Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Microbiol ; 120(1): 91-102, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37328957

RESUMEN

In several Gram-negative bacteria, the general stress response is mediated by the alternative sigma factor RpoS, a subunit of RNA polymerase that confers promoter specificity. In Escherichia coli, regulation of protein levels of RpoS involves the adaptor protein RssB, which binds RpoS for presenting it to the ClpXP protease for its degradation. However, in species from the Pseudomonadaceae family, RpoS is also degraded by ClpXP, but an adaptor has not been experimentally demonstrated. Here, we investigated the role of an E. coli RssB-like protein in two representative Pseudomonadaceae species such as Azotobacter vinelandii and Pseudomonas aeruginosa. In these bacteria, inactivation of the rssB gene increased the levels and stability of RpoS during exponential growth. Downstream of rssB lies a gene that encodes a protein annotated as an anti-sigma factor antagonist (rssC). However, inactivation of rssC in both A. vinelandii and P. aeruginosa also increased the RpoS protein levels, suggesting that RssB and RssC work together to control RpoS degradation. Furthermore, we identified an in vivo interaction between RssB and RpoS only in the presence of RssC using a bacterial three-hybrid system. We propose that both RssB and RssC are necessary for the ClpXP-dependent RpoS degradation during exponential growth in two species of the Pseudomonadaceae family.


Asunto(s)
Azotobacter vinelandii , Proteínas de Escherichia coli , Factor sigma/genética , Factor sigma/metabolismo , Factores de Transcripción/metabolismo , Escherichia coli/metabolismo , Proteínas de Unión al ADN/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Escherichia coli/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Rev. Ciênc. Agrovet. (Online) ; 21(4): 419-427, dez. 2022. tab, graf
Artículo en Inglés | VETINDEX | ID: biblio-1413470

RESUMEN

Potato (Solanum tuberosum L.) is one of the main crops in the Andean region and due to environmental aspects, the use of biocontrol agents is considered a safe way to produce potato seed tubers.The objective of the study was to evaluate potato inoculation with Trichoderma sp. as a matrix and rhizobacteria Bacillus simplex and Azotobacter sp. on the growth of potato seedlings from in vitro culture, for the production of seed tubers in a greenhouse. The inoculation of microorganisms was carried out in pots, using five potato genotypes for processing. The inoculation treatments were: control, Trichoderma sp., Trichoderma sp. + Azotobacter sp., Trichoderma sp. + Bacillus simplex, Trichoderma sp. + B. simplex + Azotobacter sp. The potato genotypes were cv. Unica (CIP392797.22), cv. Bicentenaria, the advanced clones CIP 396311.1, CIP 399101.1, and the experimental clone UH-09 from the Universidad Nacional José Faustino Sánchez Carrión. A completely randomized design was used, under a factorial arrangement and comparisons between treatments were made at p<0.05. All inoculant treatments exceeded the control in number and weight of tubers per plant as well as in tuber size. Inoculations of Trichoderma sp. alone or with Azotobacter sp. increased plant height, number of leaves per plant and vegetative uniformity; inoculations with the Trichoderma sp. + B. simplex + Azotobacter sp. consortium, improved the dry weight of the foliage, number of shoots per plant and vegetative vigor. There were significant interactions between potato genotypes and inoculant treatments for plant uniformity, vegetative vigor, and the foliage's dry weight. Coinoculation with Trichoderma sp. and some bacterial strains promote the growth of in vitro potato seedlings, increasing the size and weight of the seed tubers and plant biomass, indicating an interrelation between fungi and bacteria that influence the production of potatoes in a greenhouse.(AU)


A batata (Solanum tuberosum L.) é uma das principais culturas da região andina e devido aos aspectos ambientais, o uso de agentes de biocontrole é considerado uma forma segura de produzir tubérculos de batata-semente. O objetivo do trabalho foi avaliar a inoculação de batata com Trichoderma sp. como matriz e rizobactérias Bacillus simplex e Azotobacter sp. sobre o crescimento de mudas de batata provenientes de cultivo in vitro, para produção de tubérculos-semente em casa de vegetação. A inoculação dos microrganismos foi realizada em vasos, utilizando-se cinco genótipos de batata para processamento. Os tratamentos de inoculação foram: testemunha, Trichoderma sp., Trichoderma sp. + Azotobacter sp., Trichoderma sp. + B.simplex, Trichoderma sp. + B.simplex + Azotobacter sp. Os genótipos de batata foram cv. Única (CIP392797.22), cv. Bicentenaria, os clones avançados CIP396311.1, CIP399101.1, e o clone experimental UH-9 da Universidade Nacional José Faustino Sánchez Carrión. O delineamento foi inteiramente casualizado, em esquema fatorial e as comparações entre os tratamentos foram feitas com p<0,05. Todos os tratamentos com inoculantes excederam o controle em número e peso de tubérculos por planta, bem como em tamanho de tubérculo. Inoculações de Trichoderma sp. sozinho ou com Azotobactersp. aumento da altura das plantas, número de folhas por planta e uniformidade vegetativa; inoculações com o Trichoderma sp. + B.simplex + Azotobacter sp. consorcio, melhorou a massa seca da folhagem, número de brotações por planta e vigor vegetativo. Houve interações significativas entre genótipos de batata e tratamentos inoculantes para uniformidade e vigor vegetativo, e para a massa seca da folhagem. Coinoculação com Trichoderma sp. e algumas cepas bacterianas promovem o crescimento de mudas de batata in vitro, aumentando o tamanho e o peso dos tubérculos-semente e da biomassa vegetal, indicando que existe inter-relação entre fungos e bactérias que influenciam a produção de batata em casa de vegetação.(AU)


Asunto(s)
Solanum tuberosum/genética , Solanum tuberosum/microbiología , Inoculantes Agrícolas , Azotobacter , Bacillus , Trichoderma
3.
3 Biotech ; 12(11): 304, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36276477

RESUMEN

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a polymer produced by Azotobacter vinelandii OP. In the bioreactor, PHBV production and its molar composition are affected by aeration rate. PHBV production by A. vinelandii OP was evaluated using extended batch cultures at different aeration rates, which determined different oxygen transfer rates (OTR) in the cultures. Under the conditions evaluated, PHBV with different 3-hydroxyvalerate (3HV) fractions were obtained. In the cultures with a low OTR (6.7 mmol L-1 h-1, at 0.3 vvm), a PHBV content of 38% w w-1 with 9.1 mol % 3HV was achieved. The maximum PHBV production (72% w w-1) was obtained at a high OTR (18.2 mmol L-1 h-1, at 1.0 vvm), both at 48 h. Thus, PHBV production increased in the bioreactor with an increased aeration rate, but not the 3HV fraction in the polymer chain. An OTR of 24.9 mmol L-1 h-1 (at 2.1 vvm) was the most suitable for improving the PHBV content (61% w w-1) and a high 3HV fraction of 20.8 mol % (at 48 h); and volumetric productivity (0.15 g L-1 h-1). The findings indicate that the extended batch culture at 2.1 vvm is the most adequate mode of cultivation to produce higher biomass and PHBV with a high 3HV fraction. Overall, the results have shown that the PHBV production and 3HV fraction could be affected by the aeration rate and the proposed approach could be applied to implement cultivation strategies to optimize PHBV production for different biotechnological applications.

4.
Appl Microbiol Biotechnol ; 106(17): 5551-5562, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35906439

RESUMEN

Late embryogenesis abundant (LEA) proteins are hydrophilic proteins that lack a well-ordered tertiary structure and accumulate to high levels in response to water deficit, in organisms such as plants, fungi, and bacteria. The mechanisms proposed to protect cellular structures and enzymes are water replacement, ion sequestering, and membrane stabilization. The activity of some proteins has a limited shelf-life due to instability that can be caused by their structure or the presence of a stress condition that limits their activity; several LEA proteins have been shown to behave as cryoprotectants in vitro. Here, we report a group1 LEA from Azotobacter vinelandii AvLEA1, capable of conferring protection to lactate dehydrogenase, catechol dioxygenase, and Baylase peroxidase against freeze-thaw treatments, desiccation, and oxidative damage, making AvLEA a promising biological stabilizer reagent. This is the first evidence of protection provided by this LEA on enzymes with biotechnological potential, such as dioxygenase and peroxidase under in vitro stress conditions. Our results suggest that AvLEA could act as a molecular chaperone, or a "molecular shield," preventing either dissociation or antiaggregation, or as a radical scavenger, thus preventing damage to these target enzymes during induced stress. KEY POINTS: • This work expands the basic knowledge of the less-known bacterial LEA proteins and their in vitro protection potential. • AvLEA is a bacterial protein that confers in vitro protection to three enzymes with different characteristics and oligomeric arrangement. • The use of AvLEA as a stabilizer agent could be further explored using dioxygenase and peroxidase in bioremediation treatments. AvLEA1 protects against freeze-thaw treatments, desiccation, and oxidative damage on three different enzymes with biotechnological potential.


Asunto(s)
Proteínas Bacterianas , Dioxigenasas , Desarrollo Embrionario , Peroxidasas , Proteínas de Plantas , Agua
6.
Front Microbiol ; 13: 845473, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401471

RESUMEN

Alginates are a family of polymers composed of guluronate and mannuronate monomers joined by ß (1-4) links. The different types of alginates have variations in their monomer content and molecular weight, which determine the rheological properties and their applications. In industry, alginates are commonly used as additives capable of viscosifying, stabilizing, emulsifying, and gelling aqueous solutions. Recently, additional specialized biomedical uses have been reported for this polymer. Currently, the production of alginates is based on the harvesting of seaweeds; however, the composition and structure of the extracts are highly variable. The production of alginates for specialized applications requires a precise composition of monomers and molecular weight, which could be achieved using bacterial production systems such as those based on Azotobacter vinelandii, a free-living, non-pathogenic bacterium. In this mini-review, we analyze the latest advances in the regulation of alginate synthesis in this model.

7.
Electron. j. biotechnol ; Electron. j. biotechnol;52: 35-44, July. 2021. tab, ilus
Artículo en Inglés | LILACS | ID: biblio-1283494

RESUMEN

BACKGROUND: Alginates are polysaccharides used in a wide range of industrial applications, with their functional properties depending on their molecular weight. In this study, alginate production and the expression of genes involved in polymerization and depolymerization in batch cultures of Azotobacter vinelandii were evaluated under controlled and noncontrolled oxygen transfer rate (OTR) conditions. RESULTS: Using an oxygen transfer rate (OTR) control system, a constant OTR (20.3 ± 1.3 mmol L 1 h 1 ) was maintained during cell growth and stationary phases. In cultures subjected to a controlled OTR, alginate concentrations were higher (5.5 ± 0.2 g L 1 ) than in cultures under noncontrolled OTR. The molecular weight of alginate decreased from 475 to 325 kDa at the beginning of the growth phase and remained constant until the end of the cultivation period. The expression level of alyA1, which encodes an alginate lyase, was more affected by OTR control than those of other genes involved in alginate biosynthesis. The decrease in alginate molecular weight can be explained by a higher relative expression level of alyA1 under the controlled OTR condition. CONCLUSIONS: This report describes the first time that alginate production and alginate lyase (alyA1) expression levels have been evaluated in A. vinelandii cultures subjected to a controlled OTR. The results show that automatic control of OTR may be a suitable strategy for improving alginate production while maintaining a constant molecular weight.


Asunto(s)
Polisacárido Liasas/metabolismo , Transferencia de Oxígeno , Azotobacter vinelandii/metabolismo , Oxígeno/metabolismo , Expresión Génica , Reacción en Cadena de la Polimerasa , Azotobacter vinelandii/genética , Alginatos/metabolismo , Fermentación , Peso Molecular
8.
Bioprocess Biosyst Eng ; 44(6): 1275-1287, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33635396

RESUMEN

Alginates can be used to elaborate hydrogels, and their properties depend on the molecular weight (MW) and the guluronic (G) and mannuronic (M) composition. In this study, the MW and G/M ratio were evaluated in cultures of Azotobacter vinelandii to 3 and 30 L scales at different oxygen transfer rates (OTRs) under diazotrophic conditions. An increase in the maximum OTR (OTRmax) improved the alginate production, reaching 3.3 ± 0.2 g L-1. In the cultures conducted to an OTR of 10.4 mmol L-1 h-1 (500 rpm), the G/M increased during the cell growth phase and decreased during the stationary phase; whereas, in the cultures at 19.2 mmol L-1 h-1 was constant throughout the cultivation. A higher alginate MW (520 ± 43 kDa) and G/M ratio (0.86 ± 0.01) were obtained in the cultures conducted at 10.4 mmol L-1 h-1. The OTR as a criterion to scale up alginate production allowed to replicate the concentration and the alginate production rate; however, it was not possible reproduce the MW and G/M ratio. Under a similar specific oxygen uptake rate (qO2) (approximately 65 mmol g-1 h-1) the alginate MW was similar (approximately 365 kDa) in both scales. The evidences revealed that the qO2 can be a parameter adequate to produce alginate MW similar in two bioreactor scales. Overall, the results have shown that the alginate composition could be affected by cellular respiration, and from a technological perspective the evidences contribute to the design process based on oxygen consumption to produce alginates defined.


Asunto(s)
Alginatos , Azotobacter vinelandii/crecimiento & desarrollo , Reactores Biológicos , Ácidos Hexurónicos , Alginatos/análisis , Alginatos/química , Alginatos/metabolismo , Ácidos Hexurónicos/análisis , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo , Peso Molecular
9.
Braz J Microbiol ; 52(1): 373-386, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33415718

RESUMEN

Improper nutrient management is one of the major limitations linked with cultivation of Cajanus cajan. This calls for an urgent need for a promising alternative, employing both bioinoculants and chemical fertilizer. Present study attempted to understand the impact of bioinoculants {Azotobacter chroococcum, Bacillus megaterium, and Pseudomonas fluorescens (ABP)} as their mono-inoculations, triple-inoculation, and their combination with different doses of fertilizer on (a) plant parameters, (b) soil nitrogen (N) economy, (c) resident bacterial community, (d) genes and transcripts involved in N cycle, and to evaluate the extent to which fertilizer could be replaced by ABP without compromising on grain yield. Bradyrhizobium sp. was used in all the treatments (as it was recommended for C. cajan). Combined application of bioinoculants and 75% of recommended dose of fertilizer (RDF) led to 1.28-fold enhancement in grain yield as compared to RDF alone. Apart from exerting a positive impact on grain yield, the combined application of ABP and fertilizer led to an improvement in soil fertility, and modified the culturable rhizospheric bacterial community involved in N cycle. Integrated use of bioinoculants and fertilizer led to better N substrate utilization and hence, metabolic diversity when compared with application of fertilizer alone. An increase in the transcripts of nifH gene at the harvest stage in the soil treated with ABP alone and its combination with fertilizer, over individual treatment with fertilizer was observed. The combined use of ABP and fertilizer shaped the resident bacterial community towards a more beneficial community, which helped in increasing soil nitrogen turnover and hence, soil fertility as a whole.


Asunto(s)
Cajanus/microbiología , Fertilizantes/análisis , Microbiota , Rizosfera , Microbiología del Suelo , Inoculantes Agrícolas , Agricultura/métodos , Nitrógeno/metabolismo , Nutrientes
10.
Appl Biochem Biotechnol ; 193(1): 79-95, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32813183

RESUMEN

Poly-3-hydroxybutyrate (P3HB) is a biopolymer, which presents characteristics similar to those of plastics derived from the petrochemical industry. The thermomechanical properties and biodegradability of P3HB are influenced by its molecular weight (MW). The aim of the present study was to evaluate the changes of the molecular weight of P3HB as a function of oxygen transfer rate (OTR) in the cultures using two strains of Azotobacter vinelandii, a wild-type strain OP, and PhbZ1 mutant with a P3HB depolymerase inactivated. Both strains were grown in a bioreactor under different OTR conditions. An inverse relationship was found between the average molecular weight of P3HB and the OTRmax, obtaining a polymer with a maximal MW (8000-10,000 kDa) from the cultures developed at OTRmax of 5 mmol L-1 h-1 using both strains, with respect to the cultures conducted at 8 and 11 mmol L-1 h-1, which produced a P3HB between 4000 and 5000 kDa. The increase in MW of P3HB was related to the activity of enzymes involved in the synthesis and depolymerization. Overall, our results show that it is possible to modulate the average molecular weight of P3HB by manipulating oxygen transfer conditions with both strains (OP and PhbZ1 mutant) of A. vinelandii.


Asunto(s)
Azotobacter vinelandii , Reactores Biológicos , Hidroxibutiratos/metabolismo , Mutación , Poliésteres/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crecimiento & desarrollo , Peso Molecular
11.
Electron. j. biotechnol ; Electron. j. biotechnol;48: 36-45, nov. 2020. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1254948

RESUMEN

Azotobacter vinelandii is a gram-negative soil bacterium that produces two biopolymers of biotechnological interest, alginate and poly(3-hydroxybutyrate), and it has been widely studied because of its capability to fix nitrogen even in the presence of oxygen. This bacterium is characterized by its high respiration rates, which are almost 10-fold higher than those of Escherichia coli and are a disadvantage for fermentation processes. On the other hand, several works have demonstrated that adequate control of the oxygen supply in A. vinelandii cultivations determines the yields and physicochemical characteristics of alginate and poly(3-hydroxybutyrate). Here, we summarize a review of the characteristics of A. vinelandii related to its respiration systems, as well as some of the most important findings on the oxygen consumption rates as a function of the cultivation parameters and biopolymer production.


Asunto(s)
Respiración , Biopolímeros/biosíntesis , Azotobacter vinelandii/fisiología , Poliésteres , Alginatos , Bacterias Gramnegativas/fisiología , Hidroxibutiratos , Fijación del Nitrógeno
12.
J Bacteriol ; 202(24)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32989088

RESUMEN

Azotobacter vinelandii produces the linear exopolysaccharide alginate, a compound of significant biotechnological importance. The biosynthesis of alginate in A. vinelandii and Pseudomonas aeruginosa has several similarities but is regulated somewhat differently in the two microbes. Here, we show that the second messenger cyclic dimeric GMP (c-di-GMP) regulates the production and the molecular mass of alginate in A. vinelandii The hybrid protein MucG, containing conserved GGDEF and EAL domains and N-terminal HAMP and PAS domains, behaved as a c-di-GMP phosphodiesterase (PDE). This activity was found to negatively affect the amount and molecular mass of the polysaccharide formed. On the other hand, among the diguanylate cyclases (DGCs) present in A. vinelandii, AvGReg, a globin-coupled sensor (GCS) DGC that directly binds to oxygen, was identified as the main c-di-GMP-synthesizing contributor to alginate production. Overproduction of AvGReg in the parental strain phenocopied a ΔmucG strain with regard to alginate production and the molecular mass of the polymer. MucG was previously shown to prevent the synthesis of high-molecular-mass alginates in response to reduced oxygen transfer rates (OTRs). In this work, we show that cultures exposed to reduced OTRs accumulated higher levels of c-di-GMP; this finding strongly suggests that at least one of the molecular mechanisms involved in modulation of alginate production and molecular mass by oxygen depends on a c-di-GMP signaling module that includes the PAS domain-containing PDE MucG and the GCS DGC AvGReg.IMPORTANCE c-di-GMP has been widely recognized for its essential role in the production of exopolysaccharides in bacteria, such as alginate produced by Pseudomonas and Azotobacter spp. This study reveals that the levels of c-di-GMP also affect the physical properties of alginate, favoring the production of high-molecular-mass alginates in response to lower OTRs. This finding opens up new alternatives for the design of tailor-made alginates for biotechnological applications.


Asunto(s)
Alginatos/metabolismo , Azotobacter vinelandii/metabolismo , GMP Cíclico/análogos & derivados , Polisacáridos Bacterianos/biosíntesis , Alginatos/química , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Peso Molecular , Oxígeno/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Polisacáridos Bacterianos/química
13.
J Bacteriol ; 202(24)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32989089

RESUMEN

The genus Azotobacter, belonging to the Pseudomonadaceae family, is characterized by the formation of cysts, which are metabolically dormant cells produced under adverse conditions and able to resist desiccation. Although this developmental process has served as a model for the study of cell differentiation in Gram-negative bacteria, the molecular basis of its regulation is still poorly understood. Here, we report that the ubiquitous second messenger cyclic dimeric GMP (c-di-GMP) is critical for the formation of cysts in Azotobacter vinelandii Upon encystment induction, the levels of c-di-GMP increased, reaching a peak within the first 6 h. In the absence of the diguanylate cyclase MucR, however, the levels of this second messenger remained low throughout the developmental process. A. vinelandii cysts are surrounded by two alginate layers with variable proportions of guluronic residues, which are introduced into the final alginate chain by extracellular mannuronic C-5 epimerases of the AlgE1 to AlgE7 family. Unlike in Pseudomonas aeruginosa, MucR was not required for alginate polymerization in A. vinelandii Conversely, MucR was necessary for the expression of extracellular alginate C-5 epimerases; therefore, the MucR-deficient strain produced cyst-like structures devoid of the alginate capsule and unable to resist desiccation. Expression of mucR was partially dependent on the response regulator AlgR, which binds to two sites in the mucR promoter, enhancing mucR transcription. Together, these results indicate that the developmental process of A. vinelandii is controlled through a signaling module that involves activation by the response regulator AlgR and c-di-GMP accumulation that depends on MucR.IMPORTANCEA. vinelandii has served as an experimental model for the study of the differentiation processes to form metabolically dormant cells in Gram-negative bacteria. This work identifies c-di-GMP as a critical regulator for the production of alginates with specific contents of guluronic residues that are able to structure the rigid laminated layers of the cyst envelope. Although allosteric activation of the alginate polymerase complex Alg8-Alg44 by c-di-GMP has long been recognized, our results show a previously unidentified role during the polymer modification step, controlling the expression of extracellular alginate epimerases. Our results also highlight the importance of c-di-GMP in the control of the physical properties of alginate, which ultimately determine the desiccation resistance of the differentiated cell.


Asunto(s)
Azotobacter vinelandii/enzimología , Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/metabolismo , GMP Cíclico/análogos & derivados , Alginatos/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crecimiento & desarrollo , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/genética , Carbohidrato Epimerasas/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
14.
Rev. colomb. biotecnol ; 22(1): 79-86, ene.-jun. 2020. graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1115574

RESUMEN

RESUMEN La batata (Ipomoea batatas L.) se cultiva en todo el mundo como fuente de carbohidratos, y su producción comercial requiere un alto aporte de fertilizantes químicos, lo cual eleva los costos de producción. Los inoculantes microbianos, se emplean como una fuente alternativa de nutrición vegetal. El objetivo de esta investigación fue evaluar el efecto de Pseudomonas denitrificans IBVS2 y Azotobacter vinelandii IBVS13 con diferentes niveles fertilización química nitrogenada en el cultivo de batata en la microrregión del Valle del Sinú en el Caribe Colombiano. Para los montajes de los experimentos se utilizó un diseño completamente aleatorizado, ocho tratamientos y tres repeticiones usando como material vegetal plántulas obtenidas in vitro endurecidas en invernadero. Los resultados demostraron que la cepa Azotobacter vinelandii IBVS13 con un 75% de fertilización nitrogenada (FN) mejoró la capacidad de acumulación de materia seca en los tubérculos de batata, generando incrementos de 6,65 t/ha respecto al testigo químico y 3,18 t/ha en relación con el testigo absoluto, garantizando un incremento del rendimiento. Así mismo, el contenido de proteína bruta aumentó 13,93% al realizar la inoculación de las plantas con esta cepa. En el mismo sentido, la cepa Pseudomonas denitrificans IBVS2+ fertilización nitrogenada 50% presentó aumentos en la variable de fibra cruda 31,75% respecto al testigo absoluto, contribuyendo de manera eficaz como bioestimulante microbiano en la agricultura.


ABSTRACT Sweet potatoes (Ipomoea batatas L.) are grown worldwide as a source of carbohydrates, and their commercial production requires a high contribution of chemical fertilizers, which increases production costs. Microbial inoculants are used as an alternative source of plant nutrition. The objective of this research was to evaluate the effect of Pseudomonas denitrificans IBVS2 and Azotobacter vinelandii IBVS13 with different levels of nitrogen chemical fertilization in the sweet potato crop in the microregion of the Sinú Valley in the Colombian Caribbean. A completely randomized design was used for the experiment development, eight treatments was evaluated and three repetitions were carried out. In vitro hardened seedlings was used as a plant material. The results showed that the Azotobacter vinelandii IBVS1 3 strain with 75% nitrogen fertilization (FM) improved the accumulation capacity of dry matter in sweet potato roots, generating increases of 6.65 t / ha compared to the chemical control and 3.18 t / ha in relation to the absolute control, guaranteeing an increase in yield. The crude protein content was increased in 13.93% when inoculating the plants with this strain. In the same way, with the inoculation of strain Pseudomonas denitrificans IBVS2 + 50% nitrogen fertilization the crude fiber variable was increased in 31.75% compared to the absolute control, contributing effectively as a microbial biostimulant in agriculture.

15.
Artículo en Inglés | MEDLINE | ID: mdl-32426348

RESUMEN

Poly-(3-hydroxyalkanoates) (PHAs) are bacterial carbon and energy storage compounds. These polymers are synthesized under conditions of nutritional imbalance, where a nutrient is growth-limiting while there is still enough carbon source in the medium. On the other side, the accumulated polymer is mobilized under conditions of nutrient accessibility or by limitation of the carbon source. Thus, it is well known that the accumulation of PHAs is affected by the availability of nutritional resources and this knowledge has been used to establish culture conditions favoring high productivities. In addition to this effect of the metabolic status on PHAs accumulation, several genetic regulatory networks have been shown to drive PHAs metabolism, so the expression of the PHAs genes is under the influence of global or specific regulators. These regulators are thought to coordinate PHAs synthesis and mobilization with the rest of bacterial physiology. While the metabolic and biochemical knowledge related to the biosynthesis of these polymers has led to the development of processes in bioreactors for high-level production and also to the establishment of strategies for metabolic engineering for the synthesis of modified biopolymers, the use of knowledge related to the regulatory circuits controlling PHAs metabolism for strain improvement is scarce. A better understanding of the genetic control systems involved could serve as the foundation for new strategies for strain modification in order to increase PHAs production or to adjust the chemical structure of these biopolymers. In this review, the regulatory systems involved in the control of PHAs metabolism are examined, with emphasis on those acting at the level of expression of the enzymes involved and their potential modification for strain improvement, both for higher titers, or manipulation of polymer properties. The case of the PHAs producer Azotobacter vinelandii is taken as an example of the complexity and variety of systems controlling the accumulation of these interesting polymers in response to diverse situations, many of which could be engineered to improve PHAs production.

16.
Bioprocess Biosyst Eng ; 43(8): 1469-1478, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32266468

RESUMEN

In the present study, the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by Azotobacter vinelandii was evaluated in shake flasks and bioreactors, utilizing different precursors and oxygen transfer rates (OTRs). In shake flask cultures, the highest PHBV yield from sucrose (0.16 g g-1) and 3-hydroxyvalerate (3HV) fraction in the PHA chain (27.4 mol%) were obtained with valerate (1.0 g L-1). In the bioreactor, the cultures were grown under oxygen-limited conditions, and the maximum OTR (OTRmax) was varied by adjusting the agitation rate. In the cultures grown at low OTRmax (4.3 mmol L-1 h-1), the intracellular content of PHBV (73% w w-1) was improved, whereas a maximum 3HV fraction (35 mol %) was obtained when a higher OTRmax (17.2 mmol L-1 h-1, to 600 rpm) was employed. The findings obtained suggest that the PHBV production and the content of 3HV incorporated into the polymer were affected by the OTR. Based on the evidence, it is possible to produce PHBV with a different composition by varying the OTR of the culture; thus, the approach in this study could be used to scale up PHBV production.


Asunto(s)
Azotobacter vinelandii/crecimiento & desarrollo , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Poliésteres/metabolismo
17.
Arch Microbiol ; 202(3): 579-589, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31741014

RESUMEN

Azotobacter vineladii is a Gram-negative bacterium that produces alginate and poly-hydroxybutyrate (PHB), two polymers of biotechnological interest. This bacterium has the ability to form desiccation-resistant cysts. In the cyst the membrane phospholipids are replaced with a family of phenolic lipids called alkylresorcinols (ARs). The alginate, PHB, and ARs are controlled by the GacS/A two-component system and the small regulatory RNA (sRNA) RsmZ1, belonging to the Rsm (Csr) regulatory system. The Rsm (Csr) systems usually possess two or more sRNAs, in this regard A. vinelandii is the bacterium with the highest number of rsm-sRNAs. Originally, the presence of two sRNAs of the RsmY family (RsmY1 and RsmY2) was reported, but in a subsequent work it was suggested that they conformed to a single sRNA. In this work we provide genetic evidence confirming that rsmY1 and rsmY2 constitute a single gene. Also, it was established that rsmY mutation decreased alginate and ARs production, but did not affect the PHB synthesis. Transcriptional studies showed that rsmY has its higher expression during the stationary growth phase, and in the absence of RsmZ1, rsmY increases its transcription. Interestingly, rsmY expression was influenced by the carbon source, but its expression did not correlate with alginate production.


Asunto(s)
Alginatos/metabolismo , Azotobacter vinelandii/metabolismo , ARN Bacteriano/metabolismo , Resorcinoles/metabolismo , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidroxibutiratos/metabolismo , Mutación , ARN Bacteriano/genética
18.
Rev. biol. trop ; Rev. biol. trop;67(6)dic. 2019.
Artículo en Español | LILACS, SaludCR | ID: biblio-1507599

RESUMEN

La evaluación del impacto del petróleo en la interacción suelo-raíz de la planta de mangle blanco, Laguncularia racemosa, es básica para identificar los cambios en la actividad microbiana y en el potencial biotecnológico para la remediación de histosoles contaminados. El objetivo de la investigación fue evaluar la distribución espacial de los hidrocarburos totales del petróleo (HTP) en el suelo orgánico, la densidad poblacional de bacterias promotoras del crecimiento vegetal, así como la respiración microbiana en el rizoplano (RI) en la rizósfera (RZ) y en suelo no rizosférico (SNR) de L. racemosa. Una superficie de 8 000 m2 de un histosol afectado desde 1967 y 1968 se evaluó por derrame crónico de petróleo y lodos de perforación provenientes del pozo petrolero La Venta 248. Se seleccionaron 15 árboles de L. racemosa y se extrajeron muestras del RI, RZ y SNR. Los HTP se extrajeron en equipo soxhlet con diclorometano durante ocho horas y se cuantificaron por gravimetría. La cantidad promedio extraída de HTP permitió la diferenciación de cuatro suelos (S) en el área evaluada, con valor promedio para el S1 de 1 797 mg kg-1 (no contaminado para la normativa mexicana) y tres suelos contaminados: S2 con 3 294, S3: 5 249 y S4: 10 389 mg kg-1. Los resultados evidencian diferencias estadísticas (Duncan, P ≤ 0.05) entre medias de las variables evaluadas. La mayor acumulación de HTP fue 22 962 mg kg-1, se extrajo del SNR en el S4. Las mayores densidades de bacterias fijadoras de N, solubilizadoras de P, Azospirillum y Azotobacter fueron bioestimuladas por la presencia de niveles altos de HTP en el suelo, sin embargo la respiración microbiana fue inhibida. Los resultados sugieren que L. racemosa es sostenible en suelos con petróleo intemperizado, y es un bioestimulador de la actividad microbiana para la atenuación natural.


The evaluation of the impact of oil on the soil-root interaction of the white mangrove plant, Laguncularia racemosa is essential to identify changes in microbial activity and biotechnological potential for remediation contaminated histosols. The objective was to evaluate the spatial distribution of total petroleum hydrocarbons (THP) in organic soil, the population density of plant growth promoting bacteria, also in microbial respiration in the rhizoplane (RI), in the rhizosphere (RZ) and in non-rhizospheric soil (NRS) of L. racemosa. An area of 8 000 m2 of an affected histosol was evaluated, during 1967 and 1968, by chronic oil spill and drilling mud from the La Venta 248 oil well. Fifteen trees of this species were selected to obtain samples of the RI, RZ and NRS. The TPH were extracted in soxhlet with dichloromethane for eight hours and quantified by gravimetry. The average amount extracted from TPH allowed the differentiation of four soils (S) from the evaluated area, the average values were for S1: 1 797 mg kg-1 (not contaminated for Mexican regulations) and three contaminated soils, the values are S2: 3 294, S3: 5 249, and S4: 10 389 mg kg-1. The results show statistical differences (Duncan, P ≤ 0.05) between means of the evaluated variables. The greatest accumulation of TPH was 22 962 mg kg-1, it was extracted from the NRS in S4. The highest densities of N-fixing bacteria, P solubilizers, Azospirillum and Azotobacter were biostimulated by the presence of high levels of THP in the soil, however microbial respiration was inhibited. The results suggest that L. racemosa is sustainable in soils with weathering oil, and is a biostimulator of microbial activity for natural attenuation.


Asunto(s)
Bacterias , Contaminación por Petróleo , Combretaceae/clasificación , Humedales , Hidrocarburos , Contaminación Ambiental , México
19.
Microbiology (Reading) ; 165(9): 976-984, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31274400

RESUMEN

Pseudomonas aeruginosa is a metabolically versatile bacterium and also an important opportunistic pathogen. It has a remarkable genomic structure since the genetic information encoding its pathogenicity-related traits belongs to its core-genome while both environmental and clinical isolates are part of the same population with a highly conserved genomic sequence. Unexpectedly, considering the high level of sequence identity and homologue gene number shared between different P. aeruginosa isolates, the presence of specific essential genes of the two type strains PAO1 and PA14 has been reported to be highly variable. Here we report the detailed bioinformatics analysis of the essential genes of P. aeruginosa PAO1 and PA14 that have been previously experimentally identified and show that the reported gene variability was owed to sequencing and annotation inconsistencies, but that in fact they are highly conserved. This bioinformatics analysis led us to the definition of 348 P. aeruginosa general essential genes. In addition we show that 342 of these 348 essential genes are conserved in Azotobacter vinelandii, a nitrogen-fixing, cyst-forming, soil bacterium. These results support the hypothesis of A. vinelandii having a polyphyletic origin with a Pseudomonads genomic backbone, and are a challenge to the accepted theory of bacterial evolution.


Asunto(s)
Azotobacter vinelandii/genética , Bacterias/genética , Evolución Biológica , Genes Esenciales , Pseudomonas aeruginosa/genética , Azotobacter vinelandii/patogenicidad , Bacterias/clasificación , Biología Computacional/métodos , Secuencia Conservada , Evolución Molecular , Genes Bacterianos , Genoma Bacteriano , Pseudomonas aeruginosa/patogenicidad
20.
J Ind Microbiol Biotechnol ; 46(1): 13-19, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30357504

RESUMEN

Azotobacter vinelandii OP is a bacterium that produces poly(3-hydroxybutyrate) (PHB). PHB production in a stirred bioreactor, at different oxygen transfer strategies, was evaluated. By applying different oxygen contents in the inlet gas, the oxygen transfer rate (OTR) was changed under a constant agitation rate. Batch cultures were performed without dissolved oxygen tension (DOT) control (using 9% and 21% oxygen in the inlet gas) and under DOT control (4%) using gas blending. The cultures that developed without DOT control were limited by oxygen. As result of varying the oxygen content in the inlet gas, a lower OTR (4.6 mmol L-1 h-1) and specific oxygen uptake rate (11.6 mmol g-1 h-1) were obtained using 9% oxygen in the inlet gas. The use of 9% oxygen in the inlet gas was the most suitable for improving the intracellular PHB content (56 ± 6 w w-1). For the first time, PHB accumulation in A. vinelandii OP cultures, developed with different OTRs, was compared under homogeneous mixing conditions, demonstrating that bacterial respiration affects PHB synthesis. These results can be used to design new oxygen transfer strategies to produce PHB under productive conditions.


Asunto(s)
Azotobacter vinelandii/metabolismo , Hidroxibutiratos/metabolismo , Oxígeno/metabolismo , Poliésteres/metabolismo , Reactores Biológicos , Medios de Cultivo , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA