Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
J Inherit Metab Dis ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237321

RESUMEN

Phenylketonuria is a rare inherited disorder that disrupts the metabolism of phenylalanine (Phe) to tyrosine by phenylalanine hydroxylase (PAH). Sapropterin dihydrochloride (Kuvan®) is approved for use in Europe to reduce blood Phe levels and improve Phe tolerance in sapropterin-responsive individuals. KAMPER (NCT01016392) is an observational, multinational registry assessing long-term safety and efficacy of sapropterin. Five hundred and seventy-six participants with PAH deficiency were enrolled from nine European countries (69 sites; December 2009-May 2016). Participants were aged <4 years (n = 11), 4 to <12 years (n = 329), 12 to <18 years (n = 141), and ≥18 years (n = 95) at enrolment. Overall, 401 (69.6%) participants experienced a total of 1960 adverse events; 61 events in 42 participants were serious, and two were considered sapropterin-related by the investigator. Mean (standard deviation) actual dietary Phe intake increased from baseline across all age groups: 957 (799) mg/day to a maximum of 1959 (1121) mg/day over a total study period of 11 years. Most participants exhibited an increase in Phe tolerance while blood Phe levels remained in the target range for their age (120-360 µmol/L for <12 years; 120-600 µmol/L for ≥12 years). Most participants exhibited normal growth for height, weight, and body mass index. No additional safety concerns were identified. As an observational study, limitations include variability in routine care practices and inconsistent availability of data. Long-term sapropterin use demonstrates a favourable safety profile in real-world settings and increases Phe tolerance in participants with PAH deficiency while maintaining blood Phe levels in the target ranges.

2.
Adv Exp Med Biol ; 1460: 629-655, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287867

RESUMEN

Obesity activates both innate and adaptive immune responses in adipose tissue. Adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-γ)-producing cluster of differentiation (CD)4+ T cells in adipose tissue of obese subjects. The increased formation of neopterin and degradation of tryptophan may result in decreased T-cell responsiveness and lead to immunodeficiency. The activity of inducible indoleamine 2,3-dioxygenase-1 (IDO1) plays a major role in pro-inflammatory, IFN-γ-dominated settings. The expression of several kynurenine pathway enzyme genes is significantly increased in obesity. IDO1 in obesity shifts tryptophan metabolism from serotonin and melatonin synthesis to the formation of kynurenines and increases the ratio of kynurenine to tryptophan as well as with neopterin production. Reduction in serotonin (5-hydroxytryptamine; 5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. According to the monoamine-deficiency hypothesis, a deficiency of cerebral serotonin is involved in neuropsychiatric symptomatology of depression, mania, and psychosis. Indeed, bipolar disorder (BD) and related cognitive deficits are accompanied by a higher prevalence of overweight and obesity. Furthermore, the accumulation of amyloid-ß in Alzheimer's disease brains has several toxic effects as well as IDO induction. Hence, abdominal obesity is associated with vascular endothelial dysfunction. kynurenines and their ratios are prognostic parameters in coronary artery disease. Increased kynurenine/tryptophan ratio correlates with increased intima-media thickness and represents advanced atherosclerosis. However, after bariatric surgery, weight reduction does not lead to the normalization of IDO1 activity and atherosclerosis. IDO1 is involved in the mechanisms of immune tolerance and in the concept of tumor immuno-editing process in cancer development. Serum IDO1 activity is still used as a parameter in cancer development and growth. IDO-producing tumors show a high total IDO immunostaining score, and thus, using IDO inhibitors, such as Epacadostat, Navoximod, and L isomer of 1-methyl-tryptophan, seems an important modality for cancer treatment. There is an inverse correlation between serum folate concentration and body mass index, thus folate deficiency leads to hyperhomocysteinemia-induced oxidative stress. Immune checkpoint blockade targeting cytotoxic T-lymphocyte-associated protein-4 synergizes with imatinib, which is an inhibitor of mitochondrial folate-mediated one-carbon (1C) metabolism. Antitumor effects of imatinib are enhanced by increasing T-cell effector function in the presence of IDO inhibition. Combining IDO targeting with chemotherapy, radiotherapy and/or immunotherapy, may be an effective tool against a wide range of malignancies. However, there are some controversial results regarding the efficacy of IDO1 inhibitors in cancer treatment.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Obesidad , Triptófano , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Obesidad/metabolismo , Obesidad/enzimología , Triptófano/metabolismo , Animales , Serotonina/metabolismo , Tejido Adiposo/metabolismo , Quinurenina/metabolismo
3.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39337378

RESUMEN

Vascular aging is associated with the development of cardiovascular complications, in which endothelial cell senescence (ES) may play a critical role. Nitric oxide (NO) prevents human ES through inhibition of oxidative stress, and inflammatory signaling by mechanisms yet to be elucidated. Endothelial cells undergo an irreversible growth arrest and alter their functional state after a finite number of divisions, a phenomenon called replicative senescence. We assessed the contribution of NO during replicative senescence of human aortic (HAEC) and coronary (CAEC) endothelial cells, in which accumulation of the senescence marker SA-ß-Gal was quantified by ß-galactosidase staining on cultured cells. We found a negative correlation in passaged cell cultures from P0 to P12, between a reduction in NO production with increased ES and the formation of reactive oxygen (ROS) and nitrogen (ONOO-) species, indicative of oxidative and nitrosative stress. The effect of ES was evidenced by reduced expression of endothelial Nitric Oxide Synthase (eNOS), Interleukin Linked Kinase (ILK), and Heat shock protein 90 (Hsp90), alongside a significant increase in the BH2/BH4 ratio, inducing the uncoupling of eNOS, favoring the production of superoxide and peroxynitrite species, and fostering an inflammatory environment, as confirmed by the levels of Cyclophilin A (CypA) and its receptor Extracellular Matrix Metalloprotease Inducer (EMMPRIN). NO prevents ES by preventing the uncoupling of eNOS, in which oxidation of BH4, which plays a key role in eNOS producing NO, may play a critical role in launching the release of free radical species, triggering an aging-related inflammatory response.


Asunto(s)
Senescencia Celular , Células Endoteliales , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Estrés Oxidativo , Humanos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Células Endoteliales/metabolismo , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas , Aorta/metabolismo , Aorta/citología
4.
Sci Rep ; 14(1): 18368, 2024 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112627

RESUMEN

The aim of this study was to investigate the overall effects of phototherapy on biopterin (BH4), neopterin (BH2), tryptophan (Trp), and behavioral neuroinflammatory reaction in patients with post-stroke depression. There involved a total of 100 hospitalized patients with post-stroke depression at our hospital from February 2021 to December 2022. The participants enrolled were randomly assigned to either the control group or the experimental group. The control group received routine treatment, including medication and psychological support, while the experimental group received 30 min of phototherapy daily for 8 weeks. All participantsvoluntarily participated in the study and provided informed consent. Baseline characteristics of the patients were statistically analyzed. The severity of depressive symptoms was evaluated using the hamilton depression scale (HAMD) and the beck depression inventory (BDI). Levels of amino acid neurotransmitters, including gamma-aminobutyric acid (GABA), aspartic acid (Asp), and glutamic acid (Glu), were measured using radioimmunoassay. Plasma levels of neuroinflammatory factors, such as TNF-α, IL-6, and IL-1ß were, determined using ELISA. Plasma levels of BH4, BH2, and Trp were detected by HPLC. Levels of SOD, GPx, CAT, and MDA in plasma were measured using corresponding kits and colorimetry. Quality of life was assessed using the SF-36 scale. There were no differences in baseline characteristic between the two groups (P > 0.05). The HAMD and BDI scores in the experimental group were lower than those in the control group (P < 0.05), indicating phototherapy could reduce the severity of post-stroke depression. The levels of GABA, Glu, and Asp in both groups significantly increased after treatment compared to their respective levels before treatment (P < 0.01).The levels of GABA in the experimental group were higher than those in the control group (P < 0.01),while the levels of Glu, and Asp were lower than those in the control group (P < 0.01). The plasma levels of TNF-α, IL-6, and IL-1ß in the experimental group were evidently lower than those in the control group (P < 0.05). Moreover, the levels of BH4 and Trp in experimental group were significantly higher than those in the control group (P < 0.05), while the levelsof BH2 in the experimental group were significantly lower than the control group (P < 0.05). Additionally, the levels of SOD, GPx, and CAT in the experimental group were evidently higher than those in the control group (P < 0.05), whereas the levels of MDA in the experimental group were significantly lower than control group (P < 0.05). The experimental group showed higher scores in physical function, mental health, social function, and overall health compared to the control group (P < 0.05). Phototherapy exerted a profound impact on the metabolism of BH4, BH2, and Trp, as well as on behavioral neuroinflammatory reactions and the quality of life in patients suffering from post-stroke depression. Through its ability to optimize the secretion and synthesis of neurotransmitters, phototherapy effectively regulated neuroinflammatory reactions, improved biochemical parameters, enhancedantioxidant capacity, and alleviated depressive symptoms. As a result, phototherapy was considered a valuable adjuvant therapeutic approach for patients with post-stroke depression.


Asunto(s)
Biopterinas , Depresión , Neopterin , Fototerapia , Accidente Cerebrovascular , Triptófano , Humanos , Neopterin/sangre , Triptófano/sangre , Triptófano/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Depresión/terapia , Depresión/etiología , Depresión/sangre , Anciano , Fototerapia/métodos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/psicología , Biopterinas/análogos & derivados , Enfermedades Neuroinflamatorias/terapia , Enfermedades Neuroinflamatorias/etiología
5.
Cell Chem Biol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067448

RESUMEN

BCL-w is a BCL-2 family protein that promotes cell survival in tissue- and disease-specific contexts. The canonical anti-apoptotic functionality of BCL-w is mediated by a surface groove that traps the BCL-2 homology 3 (BH3) α-helices of pro-apoptotic members, blocking cell death. A distinct N-terminal portion of BCL-w, termed the BCL-2 homology 4 (BH4) domain, selectively protects axons from paclitaxel-induced degeneration by modulating IP3 receptors, a noncanonical BCL-2 family target. Given the potential of BCL-w BH4 mimetics to prevent or mitigate chemotherapy-induced peripheral neuropathy, we sought to characterize the interaction between BCL-w BH4 and the IP3 receptor, combining "staple" and alanine scanning approaches with molecular dynamics simulations. We generated and identified stapled BCL-w BH4 peptides with optimized IP3 receptor binding and neuroprotective activities. Point mutagenesis further revealed the sequence determinants for BCL-w BH4 specificity, providing a blueprint for therapeutic targeting of IP3 receptors to achieve neuroprotection.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38751681
7.
Cell Metab ; 36(5): 984-999.e8, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38642552

RESUMEN

The relevance of biopterin metabolism in resistance to immune checkpoint blockade (ICB) therapy remains unknown. We demonstrate that the deficiency of quinoid dihydropteridine reductase (QDPR), a critical enzyme regulating biopterin metabolism, causes metabolite dihydrobiopterin (BH2) accumulation and decreases the ratio of tetrahydrobiopterin (BH4) to BH2 in pancreatic ductal adenocarcinomas (PDACs). The reduced BH4/BH2 ratio leads to an increase in reactive oxygen species (ROS) generation and a decrease in the distribution of H3K27me3 at CXCL1 promoter. Consequently, myeloid-derived suppressor cells are recruited to tumor microenvironment via CXCR2 causing resistance to ICB therapy. We discovered that BH4 supplementation is capable to restore the BH4/BH2 ratio, enhance anti-tumor immunity, and overcome ICB resistance in QDPR-deficient PDACs. Tumors with lower QDPR expression show decreased responsiveness to ICB therapy. These findings offer a novel strategy for selecting patient and combining therapies to improve the effectiveness of ICB therapy in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Humanos , Animales , Ratones , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral , Línea Celular Tumoral , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones Endogámicos C57BL , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Femenino , Masculino , Especies Reactivas de Oxígeno/metabolismo
8.
Life Sci ; 345: 122594, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38537900

RESUMEN

A large number of patients are affected by classical heart failure (HF) symptomatology with preserved ejection fraction (HFpEF) and multiorgan syndrome. Due to high morbidity and mortality rate, hospitalization and mortality remain serious socioeconomic problems, while the lack of effective pharmacological or device treatment means that HFpEF presents a major unmet medical need. Evidence from clinical and basic studies demonstrates that systemic inflammation, increased oxidative stress, and impaired mitochondrial function are the common pathological mechanisms in HFpEF. Tetrahydrobiopterin (BH4), beyond being an endogenous co-factor for catalyzing the conversion of some essential biomolecules, has the capacity to prevent systemic inflammation, enhance antioxidant resistance, and modulate mitochondrial energy production. Therefore, BH4 has emerged in the last decade as a promising agent to prevent or reverse the progression of disorders such as cardiovascular disease. In this review, we cover the clinical progress and limitations of using downstream targets of nitric oxide (NO) through NO donors, soluble guanylate cyclase activators, phosphodiesterase inhibitors, and sodium-glucose co-transporter 2 inhibitors in treating cardiovascular diseases, including HFpEF. We discuss the use of BH4 in association with HFpEF, providing new evidence for its potential use as a pharmacological option for treating HFpEF.


Asunto(s)
Biopterinas/análogos & derivados , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Insuficiencia Cardíaca/tratamiento farmacológico , Volumen Sistólico , Biopterinas/uso terapéutico , Inflamación , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
9.
Heliyon ; 10(5): e27050, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434370

RESUMEN

Background: Tetrahydrobiopterin (BH4) deficiency is a rare cause of hyperphenylalaninemia (HPA). The incidence of this condition varies based on region and ethnicity. In the early stages, patients typically do not exhibit any symptoms, and HPA is identified only through newborn screening for diseases. It is important to distinguish BH4 deficiency from phenylketonuria (PKU, MIM # 261600). Timely diagnosis and treatment of BH4 deficiency are crucial for the prognosis of patients. Case presentation: We present two rare cases of Chinese Tibetan children with BH4D, diagnosed through biochemical tests and genetic sequencing. Case 1 is a male infant, 2 months old, with a newborn screening (NBS) Phe level of 1212 µmol/L (reference range <120 µmol). The biopterin(B) level was 0.19 mmol/molCr (reference range: 0.42-1.92 mmol/molCr), with a B% of 5.67% (reference range: 19.8%-50.3%). Gene sequencing revealed a homozygous missense variant [NM_000317.3 (PTS): c.259C > T (p.Pro87Ser), rs104894276, ClinVar variation ID: 480]. The patient was treated with a Phe-reduced diet and oral sapropterin, madopar and is currently 3 years and 4 months old, showing mild global developmental delay. Case 2 is a 40-day-old female infant with a Phe level of 2442.11 µmol/L and dihydropteridine reductase (DHPR) activity of 0.84 nmol/(min. 5 mm disc) (reference range: 1.02-3.35 nmol/min.5 mm disc. Gene sequencing revealed a compound heterozygous genotype [NM_000320.3(QDPR): c.68G > A (p.Gly23Asp), rs104893863, ClinVar Variation ID: 490] and [NM_000320.3(QDPR) c.419C > A (p. Ala140Asp), ClinVar ID: 2444501]. The patient was treated with a Phe-reduced diet and oral madopar, 5-hydroxytryptophan. At the age of 1 year, she exhibited severe global developmental delay with seizures. Conclusion: We identified and treated two cases of BH4D in Tibetan populations in China, marking the first confirmed instances. Our report emphasizes the significance of conducting differential diagnosis tests for BH4D.

10.
Biofouling ; 40(2): 153-164, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38450621

RESUMEN

Quorum quenching (QQ) by cell entrapping beads (CEBs) is known to inhibit biofouling by its biological and physical cleaning effect. Although there are better QQ media reported, due to the ease of fabrication of QQ-CEBs, this study focused on improving the quality of CEBs by comparing two distinct bead-making methods - polyvinyl alcohol-alginate (PVA-alginate) and phase inversion - and on finding the optimum concentration of QQ bacteria in the CEBs. The evaluation of PVA-alginate bead showed better uniformity, and higher mechanical and chemical strength in comparison with the phase inversion bead. Through the operations of two control membrane bioreactors (MBRs) (no bead, vacant bead) and four QQ-MBRs with different Rhodococcus sp. BH4 concentrations (2.5-15 mg cell ml-1) in PVA-alginate CEBs, the maximum QQ effect was observed by 5 mg ml-1 BH4 concentration beads. This implies that an optimum cell concentration of QQ-CEBs is crucial to economically improve MBR performance using QQ.


Asunto(s)
Incrustaciones Biológicas , Percepción de Quorum , Incrustaciones Biológicas/prevención & control , Biopelículas , Membranas Artificiales , Bacterias , Alginatos , Reactores Biológicos/microbiología , Alcohol Polivinílico
11.
J Inherit Metab Dis ; 47(4): 636-650, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38433424

RESUMEN

Infants born to mothers with phenylketonuria (PKU) may develop congenital abnormalities because of elevated phenylalanine (Phe) levels in the mother during pregnancy. Maintenance of blood Phe levels between 120 and 360 µmol/L reduces risks of birth defects. Sapropterin dihydrochloride helps maintain blood Phe control, but there is limited evidence on its risk-benefit ratio when used during pregnancy. Data from the maternal sub-registries-KAMPER (NCT01016392) and PKUDOS (NCT00778206; PKU-MOMs sub-registry)-were collected to assess the long-term safety and efficacy of sapropterin in pregnant women in a real-life setting. Pregnancy and infant outcomes, and the safety of sapropterin were assessed. Final data from 79 pregnancies in 57 women with PKU are reported. Sapropterin dose was fairly constant before and during pregnancy, with blood Phe levels maintained in the recommended target range during the majority (82%) of pregnancies. Most pregnancies were carried to term, and the majority of liveborn infants were reported as 'normal' at birth. Few adverse and serious adverse events were considered related to sapropterin, with these occurring in participants with high blood Phe levels. This report represents the largest population of pregnant women with PKU exposed to sapropterin. Results demonstrate that exposure to sapropterin during pregnancy was well-tolerated and facilitated maintenance of blood Phe levels within the target range, resulting in normal delivery. This critical real-world data may facilitate physicians and patients to make informed treatment decisions about using sapropterin in pregnant women with PKU and in women of childbearing age with PKU who are responsive to sapropterin.


Asunto(s)
Biopterinas , Fenilalanina , Fenilcetonurias , Resultado del Embarazo , Sistema de Registros , Humanos , Embarazo , Femenino , Adulto , Fenilalanina/sangre , Biopterinas/análogos & derivados , Biopterinas/uso terapéutico , Biopterinas/efectos adversos , Recién Nacido , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/sangre , Fenilcetonuria Materna/tratamiento farmacológico , Adulto Joven , Europa (Continente) , Complicaciones del Embarazo/tratamiento farmacológico , Complicaciones del Embarazo/sangre
12.
Nano Lett ; 24(10): 3221-3230, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416582

RESUMEN

The hydrolysis of hydrides, represented by MgH2, delivers substantial capacity and presents an appealing prospect for an on-site hydrogen supply. However, the sluggish hydrolysis kinetics and low hydrogen yield of MgH2 caused by the formation of a passivation Mg(OH)2 layer hinder its practical application. Herein, we present a dual strategy encompassing microstructural design and compounding, leading to the successful synthesis of a core-shell-like nanostructured MgH2@Mg(BH4)2 composite, which demonstrates excellent hydrolysis performance. Specifically, the optimal composite with a low Ea of 9.05 kJ mol-1 releases 2027.7 mL g-1 H2 in 60 min, and its hydrolysis rate escalates to 1356.7 mL g-1 min-1 H2 during the first minute at room temperature. The nanocoating Mg(BH4)2 plays a key role in enhancing the hydrolysis kinetics through the release of heat and the formation of local concentration of Mg2+ field after its hydrolysis. This work offers an innovative concept for the design of hydrolysis materials.

13.
Eur J Pharmacol ; 967: 176379, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38342361

RESUMEN

Dopa and tetrahydrobiopterin (BH4) supplementation are recommended therapies for the dopa-responsive dystonia caused by GTP cyclohydrolase 1 (GCH1, also known as GTPCH) deficits. However, the efficacy and mechanisms of these therapies have not been intensively studied yet. In this study, we tested the efficacy of dopa and BH4 therapies by using a novel GTPCH deficiency mouse model, Gch1KI/KI, which manifested infancy-onset motor deficits and growth retardation similar to the patients. First, dopa supplementation supported Gch1KI/KI mouse survival to adulthood, but residual motor deficits and dwarfism remained. Interestingly, RNAseq analysis indicated that while the genes participating in BH4 biosynthesis and regeneration were significantly increased in the liver, no significant changes were observed in the brain. Second, BH4 supplementation alone restored the growth of Gch1KI/KI pups only in early postnatal developmental stage. High doses of BH4 supplementation indeed restored the total brain BH4 levels, but brain dopamine deficiency remained. While total brain TH levels were relatively increased in the BH4 treated Gch1KI/KI mice, the TH in the striatum were still almost undetectable, suggesting differential BH4 requirements among brain regions. Last, the growth of Gch1KI/KI mice under combined therapy outperformed dopa or BH4 therapy alone. Notably, dopamine was abnormally high in more than half, but not all, of the treated Gch1KI/KI mice, suggesting the existence of variable synergetic effects of dopa and BH4 supplementation. Our results provide not only experimental evidence but also novel mechanistic insights into the efficacy and limitations of dopa and BH4 therapies for GTPCH deficiency.


Asunto(s)
Biopterinas/análogos & derivados , Dihidroxifenilalanina , Dopamina , Fenilcetonurias , Humanos , Ratones , Animales , GTP Ciclohidrolasa/genética , Modelos Animales de Enfermedad
14.
Water Res ; 251: 121168, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266439

RESUMEN

Carbon sources are critical factors influencing bacterial bioaugmentation, however, the underlying mechanisms, particularly the metabolic characteristics of bioaugmented bacteria remain poorly understood. The bioaugmented bacterium Rhodococcus sp. BH4 secretes the quorum quenching (QQ) enzyme QsdA to disrupt the quorum sensing (QS) in the activated sludge (AS) process, reducing AS yield in-situ. This study investigated the carbon metabolic characteristics of BH4 and explored the effects on bioaugmentation with different influent carbon sources. Because of the absence of glucose-specific phosphoenol phosphotransferase system (PTS), BH4 prefers sodium acetate to glucose. However, the lactones produced during extracellular glucose metabolism enhance BH4 qsdA expression. Moreover, BH4 possess carbon catabolite repression (CCR), acetate inhibits glucose utilization. BH4 microbeads were added to reactors with different carbon sources (R1: sodium acetate; R2: glucose; R3: a mixture of sodium acetate and glucose) for in-situ AS yield reduction. During operation, AS reduction efficiency decreased in the following order: R1 > R3 > R2. R2 and R3 microbeads exhibited similar QQ activity to R1, with less BH4 biomass at 5 d. 13C labeling and Michaelis-Menten equation showed that, due to differences in the competitiveness of carbon sources, R1 BH4 obtained the most carbon, whereas R2 BH4 obtained the least carbon. Moreover, acetate inhibited glucose utilization of R3 BH4. Transcriptome analysis showed that R1 BH4 qsdA expression was the lowest, R2 BH4 was the most serious form of programmed cell death, and the R3 BH4 PTS pathway was inhibited. At 10 d, R1 BH4 biomass and microbead QQ activity were higher than that in R3, and the R2 BH4 lost viability and QQ activity. This study provides new insights into bioaugmentation from the perspectives of carbon source competitiveness, carbon metabolism pathways, and CCR.


Asunto(s)
Percepción de Quorum , Rhodococcus , Percepción de Quorum/fisiología , Carbono , Acetato de Sodio , Aguas del Alcantarillado/microbiología , Glucosa , Reactores Biológicos/microbiología
15.
J Inherit Metab Dis ; 47(3): 494-508, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38196161

RESUMEN

Proteostatic regulation of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis, is crucial for maintaining proper brain neurotransmitter homeostasis. Variants of the TH gene are associated with tyrosine hydroxylase deficiency (THD), a rare disorder with a wide phenotypic spectrum and variable response to treatment, which affects protein stability and may lead to accelerated degradation, loss of TH function and catecholamine deficiency. In this study, we investigated the effects of the TH cofactor tetrahydrobiopterin (BH4) on the stability of TH in isolated protein and in DAn- differentiated from iPSCs from a human healthy subject, as well as from THD patients with the R233H variant in homozygosity (THDA) and R328W and T399M variants in heterozygosity (THDB). We report an increase in TH and dopamine levels, and an increase in the number of TH+ cells in control and THDA cells. To translate this in vitro effect, we treated with BH4 a knock-in THD mouse model with Th variant corresponding to R233H in patients. Importantly, treatment with BH4 significantly improved motor function in these mice, as demonstrated by increased latency on the rotarod test and improved horizontal activity (catalepsy). In conclusion, our study demonstrates the stabilizing effects of BH4 on TH protein levels and function in THD neurons and mice, rescuing disease phenotypes and improving motor outcomes. These findings highlight the therapeutic potential of BH4 as a treatment option for THDA patients with specific variants and provide insights into the modulation of TH stability and its implications for THD management.


Asunto(s)
Biopterinas , Modelos Animales de Enfermedad , Neuronas , Fenotipo , Tirosina 3-Monooxigenasa , Biopterinas/análogos & derivados , Animales , Humanos , Tirosina 3-Monooxigenasa/metabolismo , Ratones , Neuronas/metabolismo , Dopamina/metabolismo , Masculino , Fenilcetonurias/tratamiento farmacológico , Fenilcetonurias/genética , Fenilcetonurias/metabolismo , Femenino , Técnicas de Sustitución del Gen
16.
Mol Genet Genomic Med ; 12(1): e2294, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37818795

RESUMEN

BACKGROUND: Hyperphenylalaninemia (HPA) is a metabolic disorder classified into phenylalanine-4-hydroxylase (PAH) and non-PAH deficiency. The latter is produced by mutations in genes involved in the tetrahydrobiopterin (BH4) biosynthesis pathway and DNAJC12 pathogenetic variants. The BH4 metabolism, including de novo biosynthesis involved genes (i.e., guanosine 5'-triphosphate cyclohydrolase I (GTPCH/GCH1), sepiapterin reductase (SR/SPR), 6-pyruvoyl-tetrahydropterin synthase (PTPS/PTS)), and two genes that play roles in cofactor regeneration pathway (i.e., dihydropteridine reductase (DHPR/QDPR) and pterin-4α-carbinolamine dehydratase (PCD/PCBD1)). The subsequent systemic hyperphenylalaninemia and monoamine neurotransmitter deficiency lead to neurological consequences. The high rate of consanguineous marriages in Iran substantially increases the incidence of BH4 deficiency. METHODS: We utilized the Sanger sequencing technique in this study to investigate 14 Iranian patients with non-PAH deficiency. All affected subjects in this study had HPA and no mutation was detected in their PAH gene. RESULTS: We successfully identified six mutant alleles in BH4-deficiency-associated genes, including three novel mutations: one in QDPR, one in PTS, and one in the PCBD1 gene, thus giving a definite diagnosis to these patients. CONCLUSION: In this light, appropriate patient management may follow. The clinical effect of reported variants is essential for genetic counseling and prenatal diagnosis in the patients' families and significant for the improvement of precision medicine.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Embarazo , Femenino , Humanos , Irán , Fenilcetonurias/genética , Fenilcetonurias/epidemiología , Biopterinas , Dihidropteridina Reductasa/genética , Fenilalanina Hidroxilasa/genética
17.
J Colloid Interface Sci ; 658: 100-113, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100967

RESUMEN

The induction of immunogenic ferroptosis in cancer cell is limited by the complex and delicate antioxidant system in the organism. Synergistic induction of oxidative damage and inhibition of the defensive redox system in tumor cells is critical to promote lethal accumulation of lipid peroxides and activate immunogenic death (ICD). To address this challenge, we present a multifunctional and dual-responsive layered double hydroxide (LDH) nanosheet to enhance immunogenic ferroptosis. The MTX-LDH@MnO2 nanoplatform is constructed by intercalating methotrexate (MTX) into LDH interlayers and electrostatically absorbing biomineralized ovalbumin (OVA)-MnO2 onto the LDH surface. Specifically, the released Mn2+ from the incorporated MnO2 triggers a Fenton-like reaction, leading to reactive oxygen species (ROS) accumulation, while the depletion of reduced glutathione (GSH) further intensifies oxidative stress, resulting in the induction of ferroptosis. MTX is released in response to the acidic environment of tumor cells and inhibits the regeneration of tetrahydrobiopterin (BH4), modulating the GTP cyclic hydrolase 1 (GCH1)/BH4 axis. MTX disrupts the antioxidant metabolic activity regulated by GCH1/BH4 axis and inhibits ROS consumption, further boosting the ferroptosis effect, which promoted the release of damage-associated molecular patterns (DAMPs) and triggered ICD in the tumor. This activation subsequently leads to significant antitumor immune reactions, including DCs maturation, infiltration of CD4+/CD8+ T cells and cytokines release. The redox-controllable nanoplatform demonstrates promising anticancer efficacy in a mouse breast model providing a novel strategy for cancer immunotherapy.


Asunto(s)
Biopterinas/análogos & derivados , Ferroptosis , Neoplasias , Animales , Ratones , Antioxidantes/farmacología , Linfocitos T CD8-positivos , Compuestos de Manganeso , Especies Reactivas de Oxígeno , Óxidos , Línea Celular Tumoral
18.
Clin Pharmacol Drug Dev ; 13(5): 506-516, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38156759

RESUMEN

Sepiapterin is an orally administered drug in development for the treatment of phenylketonuria, an inborn error of metabolism characterized by the deficiency of the phenylalanine-metabolizing enzyme phenylalanine hydroxylase. This study characterized the pharmacokinetics, safety, and tolerability of 2 clinical sepiapterin formulations (Phase 1/2, Phase 3) and the effects of food on the pharmacokinetics of the Phase 3 formulation in healthy participants. In Part A, 18 participants were randomized to one of 2 treatment sequences, each with 4 dosing periods comprising a single dose (20 or 60 mg/kg) of the Phase 1/2 or the Phase 3 formulation with a low-fat diet. In Part B, 14 participants were randomized to one of 2 sequences, each comprising 4 dosing periods of a single dose (20 or 60 mg/kg) of the Phase 3 formulation under fed (high-fat) or fasted conditions. Following oral administration, sepiapterin was quickly absorbed and rapidly and extensively converted to tetrahydrobiopterin (BH4). BH4 was the major circulating active moiety. Under low-fat conditions, the Phase 3 formulation was bioequivalent to the Phase 1/2 formulation at 20 mg/kg, while slightly lower BH4 exposure (approximately 0.81×) for the Phase 3 formulation was observed at 60 mg/kg. BH4 exposure increased to approximately 1.7× under the low-fat condition and approximately 2.8× under the high-fat condition at a dose of either 20 or 60 mg/kg for the Phase 3 formulation, compared with the fasted condition. Both sepiapterin formulations were well tolerated, with no serious or severe adverse events reported. All treatment-emergent adverse events were mild or moderate in severity.


Asunto(s)
Disponibilidad Biológica , Biopterinas , Biopterinas/análogos & derivados , Estudios Cruzados , Interacciones Alimento-Droga , Voluntarios Sanos , Pterinas , Humanos , Masculino , Adulto , Administración Oral , Femenino , Pterinas/administración & dosificación , Pterinas/farmacocinética , Pterinas/efectos adversos , Adulto Joven , Biopterinas/administración & dosificación , Biopterinas/farmacocinética , Biopterinas/efectos adversos , Persona de Mediana Edad , Fenilcetonurias/tratamiento farmacológico , Equivalencia Terapéutica , Ayuno , Adolescente
19.
Orphanet J Rare Dis ; 18(1): 351, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950276

RESUMEN

BACKGROUND: Tetrahydrobiopterin (BH4) deficiency caused by 6-pyruvoyl-tetrahydropterin synthase (PTPS) deficiency is a rare disorder that is one of the major causes of hyperphenylalaninemia in Taiwan. METHODS: In this study, we reviewed the clinical courses of 12 adolescent and adult patients (7 females and 5 males) with PTPS deficiency. RESULTS: The patients were treated shortly after diagnosis through newborn screening with a combination of BH4, levodopa/carbidopa, and 5-OH-tryptophan. Their plasma phenylalanine and tyrosine levels were well controlled, and their prolactin levels were also decreased after treatment. However, their prolactin levels gradually rose as they grew into puberty, and at a current age of 27.5 [interquartile range (IQR 7.9)] years, five of the 12 patients had either highly elevated prolactin levels (> 100 ng/mL in one male patient, normal reference values, male < 11 ng/mL, female < 17 ng/mL) or symptoms, including irregular menstruation, amenorrhea, and breast swelling (in four female patients). The dosage of levodopa in these five patients (14.3 (IQR 3.0) mg/kg/day) was slightly higher than that in the other patients (p = 0.05). Magnetic resonance imaging studies did not reveal an increase in the size of the anterior pituitary gland, although a Rathke cleft cyst was found in one patient. Two patients received cabergoline treatment, which promptly lowered prolactin levels and relieved symptoms. CONCLUSIONS: Hyperprolactinemia is common in female patients with PTPS deficiency, especially after puberty. A long-acting dopamine agonist, such as cabergoline, may be a necessary adjunctive treatment for most patients with BH4 deficiency.


Asunto(s)
Hiperprolactinemia , Fenilcetonurias , Adolescente , Adulto , Femenino , Humanos , Recién Nacido , Masculino , Cabergolina/uso terapéutico , Hiperprolactinemia/tratamiento farmacológico , Levodopa/uso terapéutico , Prolactina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA