via electropolymerization enhanced the selective recognition of this sensor and amplified its output signal. The AZG sensor demonstrated a wide linear detection range (0.1-100 µM), low detection limit (0.072 nM), and high sensitivity (0.830 µA µM-1). It has been used for detecting CTC in animal-origin food with good recovery (96.08%-104.60%).


Asunto(s)
Clortetraciclina , Técnicas Electroquímicas , Contaminación de Alimentos , Oro , Nanopartículas del Metal , Impresión Molecular , Oro/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Contaminación de Alimentos/análisis , Animales , Clortetraciclina/análisis , Estructuras Metalorgánicas/química , Compuestos de Estaño/química , Límite de Detección , Sulfuros/química , Antibacterianos/análisis , Polímeros Impresos Molecularmente/química , Zinc/análisis , Zinc/química
10.
Mikrochim Acta ; 191(6): 328, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743383

RESUMEN

The instant screening of patients with a tendency towards developing Alzheimer's disease (AD) is significant for providing preventive measures and treatment. However, the current imaging-based technology cannot meet the requirements in the early stage. Developing biosensor-based liquid biopsy technology could be overcoming this bottleneck problem. Herein, we developed a simple, low-cost, and sensitive electrochemical aptamer biosensor for detecting phosphorylated tau protein threonine 231 (P-tau231), the earliest and one of the most efficacious abnormally elevated biomarkers of AD. Gold nanoparticles (AuNPs) were electrochemically synthesized on a glassy carbon electrode as the transducer, exhibiting excellent conductivity, and were applied to amplify the electrochemical signal. A nucleic acid aptamer was designed as the receptor to capture the P-tau231 protein, specifically through the formation of an aptamer-antigen complex. The proposed biosensor showed excellent sensitivity in detecting P-tau 231, with a broad linear detection range from 10 to 107 pg/mL and a limit of detection (LOD) of 2.31 pg/mL. The recoveries of the biosensor in human serum ranged from 97.59 to 103.26%, demonstrating that the biosensor could be used in complex practical samples. In addition, the results showed that the developed biosensor has good repeatability, reproducibility, and stability, which provides a novel method for the early screening of AD.


Asunto(s)
Enfermedad de Alzheimer , Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Límite de Detección , Nanopartículas del Metal , Proteínas tau , Humanos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Aptámeros de Nucleótidos/química , Proteínas tau/sangre , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Oro/química , Nanopartículas del Metal/química , Fosforilación , Biomarcadores/sangre
11.
Nanotechnology ; 35(32)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38608318

RESUMEN

A comparative study of the plasmon effect of Ag and Au nanoparticles on TiO2/rGO nanocomposite was carried out. The synthesis of Au and Ag nanoparticles was carried out by laser ablation. The morphology and structure of the nanocomposites were studied by EDA, HRTEM, XRD and Raman spectroscopy. It was shown that the absorption capacity of the nanocomposite material was increased in the visible range of the spectrum when Ag and Au nanoparticles were added to TiO2/rGO. This leads to an increase in their photocatalytic activity. The photocurrent generated by NC/Au 10-11films is in 3.8 times and NC/Ag 10-12is in 2 times higher compared to pure TiO2/rGO film. Similar results were obtained from experimental data on the dyes photodegradation. In the presence of plasmon nanoparticles a significant enhancement in the electrical properties of the TiO2/rGO nanocomposite was recorded. The charge carrier transfer resistance in nanocomposites was decreased by almost ∼7 times for NC/Au,10-11and ∼4 times for NC/Ag,10-12films compared to pure TiO2/rGO. In addition, for nanocomposites with Ag or Au nanoparticles, a decrease in the effective electron lifetime was observed. The data obtained allow us to conclude that plasmonic NPs have a synergistic effect in TiO2/rGO nanocomposites, which consists in modifying both their light-harvesting properties and charge-transport characteristics. The results obtained can be used for the design of materials with improved photocatalytic and optoelectronic characteristics.

12.
J Colloid Interface Sci ; 664: 868-881, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493652

RESUMEN

Conversion of CO2 into high value-added fuels through the photothermal effect is an effective approach for utilizing solar energy. In this study, we prepared the CN-based photocatalyst Py-CTN-Au with both donor-acceptor (D-A) system and dual photothermal effects using a simple two-step method involving calcination and photo-deposition. Real-time monitoring with a thermal imaging camera revealed that Py-CTN-Au0.5 achieved a maximum stable temperature of 180 °C, which was approximately 1.2 times higher than that of Py-CTN (155 °C) and 1.9 times higher than that of g-CN (95 °C) under the same reaction conditions. Under the optimized reaction conditions, Py-CTN-Au0.5 exhibited a CO release rate of 30.59 umol g-1 after 4 h of reaction, which was 7.3 times higher than that of pure g-CN (4.18 umol g-1). The D-A system not only facilitated the separation and transformation of charge carriers but also induced a photothermal effect to accelerate the photoreduction of CO2. Additionally, the cocatalyst Au nanoparticles (Au NPs) further enhanced the charge carrier dynamics and photothermal effect by increasing the built-in electric field intensity and localized surface plasmon resonance (LSPR) effect, respectively. The dual photothermal effects resulting from the non-radiative photon conversion of the D-A structure and the Au NPs LSPR effect, along with the enhanced charge carrier dynamics, catalyzed the efficient photoreduction of CO2. DFT simulations were used to confirm the effect of D-A system and Au NPs. In-situ FTIR results demonstrated that the synergistic photothermal effect promoted the formation of the key intermediate species COOH*, which is beneficial for the photocatalytic reduction of CO2. This study provides valuable insights into the multiple photothermal synergistic effects in photocatalytic reactions.

13.
Nanomaterials (Basel) ; 14(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38470747

RESUMEN

UV sensors hold significant promise for various applications in both military and civilian domains. However, achieving exceptional detectivity, responsivity, and rapid rise/decay times remains a notable challenge. In this study, we address this challenge by investigating the photodetection properties of CdS thin films and the influence of surface-deposited gold nanoparticles (AuNPs) on their performance. CdS thin films were produced using the pulsed laser deposition (PLD) technique on glass substrates, with CdS layers at a 100, 150, and 200 nm thickness. Extensive characterization was performed to evaluate the thin films' structural, morphological, and optical properties. Photodetector devices based on CdS and AuNPs/CdS films were fabricated, and their performance parameters were evaluated under 365 nm light illumination. Our findings demonstrated that reducing CdS layer thickness enhanced performance concerning detectivity, responsivity, external quantum efficiency (EQE), and photocurrent gain. Furthermore, AuNP deposition on the surface of CdS films exhibited a substantial influence, especially on devices with thinner CdS layers. Among the configurations, AuNPs/CdS(100 nm) demonstrated the highest values in all evaluated parameters, including detectivity (1.1×1012 Jones), responsivity (13.86 A/W), EQE (47.2%), and photocurrent gain (9.2).

14.
Nanomicro Lett ; 16(1): 156, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512388

RESUMEN

Reactive oxygen species (ROS) plays important roles in living organisms. While ROS is a double-edged sword, which can eliminate drug-resistant bacteria, but excessive levels can cause oxidative damage to cells. A core-shell nanozyme, CeO2@ZIF-8/Au, has been crafted, spontaneously activating both ROS generating and scavenging functions, achieving the multi-faceted functions of eliminating bacteria, reducing inflammation, and promoting wound healing. The Au Nanoparticles (NPs) on the shell exhibit high-efficiency peroxidase-like activity, producing ROS to kill bacteria. Meanwhile, the encapsulation of CeO2 core within ZIF-8 provides a seal for temporarily limiting the superoxide dismutase and catalase-like activities of CeO2 nanoparticles. Subsequently, as the ZIF-8 structure decomposes in the acidic microenvironment, the CeO2 core is gradually released, exerting its ROS scavenging activity to eliminate excess ROS produced by the Au NPs. These two functions automatically and continuously regulate the balance of ROS levels, ultimately achieving the function of killing bacteria, reducing inflammation, and promoting wound healing. Such innovative ROS spontaneous regulators hold immense potential for revolutionizing the field of antibacterial agents and therapies.

15.
Mikrochim Acta ; 191(4): 195, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478128

RESUMEN

Transition metal carbides modified by Au nanoparticles (Au/Ti3C2) were synthesized and developed as a colorimetric sensor for the determination of H2O2 and ampicillin. The surface electrical properties of Ti3C2 were changed, and Au nanoparticles (AuNPs) and gold growth solution were synthesized simultaneously. Au/Ti3C2 was obtained by seed growth method with AuNPs modified on the surface of transition metal carbides, nitrides or carbon-nitrides (Ti3C2 MXenes). The synthesized AuNPs and Ti3C2 had no peroxidase-like activity, but Au/Ti3C2 had. The peroxidase catalytic mechanism was due to electron transfer. The peroxidase activity of Au/Ti3C2 can be utilized for the determination of H2O2. The linear range of Au/Ti3C2 for H2O2 was 1-60 µM, and the detection limit was 0.12 µM (S/N = 3). A colometric sensor for ampicillin detection based on Au/Ti3C2 was further constructed since S in ampicillin formed an Au-S bond with Au/Ti3C2, leading to the weakening of its peroxidase-like property. The change of peroxidase-like property attenuated oxidation of TMB, and the ampicillin content was inversely proportional to the concentration of oxidized TMB, and the blue color of solution faded, which enabled the determination of ampicillin. The linear range for ampicillin was 0.005-0.5 µg mL- 1, and the detection limit was 1.1 ng mL- 1 (S/N = 3). The sensor was applied to the detection of ampicillin in milk and human serum.


Asunto(s)
Oro , Nanopartículas del Metal , Humanos , Oro/química , Colorimetría/métodos , Peróxido de Hidrógeno/química , Nanopartículas del Metal/química , Titanio , Peroxidasa/química , Peroxidasas
16.
Molecules ; 29(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474515

RESUMEN

In this work, Au nanoparticle-decorated ZnO@graphene core-shell quantum dots (Au-ZnO@graphene QDs) were successfully prepared and firstly used to modify an ITO electrode for the construction of a novel photoelectrochemical biosensor (Au-ZnO@graphene QDs/ITO). Characterization of the prepared nanomaterials was conducted using transmission electron microscopy, steady-state fluorescence spectroscopy and the X-ray diffraction method. The results indicated that the synthesized ternary nanomaterials displayed excellent photoelectrochemical performance, which was much better than that of ZnO@graphene QDs and pristine ZnO quantum dots. The graphene and ZnO quantum dots formed an effective interfacial electric field, enhancing photogenerated electron-hole pairs separation and leading to a remarkable improvement in the photoelectrochemical performance of ZnO@graphene QDs. The strong surface plasmon resonance effect achieved by directly attaching Au nanoparticles to ZnO@graphene QDs led to a notable increase in the photocurrent response through electrochemical field effect amplification. Based on the specifical recognition between cysteine and Au-ZnO@graphene QDs/ITO through the specificity of Au-S bonds, a light-driven photoelectrochemical sensor was fabricated for cysteine detection. The novel photoelectrochemical biosensor exhibited outstanding analytical capabilities in detecting cysteine with an extremely low detection limit of 8.9 nM and excellent selectivity. Hence, the Au-ZnO@graphene QDs is a promising candidate as a novel advanced photosensitive material in the field of photoelectrochemical biosensing.

17.
Chemistry ; 30(30): e202401010, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38517333

RESUMEN

Electrocatalytic nitrogen reduction reaction (NRR) has attracted much attention as a sustainable ammonia production technology, but it needs further exploration due to its slow kinetics and the existence of competitive side reactions. In this research, xAu/MIL-101(Fe) catalysts were obtained by loading gold nanoparticles (Au NPs) onto MIL-101(Fe) using a one-step reduction strategy. Herein, MIL-101(Fe), with high specific surface area and strong N2 adsorption capacity, is used as a support to disperse Au NPs to increase the electrochemical active surface area. Au NPs, with a high NRR activity, is introduced as the active site to promote charge transfer and intermediate formation rates. More importantly, the strong interaction between Au NPs and MIL-101(Fe) enhances the electron transfer between Au NPs and MIL-101(Fe), thereby enhancing the activation of N2 and achieving efficient NRR. Among the prepared catalysts, 15 %Au/MIL-101(Fe) has the highest NH3 yield of 46.37 µg h-1 mg-1 cat and a Faraday efficiency of 39.38 % at -0.4 V (vs. RHE). In-situ FTIR reveals that the NRR mechanism of 15 %Au/MIL-101(Fe) follows the binding alternating pathway and also indicates that the interaction between Au NPs and MIL-101(Fe) strengthens the activation of the N≡N bond in the rate-limiting process, thereby accelerating the NRR process.

18.
Nano Lett ; 24(8): 2451-2456, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38358313

RESUMEN

Herein, we present a new and simple electrochemical method to detect the intracellular electroactive substances by utilizing the electron tunnelling processes at the metal nanoparticles inside the cells. Intriguing discrete oxidation and reduction current spikes are obtained when testing the cells with loaded Au nanoparticles at the ultramicroelectrodes, which should come from reactive oxygen species (ROS) inside the single cell. The charges enclosed in the current spikes represent the ROS content inside the living cells, as confirmed by the fluorescence studies. As this simple electron tunnelling approach needs no nanoelectrodes or nanotip penetration processes, we believe it could have great potential applications in electrochemical analysis of single living cells.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Especies Reactivas de Oxígeno , Electrones , Electrodos , Membrana Celular
19.
ACS Appl Mater Interfaces ; 16(8): 10856-10866, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38364302

RESUMEN

A new, simple method for preparing substrates for photocatalytic applications under visible light is presented. It is based on the preparation of a dense array of gold nanoparticles (AuNPs) by thermal dewetting of a thin gold film followed by spin-coating of a thin TiO2 film prepared by sol-gel chemistry. The photocatalytic properties of these nanocomposite films are studied by surface-enhanced Raman spectroscopy (SERS) following the N-demethylation reaction of methylene blue as a model reaction. This approach shows that the semiconducting layer on the AuNPs can significantly increase the efficiency of the photoinduced reaction. The SERS study also illustrates the influence of parameters such as TiO2 thickness and position (on or under the AuNPs). Ultimately, this study emphasizes that the primary mechanism behind the N-demethylation reaction is both the increase in extinction and the improved electron transfer facilitated by the semiconducting layer. On the other hand, exclusive reliance on photothermal effects is ruled out.

20.
Small ; 20(29): e2312102, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38415950

RESUMEN

Although lithium-sulfur batteries (LSBs) are considered as the promising next rechargeable storage system ascribing to their decent specific capacity of inorganic sulfur, the development is partially impeded by inferior electronic conductivity, severe shuttle effect, and large volume variation. To tackle the issues above, a great deal of effort is made on sulfur-containing polymer (SCP) that shows better electrochemical performance. Nevertheless, sluggish conversion of lithium polysulfides (LiPSs) obstructs battery performance yet. Herein, electrocatalytic LiPSs with full conversion by tailoring the interfacial electric field are discovered based on gold nanoparticles (AuNPs) anchored on sulfurized polyaniline (SPANI). A downhill path of Gibbs free energy from organosulfur polymer to intermediate product means more spontaneously and favorable for full conversion, as the significant enhancement of electron density of state in the vicinity of the HOMO level for the AuNPs increase the electron transition probability rate. This composite delivers satisfactory electrochemical performance, especially increased rate capacity of >300 mAh g-1. Furthermore, catalyst mechanism on molecule level is proposed that AuNPsdominate chemical enhancement and higher electron delocalizablility betweenAuNPs and LiPSs molecules. These results can erect a promising strategy for enhancing lithium polysulfides full conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA