Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.904
Filtrar
1.
Curr Med Chem ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39069712

RESUMEN

Recently, considerable attention has been focused on the recovery and re-use of waste plant matrices as promising sources of bioactive compounds with health effects. As the Mediterranean diet involves the consumption of great amounts of fruits and vegetables, large quantities of agro-food by-products are generated, causing economic and environmental problems. Such by-products contain a great variety of bioactive compounds whose potential health benefits include anti-inflammatory, antioxidant, anti-- cancer, antimicrobial, hypoglycemic, antidepressant, cardio- and neuro-protective activities. Therefore, in this review, by-products from the most common fruits and vegetables processed in the Mediterranean area, such as tomato, olive, citrus fruit, almond, pomegranate, carob, date, and grape, were taken into account, pointing out the content of bioactive ingredients in extracts obtained from different parts of plants, fruits, and vegetables. Furthermore, studies performed to assess the beneficial effects of extracts obtained from Mediterranean agro-food by-products were reviewed, highlighting the potential benefits of waste plant matrices re-usage in the pharmaceutical, nutraceutical, and cosmetic fields.

2.
Antibiotics (Basel) ; 13(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39061295

RESUMEN

Antimicrobial resistance poses a global health threat, with Staphylococcus aureus emerging as a notorious pathogen capable of forming stubborn biofilms and regulating virulence through quorum sensing (QS). In the quest for novel therapeutic strategies, this groundbreaking study unveils the therapeutic potential of Paederia foetida Linn., an Asian medicinal plant containing various bioactive compounds, contributing to its antimicrobial activities, in the battle against S. aureus. Through a comprehensive approach, we investigated the effect of ethanolic P. foetida leaf extract on S. aureus biofilms, QS, and antimicrobial activity. The extract exhibited promising inhibitory effects against S. aureus including the biofilm-forming strain and MRSA. Real-time PCR analysis revealed significant downregulation of key virulence and biofilm genes, suggesting interference with QS. Biofilm assays quantified the extract's ability to disrupt and prevent biofilm formation. LC-MS/MS analysis identified quercetin and kaempferol glycosides as potential bioactive constituents, while molecular docking studies explored their binding to the QS transcriptional regulator SarA. Computational ADMET predictions highlighted favorable intestinal absorption but potential P-glycoprotein interactions limiting oral bioavailability. While promising anti-virulence effects were demonstrated, the high molecular weights and excessive hydrogen bond donors/acceptors of the flavonoid glycosides raise concerns regarding drug-likeness and permeability. This integrated study offers valuable insights for developing novel anti-virulence strategies to combat antimicrobial resistance.

3.
Antibiotics (Basel) ; 13(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39061307

RESUMEN

In the current era of widespread antimicrobial resistance, the utilization of essential oils (EOs) derived from plants has emerged as a promising alternative in combating pathogens that have developed resistance to antibiotics. This review explores the therapeutic potential of essential oils as valuable tools in restoring the efficacy of antibiotics, highlighting their unique ability to affect bacteria in multiple ways and target various cellular systems. Despite the challenge of elucidating their precise mode of action, EOs have shown remarkable results in rigorous testing against a diverse range of bacteria. This review explores the multifaceted role of EOs in combating bacterial microorganisms, emphasizing their extraction methods, mechanisms of action, and comparative efficacy against synthetic antibiotics. Key findings underscore the unique strategies EOs deploy to counter bacteria, highlighting significant differences from conventional antibiotics. The review extends to advanced coating solutions for medical devices, exploring the integration of EO formulations into these coatings. Challenges in developing effective EO coatings are addressed, along with various innovative approaches for their implementation. An evaluation of these EO coatings reveals their potential as formidable alternatives to traditional antibacterial agents in medical device applications. This renaissance in exploring natural remedies emphasizes the need to combine traditional wisdom with modern scientific advancements to address the urgent need for effective antimicrobial solutions in the post-antibiotic era.

4.
Biomolecules ; 14(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39062476

RESUMEN

The importance of bioactive compounds in agro-industrial by-products of plant origin lies in their direct impacts on human health. These compounds have been shown to possess antioxidant, anti-inflammatory, and antimicrobial properties, contributing to disease prevention and strengthening the immune system. In particular, the antimicrobial action of these compounds emerges as an important tool in food preservation, providing natural alternatives to synthetic preservatives and contributing to combating antimicrobial resistance. Using agro-industrial by-products of plant origin not only addresses the need to reduce waste and promote sustainability but also inaugurates a new era in the formulation of functional foods. From fruit peels to pulps and seeds, these by-products are emerging as essential ingredients in the creation of products that can promote health. Continued research in this area will unveil new applications and properties of these by-products and open doors to a food paradigm in which health and sustainability converge, paving the way to a healthier and more equitable future. The present review presents an overview of our knowledge of agro-industrial by-products and some of their more relevant health-promoting bioactivities.


Asunto(s)
Antiinfecciosos , Antioxidantes , Antioxidantes/farmacología , Antioxidantes/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Humanos , Agricultura , Plantas/química
5.
J Gynecol Obstet Hum Reprod ; : 102830, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067786

RESUMEN

Endometriosis is a condition that can cause significant pain and discomfort for women, and the clinical and surgical treatments available have variable efficacy and can have adverse effects. These drawbacks often lead to poor adherence and therapeutic failure. Consequently, there has been increasing interest in the use of nutritional supplements as an adjuvant therapy for endometriosis. To facilitate clinical decision-making in managing women with endometriosis, a narrative review of clinical studies was conducted to investigate the effects of oral nutritional supplements on endometriosis-related pain. A literature search of the English-language PubMed/MEDLINE database was performed using appropriate keywords to identify clinical studies involving oral nutritional supplements and reporting on endometriosis-related pain. This narrative review included 20 studies published between 2013 and 2023, comprising 12 randomized controlled trials, six non-comparative trials, and two observational studies. The studies investigated the effects of various nutritional supplements on endometriosis-related pain, including vitamins, fatty acids, probiotics, medicinal plants, and bioactive compounds. A significant decrease in endometriosis-related pain was found in three out of five studies on vitamins, four out of six studies on fatty acids, one study on probiotics, two studies on medicinal plants, and five out of six studies on bioactive compounds. These nutritional supplements exhibited diverse biological activities, such as anti-inflammatory, antioxidant, antiproliferative, and antiangiogenic effects, all of which are relevant for managing endometriosis. These findings suggest that oral nutritional supplements could be included as part of a multidisciplinary treatment for endometriosis to decrease pain and enhance overall medical treatment.

6.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062813

RESUMEN

Increasing demand for functional beverages is attracting consumers' attention and driving research to expand our knowledge of fermentation using symbiotic culture of bacteria and yeast (SCOBY) and demonstrate the health effects of consuming kombucha. The objective of this study was to develop innovative recipes for unpasteurized mint/nettle kombucha analogs, and to compare the products obtained under varying conditions in terms of chemical composition, bioactive polyphenols and health-promoting activity. Four variants of kombucha beverages (K1-K4), differing in the addition of sucrose and fermentation temperature, were formulated. The fermentation process provided data indicating the increase of antidiabetic, anti-inflammatory and anticholinergic properties, while a decrease in antioxidant capacity was observed. The content of polyphenolics was the highest on the seventh day of fermentation. A higher fermentation temperature and a larger amount of sucrose accelerated the fermentation process, which may be crucial for shortening the production time of kombucha drinks.


Asunto(s)
Fermentación , Polifenoles , Polifenoles/química , Polifenoles/análisis , Antioxidantes/química , Bebidas/análisis , Té de Kombucha/análisis , Mentha spicata/química , Humanos , Sacarosa/metabolismo , Sacarosa/química
7.
Foods ; 13(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39063280

RESUMEN

Carob syrup is a brown, thick syrup produced from carob pulp that can be directly consumed or used as a sweetener, which also finds applications in folk medicinal practices. In this work, the quali-quantitative phenolic profile of five different carob syrups was elucidated before and after in vitro gastro-intestinal digestion. Moreover, the anti-oxidant properties of undigested and digested carob syrups were investigated. A total of 75 phenolic compounds were identified in undigested carob syrups. The most important phenolic compound in all the samples was gallic acid, the concentration of which ranged between 54.28 and 117.73 mg/100 g. Additional compounds belonging to the classes of hydroxybenzoic acids (in particular glycosylated gallic acid derivatives), hydroxycinnamic acids, and flavonoids (especially flavonols) were also identified. During in vitro gastric digestion, gallic acid mono- and di-hexosides were diglycosylated, releasing gallic acid, which was further degraded in ellagic acid through oxidative polymerization in the intestinal phase of the digestion. Ellagic acid was the major compound detected after in vitro gastro-intestinal digestion of carob syrups. With few exceptions, the anti-oxidant properties of carob syrup were preserved even after digestion. Carob syrup can be considered an important source of phenolic compounds with demonstrated positive effects on human health.

8.
Foods ; 13(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063344

RESUMEN

The habitual consumption of snacks has the potential to enrich or harm the diet. They can contribute to excessive caloric intake and hyperglycemia. Thus, there is an increasing interest in snacks with health-promoting properties. This study aimed to demonstrate the beneficial effect of two fruit-based bars on glucose levels through in vitro, in vivo, and in silico assays. Mango (Mangifera indica L.) and pineapple (Ananas comosus L.) bars (MB and PB) were prepared, and chemical composition, postprandial glycemic response, glycemic index (GI), and glycemic load (GL) were evaluated. The inhibitory effect of fruit bar extracts on α-amylase and α-glucosidase activity and their respective molecular docking was assessed. MB and PB showed the lowest postprandial glycemic response vs. the control bar (p < 0.005), a lower GI (CB: 64.20, PB: 53.20, MB: 40.40), and a GL of 10.9 (CB), 7.9 (PB), and 6.1 (MB), (p < 0.05). MB and PB showed the highest inhibition % of α-amylase (61.44 and 59.37%, respectively) and α-glucosidase (64.97 and 64.57%). Naringenin (-1692.5985 and -2757.674 kcal/mol) and ferulic acid (-1692.8904 and -2760.3513 kcal/mol) exhibited more favorable interaction energies against α-amylase and α-glucosidase activity. The presence of polyphenols from the fruit influenced enzymatic inhibition. Likewise, the dietary fiber in the bars evaluated allowed us to observe a positive effect that favors glycemic control, making them a healthy alternative for snacking.

9.
Foods ; 13(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063388

RESUMEN

As the lack of resources required to meet the demands of a growing population is increasingly evident, plant-based diets can be seen as part of the solution, also addressing ethical, environmental, and health concerns. The rise of vegetarian and vegan food regimes is a powerful catalyzer of a transition from animal-based diets to plant-based diets, which foments the need for innovation within the food industry. Vegetables and fruits are a rich source of protein, and bioactive compounds such as dietary fibres and polyphenols and can be used as technological ingredients (e.g., thickening agents, emulsifiers, or colouring agents), while providing health benefits. This review provides insight on the potential of plant-based ingredients as a source of alternative proteins, dietary fibres and antioxidant compounds, and their use for the development of food- and alternative plant-based products. The application of these ingredients on meat analogues and their impact on health, the environment and consumers' acceptance are discussed. Given the current knowledge on meat analogue production, factors like cost, production and texturization techniques, upscaling conditions, sensory attributes and nutritional safety are factors that require further development to fully achieve the full potential of plant-based meat analogues.

10.
Nutrients ; 16(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39064764

RESUMEN

Crocus sativus L., commonly known as saffron, is a precious spice coming from Asia, in particular from Iran, the country leader in its production. The spice is derived exclusively from dried stigmas and it is the most expensive one in the world. The areas of application of saffron are multiple, in fact ranging across the food, drinks, pharmaceuticals and cosmetics sectors. As is the case with other phytochemicals, not only the final product but also saffron by-products are considered a valuable source of bioactive natural compounds. In fact, its healthy effects, especially as antioxidants and anti-inflammatories (via reducing pro-inflammatory cytokines), are well-recognized in internal medicine. In particular, its healthy effects are related to counteracting degenerative maculopathy, depression and anxiety, neurodegenerative diseases, metabolic syndrome, cancer and chronic kidney disease, by promoting glucose metabolism. In this review, we summarize the most important papers in which saffron has turned out to be a valuable ally in the prevention and treatment of these pathologies. Moreover, we would like to promote the use of saffron by-products as part of a bio-circular economy system, aimed at reducing wastes, at maximizing the use of resources and at promoting environmental and economic sustainability.


Asunto(s)
Antioxidantes , Crocus , Crocus/química , Humanos , Antioxidantes/farmacología , Especias/análisis , Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Enfermedades Neurodegenerativas , Fitoquímicos/farmacología
11.
Nutrients ; 16(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39064768

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) will become the fifth leading cause of death in the world by 2040. It is fundamental to prevent and treat this pathology to reduce its impact on national health costs. This trial's aim is to evaluate the effects induced by a combination of consumed functional foods (FFs) with adapted physical activity (APA) on the progression of CKD-related comorbidities. METHODS: The study lasted 12 weeks. We divided 40 CKD patients into four groups: mixed (FF + APA), APA, FF and control group (usual care). The FFs were characterized by their total antioxidant capacity and antiradical activity. The APA was performed though an online training protocol, three times per week, 1 h each session. RESULTS: At the end of the study, we observed, in the mixed group, a decrease in azotemia (p = 0.0272), diastolic blood pressure (p = 0.0169), and C-reactive protein (p = 0.0313), with increases in the FORD test (p = 0.0203) and fat free mass (p = 0.0258). The APA group showed a reduction in total cholesterol (p = 0.0039). CONCLUSIONS: The combination of FFs and APA can help counteract several CKD-related comorbidities, such as arterial hypertension, dyslipidemia and uremic sarcopenia, and improve the CKD patients' quality of life.


Asunto(s)
Ejercicio Físico , Alimentos Funcionales , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/terapia , Masculino , Femenino , Persona de Mediana Edad , Anciano , Antioxidantes/administración & dosificación , Terapia por Ejercicio/métodos , Comorbilidad
12.
Molecules ; 29(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39064822

RESUMEN

Chysobalanus icaco L. (C. icaco) is a plant that is native to tropical America and Africa. It is also found in the southeast region of Mexico, where it is used as food and to treat certain diseases. This study aimed to carry out a phytochemical analysis of an aqueous extract of C. icaco seed (AECS), including its total phenol content (TPC), total flavonoid content (TFC), and condensed tannins (CT). It also aimed to examine the antioxidant and metal-ion-reducing potential of the AECS in vitro, as well as its toxicity and anti-inflammatory effect in mice. Antioxidant and metal-ion-reducing potential was examined by inhibiting DPPH, ABTS, and FRAP. The acute toxicity test involved a single administration of different doses of the AECS (0.5, 1, and 2 g/kg body weight). Finally, a single administration at doses of 150, 300, and 600 mg/kg of the AECS was used in the carrageenan-induced model of subplantar acute edema. The results showed that the AECS contained 124.14 ± 0.32 mg GAE, 1.65 ± 0.02 mg EQ, and 0.910 ± 0.01 mg of catechin equivalents/g dried extract (mg EC/g de extract) for TPC, TFC and CT, respectively. In the antioxidant potential assays, the values of the median inhibition concentration (IC50) of the AECS were determined with DPPH (0.050 mg/mL), ABTS (0.074 mg/mL), and FRAP (0.49 mg/mL). Acute toxicity testing of the AECS revealed no lethality, with a median lethal dose (LD50) value of >2 g/kg by the intragastric route. Finally, for inhibition of acute edema, the AECS decreased inflammation by 55%, similar to indomethacin (59%, p > 0.05). These results demonstrated that C. icaco seed could be considered a source of bioactive molecules for therapeutic purposes due to its antioxidant potential and anti-inflammatory activity derived from TPC, with no lethal effect from a single intragastric administration in mice.


Asunto(s)
Antiinflamatorios , Antioxidantes , Edema , Extractos Vegetales , Semillas , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/química , Ratones , Antioxidantes/farmacología , Antioxidantes/química , Semillas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Edema/tratamiento farmacológico , Edema/inducido químicamente , Carragenina/toxicidad , Flavonoides/farmacología , Flavonoides/química , Modelos Animales de Enfermedad , Pruebas de Toxicidad Aguda , Fitoquímicos/farmacología , Fitoquímicos/química , Masculino , Fenoles/química , Fenoles/farmacología
13.
Molecules ; 29(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065014

RESUMEN

Jujube (Ziziphus jujuba Mill.) is the first tree species in China, with a long history and abundant yield. However, fresh jujubes have a short shelf-life and are not resistant to storage. Therefore, more and more processed jujube products are being studied. These processed products can extend the shelf-life of jujubes and attract widespread attention for their rich functional nutrients. This review summarized changes in nutrients of fresh jujube and processed products and the research progress of different preparation methods of jujubes. Meanwhile, the pharmacological effects of bioactive components in jujube-based products were concluded. Jujube and its processed products contain rich polysaccharides, vitamin C, and other functional nutrients, which are beneficial to humans. As the initial processing method for jujubes, vacuum freezing or microwave drying have become the most commonly used and efficient drying methods. Additionally, processed jujube products cannot be separated from the maximum retention of nutrients and innovation of flavor. Fermentation is the main deep-processing method with broad development potential. In the future, chemical components and toxicological evaluation need to be combined with research to bring consumers higher quality functional jujube products and ensure the sustainable development of the jujube industry.


Asunto(s)
Ziziphus , Ziziphus/química , Manipulación de Alimentos/métodos , Nutrientes/análisis , Extractos Vegetales/química , Ácido Ascórbico/análisis , Ácido Ascórbico/química , Humanos , Polisacáridos/química , Fermentación
14.
Plants (Basel) ; 13(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39065458

RESUMEN

Galanthamine is an immensely valuable alkaloid exhibiting anti-cancer and antiviral activity. The cultivation of plant tissues in in vitro conditions is a good source for the synthesis and enrichment of secondary metabolites of commercial interest. In this study, the Amaryllidaceae alkaloid galanthamine was quantified in three Zephyranthes species, such as Zephyranthes candida, Zephyranthes grandiflora, and Zephyranthes citrina, and the impact of the methyl jasmonate (MJ) signaling molecule on galanthamine accumulation was monitored in in vitro-derived plant tissues. This is the first ever study of the MJ-regulated accumulation of galanthamine in in vitro-grown Zephyranthes tissues. Shoot regeneration was obtained in all three Zephyranthes species on Murashige and Skoog (MS) medium containing 2.0 mgL-1 benzylaminopurine (BAP) + 0.5 mgL-1 naphthalene acetic acid (NAA). The regenerated shoots were rooted on a medium containing 2.0 mgL-1 indole butyric acid (IBA). A GC-MS study of Zephyranthes extracts revealed the presence of 34 phyto-compounds of varied levels with therapeutic activities against diseases. The galanthamine content was quantified in plant parts of the three Zephyranthes species using high-performance thin layer chromatography (HPTLC); the maximum was found in Z. candida bulb (2.41 µg g-1 dry wt.), followed by Z. grandiflora (2.13 µg g-1 dry wt.), and then Z. citrina (2.02 µg g-1 dry wt.). The galanthamine content showed bulb > leaf > root source order. The in vitro-generated plantlets were treated with different MJ concentrations, and the galanthamine yield was measured in bulb, leaf, and root tissues. The highest galanthamine content was recorded in bulbs of Z. candida (3.97 µg g-1 dry wt.) treated with 150 µM MJ, showing an increase of 64.73% compared to the control. This accumulation may be attributed to MJ-induced stress, highlighting the potential commercial synthesis of galanthamine in vitro.

15.
Plants (Basel) ; 13(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39065489

RESUMEN

This study explores the potential of olive leaves, long integral to Mediterranean traditional medicine, as a rich source of valuable compounds. The challenge lies in their considerable water content, hindering these compounds' full valorization. Four drying methods (air-drying, oven-drying, freeze-drying and solar-drying) were investigated for their impact on nutrient and bioactive compound content in the leaves of four olive varieties ("Arbequina", "Koroneiki", "Menara" and "Picholine Marocaine") cultivated in Morocco. In their fresh state, "Picholine Marocaine" exhibited the highest protein levels (6.11%), "Arbequina" had the highest phenolic content (20.18 mg gallic acid equivalents/g fresh weight (FW)), and "Koroneiki" and "Menara" were highest in flavonoids (3.28 mg quercetin equivalents/g FW). Specific drying methods proved optimal for different varieties. Oven-drying at 60 °C and 70 °C effectively preserved protein, while phenolic content varied with drying conditions. Air-drying and freeze-drying demonstrated effectiveness for flavonoids. In addition, an analytical approach using high-performance liquid chromatography and diode array detection (HPLC-DAD) was applied to investigate the effects of the different drying methods on the bioactive fraction of the analyzed samples. The results showed qualitative and quantitative differences depending on both the variety and the drying method used. A total of 11 phenolic compounds were tentatively identified, with oleuropein being the most abundant in all the samples analyzed. The freeze-dried samples showed the highest content of oleuropein in the varieties "Arbequina" and "Picholine Marocaine" compared to the other methods analyzed. In contrast, "Koroneiki" and "Menara" had higher oleuropein content when air dried. Overall, the obtained results highlight the importance of tailored drying techniques for the preservation of nutrients and bioactive compounds in olive leaves.

16.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065672

RESUMEN

The expected progress in SARS-CoV-2 vaccinations, as anticipated in 2020 and 2021, has fallen short, exacerbating global disparities due to a lack of universally recognized "safe and effective" vaccines. This study focuses on extracts of South African medicinal plants, Artemisia annua and Artemisia afra, to identify metabolomic bioactive compounds inhibiting the binding of the SARS-CoV-2 spike protein to ACE2 receptors. The extracts were monitored for cytotoxicity using a resazurin cell viability assay and xCELLigence real-time cell analyzer. Chemical profiling was performed using UPLC-MS/MS, orthogonal projection to latent structures (OPLS), and evaluated using principle component analysis (PCA) models. Identified bioactive compounds were subjected to in vitro SARS-CoV-2 enzyme inhibition assay using standard methods and docked into the spike (S) glycoprotein of SARS-CoV-2 using Schrodinger® suite followed by molecular dynamics simulation studies. Cell viability assays revealed non-toxic effects of extracts on HEK293T cells at lower concentrations. Chemical profiling identified 81 bioactive compounds, with compounds like 6″-O-acetylglycitin, 25-hydroxyvitamin D3-26,23-lactone, and sesaminol glucoside showing promising binding affinity. Molecular dynamics simulations suggested less stable binding, but in vitro studies demonstrated the ability of these compounds to interfere with SARS-CoV-2 spike protein's binding to the human ACE2 receptor. Sesaminol glucoside emerged as the most effective inhibitor against this interaction. This study emphasizes the importance of multiplatform metabolite profiling and chemometrics to understand plant extract composition. This finding is of immense significance in terms of unravelling metabolomics bioactive compounds inhibiting the binding of the SARS-CoV-2 spike protein to ACE2 receptors and holds promise for phytotherapeutics against SARS-CoV-2.

17.
Biology (Basel) ; 13(7)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39056699

RESUMEN

Traditional natural products have been the focus of research to explore their medicinal properties. One such medicinally important plant is the white mulberry, Morus alba, widely distributed in the Asian subcontinent. It is one of the most cultivated species of mulberry tree and has attracted more focus from researchers because of its abundance in phytochemicals as well as multipurpose uses. The leaves, fruits and other parts of the white mulberry plant act as a source of valuable bioactive compounds like flavonoids, phenolic acids, terpenoids and alkaloids. These secondary metabolites have manifold healthy uses as they possess antioxidant, anti-inflammatory, antidiabetic, neutrotrophic, and anticancer properties. Despite the increasing scientific interest in this plant, there are very few reviews that highlight the phytochemistry and biological potential of white mulberry for biomedical research. To this end, this review elaborates the phytochemistry, biosynthetic pathways and pharmacological activities of the glycoside flavonoids of Morus alba. A comprehensive analysis of the available literature indicates that Morus alba could emerge as a promising natural agent to combat diverse conditions including diabetes, cancer, inflammation and infectious diseases. To achieve such important objectives, it is crucial to elucidate the biosynthesis and regulation mechanisms of the bioactive compounds in white mulberry as well as the multifaceted pharmacological effects attributed to this plant resource. The present review paper is intended to present a summary of existing scientific data and a guide for further research in the phytochemistry and pharmacology of white mulberry. Further, a biosynthetic pathway analysis of the glycoside flavonoid in mulberry is also given. Lastly, we discuss the pros and cons of the current research to ensure the prudent and effective therapeutic value of mulberry for promoting human and animal health.

18.
Curr Issues Mol Biol ; 46(7): 7373-7385, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39057078

RESUMEN

The aim of this study was to investigate the antioxidant and anti-inflammatory effects of skimmianine on cerebral ischemia-reperfusion (IR) injury. Twenty-four female Wistar albino rats were randomly divided into three groups: Sham, Ischemia-Reperfusion (IR), and IR + Skimmianine (40 mg/kg Skimmianine). Cerebral ischemia was induced using a monofilament nylon suture to occlude the middle cerebral artery for 60 min. Following 23 h of reperfusion, the animals were sacrificed 14 days later. The effects of skimmianine on brain tissue post-IR injury were examined through biochemical and immunochemical analyses. In silico analysis using the Enrichr platform explored skimmianine's potential biological processes involving IBA-1, IL-6, and NF-κB proteins. In the IR group, MDA levels increased, while SOD and CAT antioxidant enzyme activities decreased. In the IR + Skimmianine group, skimmianine treatment resulted in decreased MDA levels and increased SOD and CAT activities. Significant increases in IBA-1 expression were observed in the IR group, which skimmianine treatment significantly reduced, modulating microglial activation. High levels of IL-6 expression were noted in pyramidal neurons, vascular structures, and neuroglial cells in the IR group; skimmianine treatment reduced IL-6 expression, demonstrating anti-inflammatory effects. Increased NF-κB expression was observed in neurons and blood vessels in the gray and white matter in the IR group; skimmianine treatment reduced NF-κB expression. Gene Ontology results suggest skimmianine impacts immune and inflammatory responses via IBA-1 and IL-6, with potential effects on estrogen mechanisms mediated by NF-κB. Skimmianine may be a potential therapeutic strategy due to its antioxidant and anti-inflammatory effects on cerebral IR injury.

19.
Toxicon ; 247: 107838, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38971473

RESUMEN

Phospholipase A2 (PLA2) is an enzyme present in appreciable quantity in snake venoms which catalyze the hydrolysis of glycerophospholipids at sn-2 position and promote the release of lysophospholipids and fatty acids. 5-methylcoumarin-4-ß-glucoside (5MC4BG) and lupeol were previously isolated from the leaves of V. glaberrima. The aim of this research was to evaluate effect of these compounds as potential inhibitors of snake venom toxins of Naja nigricollis using an in vitro and in silico studies. Antisnake venom studies was conducted using acidimetry while the molecular docking analysis against PLA2 enzyme from N. nigricollis was performed using Auto Dock Vina and ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers. The two compounds (5MC4BG and Lupeol) were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 23.99 to 72.36 % and 21.97-24.82 % at 0.0625-1.00 mg/mL respectively while the standard ASV had 82.63 % at 1.00 mg/mL after 10 min incubation at 37 °C. Similar effects were observed after 30 min incubation, although there was significant increase in percentage inhibition of 5MC4BG and lupeol ranging from 66.51 to 83.73 % and 54.87-59.60 % at similar concentrations. Furthermore, the compounds were able to bind to the active site of PLA2 enzyme with high affinity (-7.7 to -6.3 kcal/mol); the standard ligand, Varespladib had a docking score of -6.9 kcal/mol and they exhibited favorable drug-likeness and pharmacokinetic properties and according to toxicity predictions, the two compounds are toxic. In conclusion, the leaf of V. glaberrima contains phytoconstituents with antisnake activity and thus, validates the hypothesis that, the phytoconstituents of V. glaberrima leaves has antisnake venom activity against N. nigricollis venom and thus, should be studied further for the development as antisnake venom agents.


Asunto(s)
Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos , Fosfolipasas A2 , Fitoquímicos , Hojas de la Planta , Vernonia , Fitoquímicos/farmacología , Fitoquímicos/química , Hojas de la Planta/química , Animales , Vernonia/química , Fosfolipasas A2/farmacología , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/química , Venenos Elapídicos/química , Venenos Elapídicos/toxicidad , Naja , Cumarinas/farmacología , Cumarinas/química , Inhibidores de Fosfolipasa A2/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Simulación por Computador , Lupanos
20.
Food Res Int ; 191: 114731, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059924

RESUMEN

The recovery of bioactive compounds is a promising approach for obtaining rich extracts from fruit by-products. This study investigated the influence of Natural Deep Eutectic Solvents (NADES) and Ultrasound-Assisted Extraction (UAE) on the phenolic content, antioxidant capacity, and in vitro antidiabetic activity of Psidium myrtoides by-product. Among eight NADES evaluated based on choline chloride, NADES ChCl:Gly (1:2) was selected for its efficiency in extracting total phenolic compounds (TPC) with high antioxidant capacity. The optimized conditions were 61 °C, a solid-liquid ratio of 100 mg 5 mL-1, and a 60-minute extraction time. ChCl:Gly exhibited superior TPC recovery (2.6-fold greater effectiveness) compared to the 60 % hydroethanolic solution. Twenty-six phenolic compounds were identified, including significant levels of catechin (336.48 mg g-1) and isoquercetin (26.09 mg g-1). Phenolic acids, such as p-anisic acid (5.47 mg g-1) and methoxyphenylacetic acid (0.23 mg g-1), were identified for the first time in the purple araçá by-product. The ChCl:Gly extract demonstrated the highest bioactivity, showcasing antioxidant and antidiabetic capacities. This study introduces an innovative and sustainable alternative for recovering phenolic compounds from fruit by-products, offering enhanced recovery efficiency and/or selectivity compared to organic solvents.


Asunto(s)
Antioxidantes , Disolventes Eutécticos Profundos , Frutas , Fenoles , Extractos Vegetales , Psidium , Fenoles/análisis , Fenoles/aislamiento & purificación , Extractos Vegetales/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/análisis , Psidium/química , Disolventes Eutécticos Profundos/química , Frutas/química , Hipoglucemiantes/aislamiento & purificación , Hipoglucemiantes/química , Hipoglucemiantes/análisis , Ondas Ultrasónicas , Tecnología Química Verde , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...