Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
BMC Oral Health ; 24(1): 817, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026199

RESUMEN

OBJECTIVE: To evaluate histologically and radiographically the potential of dog's immature roots with apical periodontitis to regenerate after regenerative endodontic treatment using mesoporous silica nanoparticles (MSNs) with/without bone morphogenic protein (BMP-2) as scaffolds. METHODS: In 4 mongrel dogs, 56 immature teeth with 96 roots were infected, resulting in necrotic pulps and periapical pathosis. According to the evaluation time (Group I = 30 days and Group II = 90 days), 90 roots were divided into two equal groups (45 roots each) and 6 roots used to replace any lost root during the procedure. The two main groups were further divided according to treatment protocol into 5 subgroups (9 roots each): blood clot (BC subgroup), mesoporous silica nanoparticles scaffold only (MSNs subgroup), mesoporous silica nanoparticles impregnated with BMP2 (MSNs + BMP2 subgroup), infected teeth without treatment (+ ve control subgroup) and normal untouched teeth (-ve control subgroup). All teeth surfaces were coated with Tincture iodine and calcium hydroxide was applied prior to treatment protocols. Then, teeth were restored with glass ionomer filling to seal the remaining part of the access cavity. Radiography evaluation of the increase in root length, root thickness and occurrence of apical closure were performed. Following the sacrifice of the two dogs at each time of evaluation, histopathological analysis was performed and included the inflammatory cells count, bone resorption, tissue ingrowth, deposition of hard tissue, and closure of the apical part. All data were statistically analyzed. RESULTS: Compared to BC subgroup, MSNs and MSNs + BMP-2 subgroups exhibited significant higher increase in root length and thickness as well as higher vital tissue in-growth and new hard tissue formation in group II (P < 0.05). MSNs + BMP-2 subgroup had significant higher increase in root length and thickness as well as significant lower inflammatory cell count than MSNs subgroup in both groups (P < 0.05). There were no significant differences between MSNs and MSNs + BMP-2 subgroups regarding new hard tissue formation in both groups and apical closure in group I (P > 0.05). CONCLUSION: MSNs with/without BMP-2 scaffolds enabled the continuing growth of roots in immature teeth with necrotic pulps and periapical pathosis. Addition of BMP-2 to MSNs scaffold improved its outcome in regenerative endodontics. CLINICAL RELEVANCE: MSNs with/without BMP-2 scaffolds may alternate blood clot for regenerative endodontic treatment of immature teeth with necrotic pulps.


Asunto(s)
Pulpa Dental , Nanopartículas , Dióxido de Silicio , Andamios del Tejido , Raíz del Diente , Animales , Perros , Raíz del Diente/efectos de los fármacos , Raíz del Diente/diagnóstico por imagen , Proteína Morfogenética Ósea 2 , Periodontitis Periapical/terapia , Periodontitis Periapical/patología , Necrosis de la Pulpa Dental/terapia , Regeneración/efectos de los fármacos , Endodoncia Regenerativa/métodos
2.
Bioengineering (Basel) ; 11(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38790304

RESUMEN

The repair of critical-sized calvarial defects is a challenging problem for orthopedic surgery. One of the promising strategies of bone bioengineering to enhance the efficacy of large bone defect regeneration is the combined delivery of stem cells with osteoinductive factors within polymer carriers. The purpose of the research was to study the regenerative effects of heparin-conjugated fibrin (HCF) hydrogel containing bone morphogenetic protein 2 (BMP-2) and adipose-derived pericytes (ADPs) in a rat critical-sized calvarial defect model. In vitro analysis revealed that the HCF hydrogel was able to control the BMP-2 release and induce alkaline phosphatase (ALP) activity in neonatal rat osteoblasts. In addition, it was found that eluted BMP-2 significantly induced the osteogenic differentiation of ADPs. It was characterized by the increased ALP activity, osteocalcin expression and calcium deposits in ADPs. In vivo studies have shown that both HCF hydrogel with BMP-2 and HCF hydrogel with pericytes are able to significantly increase the regeneration of critical-sized calvarial defects in comparison with the control group. Nevertheless, the greatest regenerative effect was found after the co-delivery of ADPs and BMP-2 into a critical-sized calvarial defect. Thus, our findings suggest that the combined delivery of ADPs and BMP-2 in HCF hydrogel holds promise to be applied as an alternative biopolymer for the critical-sized bone defect restoration.

3.
Life (Basel) ; 14(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38672730

RESUMEN

This study aims to histologically and immunohistochemically evaluate the effect recombinant human bone morphogenetic protein (rh-BMP2) injected in gingival tissue has on the acceleration of the epithelial migration from the wound edges and epithelial cell proliferation after implant surgery. MATERIAL AND METHODS: The study includes 20 patients who underwent bilateral implant surgeries in the premolar-molar region of the mandible, followed by guided bone regeneration. Each patient received an implant in both locations, but rh-BMP2 was only on the right side. At 9 days from the surgery, a gingival biopsy was performed 3 mm distally to the last implant. In total, 20 samples were collected from the left side (control group #1) and 20 from right (test group #1). This was repeated at a 4-month interval during healing abutment placements. Tissues were processed and stained with hematoxylin-eosin and then immunohistochemically for the expression of Ki-67 and further histological examination. RESULT: Complete closure of the epithelium with new cell formation was observed in the 55% test group and 20% control group after 9 days. At 4 months, although 100% samples of all groups had complete epithelial closure, the test group showed that the epithelial cells were more organized and mature due to the increased number of blood vessels. The average number of new epithelial cells was 17.15 ± 7.545 and 16.12 ± 7.683 cells per mm in test group, respectively, at 9 days and 4 months and 10.99 ± 5.660 and 10.95 ± 5.768 in control groups. CONCLUSION: Evident from histological observations, rh-BMP-2 can accelerate the closure of gingival wounds, the healing process of epithelial gingival tissue, and the formation of epithelial cells in patients undergoing dental implant treatment.

4.
Nutrients ; 16(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674937

RESUMEN

Osteoporosis, a disease defined by the primary bone strength due to a low bone mineral density, is a bone disorder associated with increased mortality in the older adult population. Osteoporosis is mainly treated via hormone replacement therapy, bisphosphates, and anti-bone resorption agents. However, these agents exert severe side effects, necessitating the development of novel therapeutic agents. Many studies are focusing on osteogenic agents as they increase the bone density, which is essential for osteoporosis treatment. Here, we aimed to investigate the effects of Diospyros lotus L. leaf extract (DLE) and its components on osteoporosis in MC3T3-E1 pre-osteoblasts and ovariectomized mice and to elucidate the underlying related pathways. DLE enhanced the differentiation of MC3T3-E1 pre-osteoblasts, with a 1.5-fold elevation in ALP activity, and increased the levels of osteogenic molecules, RUNX family transcription factor 2, and osterix. This alteration resulted from the activation of bone morphogenic protein 2/4 (BMP2/4) and transformation of growth factor ß (TGF ß) pathways. In ovariectomized mice, DLE suppressed the decrease in bone mineral density by 50% and improved the expression of other bone markers, which was confirmed by the 3~40-fold increase in osteogenic proteins and mRNA expression levels in bone marrow cells. The three major compounds identified in DLE exhibited osteogenic and estrogenic activities with their aglycones, as previously reported. Among the major compounds, myricitrin alone was not as strong as whole DLE with all its constituents. The osteogenic activity of DLE was partially suppressed by the inhibitor of estrogen signaling, indicating that the estrogenic activity of DLE participated in its osteogenic activity. Overall, DLE suppresses osteoporosis by inducing osteoblast differentiation.


Asunto(s)
Densidad Ósea , Diospyros , Osteoblastos , Osteogénesis , Extractos Vegetales , Animales , Femenino , Ratones , Densidad Ósea/efectos de los fármacos , Proteína Morfogenética Ósea 2/efectos de los fármacos , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 4/efectos de los fármacos , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular/efectos de los fármacos , Diospyros/química , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Ovariectomía , Extractos Vegetales/farmacología , Hojas de la Planta/química , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
5.
bioRxiv ; 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38410489

RESUMEN

The canonical paradigm of GPCR signaling recognizes G proteins and ß-arrestins as the two primary transducers that promote GPCR signaling. Recent evidence suggests the atypical chemokine receptor 3 (ACKR3) does not couple to G proteins, and ß-arrestins are dispensable for some of its functions. Here, we employed proximity labeling to identify proteins that interact with ACKR3 in cells devoid of ß-arrestin. We identified proteins involved in the endocytic machinery and evaluated a subset of proteins conserved across several GPCR-based proximity labeling experiments. We discovered that the bone morphogenic protein 2-inducible kinase (BMP2K) interacts with many different GPCRs with varying dependency on ß-arrestin. Together, our work highlights the existence of modulators that can act independently of G proteins and ß-arrestins to regulate GPCR signaling and provides important evidence for other targets that may regulate GPCR signaling.

6.
Acta Biomater ; 177: 148-156, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325708

RESUMEN

Bone morphogenic protein 2 (BMP2) is known to induce osteogenesis and is applied clinically to enhance spinal fusion despite adverse effects. BMP2 needs to be used in high doses to be effective due to the presence of BMP2 inhibitors. L51P is a BMP2 analogue that acts by inhibition of BMP2 inhibitors. Here, we hypothesized that mixtures of BMP2 and L51P could achieve better spinal fusion outcomes regarding ossification. To test whether mixtures of both cytokines are sufficient to improve ossification, 45 elderly Wistar rats (of which 21 were males) were assigned to seven experimental groups, all which received spinal fusion surgery, including discectomy at the caudal 4-5 level using an external fixator and a porous ß-tricalcium phosphate (ßTCP) carrier. These ßTCP carriers were coated with varying concentrations of BMP2 and L51P. X-rays were taken immediately after surgery and again six and twelve weeks post-operatively. Histological sections and µCT were analyzed after twelve weeks. Spinal fusion was assessed using X-ray, µCT and histology according to the Bridwell scale by voxel-based quantification and a semi-quantitative histological score, respectively. The results were congruent across modalities and revealed high ossification for high-dose BMP2 (10 µg), while PBS induced no ossification. Low-dose BMP2 (1 µg) or 10 µg L51P alone did not induce relevant bone formation. However, all combinations of low-dose BMP2 with L51P (1 µg + 1/5/10 µg) were able to induce similar ossificationas high-dose BMP2. These results are of high clinical relevance, as they indicate L51P is sufficient to increase the efficacy of BMP2 and thus lower the required dose for spinal fusion. STATEMENT OF SIGNIFICANCE: Spinal fusion surgery is frequently applied to treat spinal pathologies. Bone Morphogenic Protein-2 (BMP2) has been approved by the U .S. Food and Drug Administration (FDA-) and by the "Conformité Européenne" (CE)-label. However, its application is expensive and high concentrations cause side-effects. This research targets the improvement of the efficacy of BMP2 in spinal fusion surgery.


Asunto(s)
Proteína Morfogenética Ósea 2 , Fusión Vertebral , Humanos , Masculino , Ratas , Animales , Anciano , Femenino , Proteína Morfogenética Ósea 2/farmacología , Ratas Wistar , Fusión Vertebral/métodos , Cola (estructura animal) , Osteogénesis , Factor de Crecimiento Transformador beta/farmacología
7.
Mol Cell Neurosci ; 128: 103913, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38056728

RESUMEN

Fibroblast growth factors (FGFs) and bone morphogenic proteins (BMPs) play various important roles in the development of the central nervous system. However, the roles of FGF and BMP signaling in the development of the olfactory bulb (OB) are largely unknown. In this study, we first showed the expression of FGF receptors (FGFRs) and BMP receptors (BMPRs) in OB RGCs, radial glial cells (RGCs) in the developing OB, which generate the OB projection neurons, mitral and tufted cells. When the FGF signaling was inhibited by a dominant-negative form of FGFR1 (dnFGFR1), OB RGCs accelerated their state transition to mitral cell precursors without affecting their transcription cascade and fate. However, the mitral cell precursors could not radially migrate to form the mitral cell layer (MCL). In addition, FGF signaling inhibition reduced the expression of a BMP antagonist, Noggin, in the developing OB. When BMP signaling was suppressed by the ectopic expression of Noggin or a dominant-negative form of BMPR1a (dnBMPR1a) in the developing OB, the defect in MCL formation caused by the dnFGFR1 was rescued. However, the dnBMPR1a did not rescue the accelerated state transition of OB RGCs. These results demonstrate that FGF signaling is important for OB RGCs to maintain their self-renewal state and MCL formation. Moreover, the suppression of BMP signaling is required for mitral cells to form the MCL. This study sheds new light on the roles of FGFs and BMPs in OB development.


Asunto(s)
Proteínas Morfogenéticas Óseas , Bulbo Olfatorio , Ratones , Animales , Bulbo Olfatorio/metabolismo , Diferenciación Celular , Proteínas Morfogenéticas Óseas/metabolismo , Transducción de Señal , Factores de Crecimiento de Fibroblastos
8.
Life (Basel) ; 13(12)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38137899

RESUMEN

The aim of this study is to evaluate the effect on the initiation of new blood vessel formation of rh-BMP-2 administration in the human gingival tissue during bone regeneration surgery. MATERIAL AND METHODS: The randomized controlled clinical trial included twenty patients with bilateral partial edentulous of the mandibular premolar and molar region. Each patient received one implants on each side. Only one side received a 0.25 µg injection of rhBMP-2 into the gingival flap and grafted material during guided bone regeneration (GBR) for dental implantation. And the other side received GBR without injection. Three samples were collected from each patient as follows: one from the anterior area of the mandible (control group #1) collected at the time of all implant surgeries, and the two other samples during the placement of healing abutments at 4 months of follow-up, from treated side with rh-BMP-2 (test group) and untreated ones (control group #2). A total of 60 gingival samples were collected. Samples were stained with hematoxylin-eosin, and immunohistochemistry was performed with a vascular endothelial growth factor marker. The number of new vessels in each sample was counted. RESULT: Statistical analyses showed a significantly higher number of new vessels in the gingival tissue of the test group. CONCLUSIONS: Rh-BMP-2 injections into the gingival flap significantly improved new blood vessel formation.

9.
Int J Spine Surg ; 17(S3): S53-S60, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38124018

RESUMEN

BACKGROUND: This review seeks to investigate the clinically relevant bone graft materials in single-level transforaminal lumbar interbody fusion (TLIF) procedures as defined by (1) primary outcomes (ie, fusion rates and complication rates) and (2) patient-reported outcomes (ie, visual analog scale [VAS] and Oswestry disability index [ODI]). Because of the advantages in stimulating bone growth, autologous bone grafts such as the iliac crest bone graft (ICBG) have been the gold standard. Numerous alternatives to ICBG have been introduced. Understanding the risks and benefits of bone graft options is vital to optimizing patient care. METHODS: A PubMed search was performed for all clinical studies published between January 2008 and March 2023 that referenced the single-level TLIF procedure as well as one of the following grafts: autograft, allograft, bone morphogenetic protein (BMP), demineralized bone matrix, or mesenchymal stem cells (MSCs). Case studies and reports were excluded. RESULTS: Twenty-eight studies met the inclusion criteria. Studies from the PubMed search demonstrated similarly high fusion rates across nearly all graft materials, the lone exception being MSCs, which showed lower fusion rates. ICBG grafts experienced higher rates of postoperative graft site pain. The BMP graft material had high rates of radiculitis, heterogeneous ossification, and vertebral osteolysis. Patients saw an overall improvement in VAS and ODI scores with all graft materials. CONCLUSION: Local autografts and ICBG have been the most studied. Fusion rates during single-level TLIF were similar across all graft materials except MSCs. Patient-reported pain levels improved after TLIF surgery regardless of the type of grafts used. While BMP implants have shown promising benefits, they have introduced a new array of complications not normally seen in ICBG implants. The study is limited by the lack of evidence of certain graft materials as well as nonuniformity in metrics evaluating the efficacy of graft materials.

10.
Bioelectricity ; 5(4): 290-306, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38143873

RESUMEN

Background: The temporal dynamics of morphogen presentation impacts transcriptional responses and tissue patterning. However, the mechanisms controlling morphogen release are far from clear. We found that inwardly rectifying potassium (Irk) channels regulate endogenous transient increases in intracellular calcium and bone morphogenetic protein (BMP/Dpp) release for Drosophila wing development. Inhibition of Irk channels reduces BMP/Dpp signaling, and ultimately disrupts wing morphology. Ion channels impact development of several tissues and organisms in which BMP signaling is essential. In neurons and pancreatic beta cells, Irk channels modulate membrane potential to affect intracellular Ca++ to control secretion of neurotransmitters and insulin. Based on Irk activity in neurons, we hypothesized that electrical activity controls endoplasmic reticulum (ER) Ca++ release into the cytoplasm to regulate the release of BMP. Materials and Methods: To test this hypothesis, we reduced expression of four proteins that control ER calcium, Stromal interaction molecule 1 (Stim), Calcium release-activated calcium channel protein 1 (Orai), SarcoEndoplasmic Reticulum Calcium ATPase (SERCA), small conductance calcium-activated potassium channel (SK), and Bestrophin 2 (Best2) using RNAi and documented wing phenotypes. We use live imaging to study calcium and Dpp release within pupal wings and larval wing discs. Additionally, we employed immunohistochemistry to characterize Small Mothers Against Decapentaplegic (SMAD) phosphorylation downstream of the BMP/Dpp pathway following RNAi knockdown. Results: We found that reduced Stim and SERCA function decreases amplitude and frequency of endogenous calcium transients in the wing disc and reduced BMP/Dpp release. Conclusion: Our results suggest control of ER calcium homeostasis is required for BMP/Dpp release, and Drosophila wing development.

11.
Cureus ; 15(10): e46909, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37841989

RESUMEN

Background Ridge preservation became a crucial dental health issue and strategy to keep away from ridge defacement after post-tooth loss. The recent scientific evolution of platelet-rich fibrin (PRF) comprises a parenteral formulation of PRF. The combined allograft for socket preservation gives benefits. In this study, bone allografts, demineralized freeze-dried bone allografts (DFDBA) and freeze-dried bone allografts (FDBA) are used in a 30:70 ratio alone or in combination with injectable PRF (I-PRF) for socket preservation. Methods This study is a radiographic and histological examination conducted on 60 participants aged between 19-65 years. Participating patients agreed voluntarily that they would not bear any fixed prosthesis for the next nine months and plan for implanted teeth placement, including multi-rooted mandibular molars denticles. Both groups received atraumatic extraction; then, the socket was preserved with bone allograft alone in the control group and bone allograft mixed with I-PRF, forming sticky bone, in the experimental group. Clinical, radiological, and histological assessments were taken at the inception stage, three months, six months, and nine months. A multivariate regression model and a generalized estimating equation (GEE) model were used to analyse the effects of these changes on outcomes. Results In all the parameters, the test group indicated a good amount of bone growth with increasing intervals of time for bone height radiographically with statistically significant difference present (p<0.05) and histologically after nine months when socket site grafted with bone graft in combination with I-PRF. Conclusion This study's results demonstrated that I-PRF possesses the potential to regenerate and heal in the tooth-extracted socket. This study further recommends the implementation of I-PRF in safeguarding and conserving the raised rim of the tooth. Future research should take place on the osteogenic capability of I-PRF in more comprehensive ridge accession surgical procedures and additional expanding and improving capacities in periodontal reconstruction.

12.
Bioengineering (Basel) ; 10(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37892844

RESUMEN

(1) Background: Recently, Escherichia coli-derived recombinant human bone morphogenetic protein-2 (E. coli-derived rhBMP-2) has been increasingly applied to different types of spinal surgeries and reported to achieve successful fusion. This pilot study aimed to evaluate the clinical efficacy and safety of rhBMP-2 in patients undergoing posterior instrumented fusions for unstable spinal fractures. (2) Methods: This study included ten consecutive patients undergoing spinal surgery using E. coli-derived rhBMP-2 with more than one year of follow-up. Radiologic outcomes were compared, including the average fracture healing period, local kyphosis correction, and clinical outcomes between preoperative and the last follow-up. (3) Results: The average time of radiographic union was 99.9 ± 45.4 (62-192) days, with an average use of 5.2 ± 3.9 months of anabolic agents. Radiologic parameters such as anterior vertebral height and vertebral wedge angle were significantly corrected postoperatively and at the last follow-up. Clinical outcomes other than leg pain were significantly improved after the surgery. In addition, four patients with preoperative neurologic deficits showed improved neurologic status. (4) Conclusions: Combined with the anabolic agents, applying E. coli-derived rhBMP-2 to the fractured vertebral body could be an effective surgical treatment for unstable spinal fractures. Further trials are needed to validate this result.

13.
Angiogenesis ; 26(Suppl 1): 27-37, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37695357

RESUMEN

Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant vascular disorder characterized by small, dilated clustered vessels (telangiectasias) and by larger visceral arteriovenous malformations (AVMs), which directly connect the feeding arteries with the draining veins. These lesions are fragile, prone to rupture, and lead to recurrent epistaxis and/or internal hemorrhage among other complications. Germline heterozygous loss-of-function (LOF) mutations in Bone Morphogenic Protein 9 (BMP9) and BMP10 signaling pathway genes (endoglin-ENG, activin like kinase 1 ACVRL1 aka ALK1, and SMAD4) cause different subtypes of HHT (HHT1, HHT2 and HHT-juvenile polyposis (JP)) and have a worldwide combined incidence of about 1:5000. Expert clinicians and international scientists gathered in Cascais, Portugal from September 29th to October 2nd, 2022 to present the latest scientific research in the HHT field and novel treatment strategies for people living with HHT. During the largest HHT scientific conference yet, participants included 293 in person and 46 virtually. An impressive 209 abstracts were accepted to the meeting and 59 were selected for oral presentations. The remaining 150 abstracts were presented during judged poster sessions. This review article summarizes the basic and clinical abstracts selected as oral presentations with their new observations and discoveries as well as surrounding discussion and debate. Two discussion-based workshops were also held during the conference, each focusing on mechanisms and clinical perspectives in either AVM formation and progression or current and future therapies for HHT. Our hope is that this paper will represent the current progress and the remaining unanswered questions surrounding HHT, in order to serve as an update for those within the field and an invitation to those scientists and clinicians as yet outside of the field of HHT.


Asunto(s)
Telangiectasia Hemorrágica Hereditaria , Humanos , Receptores de Activinas Tipo II/genética , Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/patología , Proteínas Morfogenéticas Óseas/genética , Mutación , Transducción de Señal , Telangiectasia Hemorrágica Hereditaria/genética , Telangiectasia Hemorrágica Hereditaria/terapia
14.
Clin Exp Hepatol ; 9(2): 154-163, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37502432

RESUMEN

Aim of the study: Bone morphogenic proteins (BMPs) have both inhibitory and stimulatory effects on growth of a tumor that depend on the type of cells, the dosage and the tumor microenvironment. We aimed to investigate the impact of the bone morphogenic protein-7 (BMP-7) single nucleotide polymorphism (SNP) rs230205 [A/G] on susceptibility to hepatocellular carcinoma (HCC) progression from liver cirrhosis after viral hepatitis infection in Egyptian patients. Material and methods: The amplification-refractory mutation system (ARMS)-polymerase chain reaction (PCR) method was used to genotype the rs230205 [A/G] SNP in 150 subjects (50 patients with post-hepatitis C or B cirrhosis, 50 HCC patients, and 50 controls). Expression level of BMP-7 protein was assessed using enzyme-linked immunosorbent assay (ELISA). Results: The results revealed insignificant changes in distribution of all genotypes/alleles of the BMP-7 rs230205 [A/G] SNP between cirrhotic patients, HCC patients and controls. The AA genotype and A allele could be considered risk factors for cirrhosis (OR = 1.75, 1.50) and HCC (OR = 2.19, 1.74), respectively. The AA genotype (95% CI: 0.45-6.79) and A allele (OR = 1.50, 95% CI: 0.77-2.93) may be viewed as cirrhosis risk factors based on group segregation. Additionally, the A allele, AG and AA genotypes and their combined ORs of 2.19 (95% CI: 0.58-8.23), 1.74 (95% CI: 0.90-3.37), and 1.70 (95% CI: 0.68-4.29) could all be risk factors for HCC. No genotype or allele could be regarded as a risk factor for progression of cirrhosis to HCC, according to OR values. Conclusions: The results showed no correlation between BMP-7 rs230205 [A/G] SNP and progression of cirrhosis to HCC. To confirm our findings, additional prospective large-scale research is required.

15.
J Clin Transl Res ; 9(3): 212-221, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37457546

RESUMEN

Background and Aim: Joint pain afflicts millions of adults worldwide. The effect of a bone morphogenetic protein complex on joint pain is assessed in this study. Methods: We compared the impact of a dietary supplement protein complex (Cyplexinol®) and placebo in 18 men and women (aged 43 ± 10 years) with self-reported joint pain. Subjects were randomly assigned to each condition, consumed twice daily for 14 days (900 mg/day). Subjects completed questionnaires (e.g., Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and subjective pain using a visual analog scale [VAS]) at the start and end of each treatment phase. Blood samples were analyzed for bone morphogenic protein (BMP), alkaline phosphatase, and cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-6, IL-10, IL-1ß, and TGF-ß). Blood was also collected on days 1 and 15 to determine the acute impact of treatment on these measures. Results: Pain and discomfort scores improved (P ≤ 0.05) for subjects following use of Cyplexinol® but not placebo. Improvements were noted for WOMAC pain (P = 0.05), stiffness (P = 0.039), and total pain (P = 0.026), as well as VAS pain (P = 0.015), recreational activity interference (P = 0.023), mood interference (P = 0.012), and total pain (P = 0.024). A trend was noted for WOMAC physical function (P = 0.052). An approximate 50% increase in BMP5 was noted following Cyplexinol® (P = 0.01), with a similar increase noted for placebo (P = 0.022). A near doubling in TGF-ß (P = 0.001) was noted for Cyplexinol®. No other changes of significance were noted across time, nor were any differences noted in cytokines following acute intake of the conditions (P > 0.05). Conclusions: Cyplexinol® can alleviate joint pain in middle-aged men and women, while elevating BMP5 and TGF-ß. Cyplexinol® does not influence cytokines, at least within a short 2-week supplementation period or within the 2-h post-ingestion period. Relevance for Patients: Individuals suffering with joint pain in the knee and/or hip may benefit from daily use of Cyplexinol®, as we observed decreased pain and stiffness following treatment.

16.
Genet Med ; 25(8): 100863, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37125634

RESUMEN

PURPOSE: Bone morphogenic proteins (BMPs) regulate gene expression that is related to many critical developmental processes, including osteogenesis for which they are named. In addition, BMP2 is widely expressed in cells of mesenchymal origin, including bone, cartilage, skeletal and cardiac muscle, and adipose tissue. It also participates in neurodevelopment by inducing differentiation of neural stem cells. In humans, BMP2 variants result in a multiple congenital anomaly syndrome through a haploinsufficiency mechanism. We sought to expand the phenotypic spectrum and highlight phenotypes of patients harboring monoallelic missense variants in BMP2. METHODS: We used retrospective chart review to examine phenotypes from an international cohort of 18 individuals and compared these with published cases. Patient-derived missense variants were modeled in zebrafish to examine their effect on the ability of bmp2b to promote embryonic ventralization. RESULTS: The presented cases recapitulated existing descriptions of BMP2-related disorders, including craniofacial, cardiac, and skeletal anomalies and exhibit a wide phenotypic spectrum. We also identified patients with neural tube defects, structural brain anomalies, and endocrinopathies. Missense variants modeled in zebrafish resulted in loss of protein function. CONCLUSION: We use this expansion of reported phenotypes to suggest multidisciplinary medical monitoring and management of patients with BMP2-related skeletal dysplasia spectrum.


Asunto(s)
Osteocondrodisplasias , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Estudios Retrospectivos , Diferenciación Celular , Osteogénesis/genética , Proteínas Morfogenéticas Óseas , Proteína Morfogenética Ósea 2/genética
17.
Geroscience ; 45(4): 2303-2324, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36881352

RESUMEN

FOXO3 is a ubiquitous transcription factor expressed in response to cellular stress caused by nutrient deprivation, inflammatory cytokines, reactive oxygen species, radiation, hypoxia, and other factors. We showed previously that the association of inherited FOXO3 variants with longevity was the result of partial protection against mortality risk posed by aging-related life-long stressors, particularly cardiometabolic disease. We then referred to the longevity-associated genotypes as conferring "mortality resilience." Serum proteins whose levels change with aging and are associated with mortality risk may be considered as "stress proteins." They may serve as indirect measures of life-long stress. Our aims were to (1) identify stress proteins that increase with aging and are associated with an increased risk of mortality, and (2) to determine if FOXO3 longevity/resilience genotype dampens the expected increase in mortality risk they pose. A total of 4500 serum protein aptamers were quantified using the Somalogic SomaScan proteomics platform in the current study of 975 men aged 71-83 years. Stress proteins associated with mortality were identified. We then used age-adjusted multivariable Cox models to investigate the interaction of stress protein with FOXO3 longevity-associated rs12212067 genotypes. For all the analyses, the p values were corrected for multiple comparisons by false discovery rate. This led to the identification of 44 stress proteins influencing the association of FOXO3 genotype with reduced mortality. Biological pathways were identified for these proteins. Our results suggest that the FOXO3 resilience genotype functions by reducing mortality in pathways related to innate immunity, bone morphogenetic protein signaling, leukocyte migration, and growth factor response.


Asunto(s)
Longevidad , Proteómica , Masculino , Humanos , Longevidad/genética , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Genotipo , Proteínas de Choque Térmico
18.
Clin Biochem ; 116: 31-37, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36935066

RESUMEN

OBJECTIVE: This study aimed to evaluate the association between plasma bone morphogenic protein-4 (BMP-4) levels and heart failure (HF) with preserved ejection fraction (HFpEF) or mildly reduced ejection fraction (HFmrEF) in elderly hypertensive patients. METHODS: A total of 222 hypertensive individuals meeting the inclusion criteria were enrolled from October 2021 to July 2022. Data were collected including clinical characteristics, laboratory tests and echocardiogram measurements. Plasma BMP-4 levels were tested using enzyme-linked immunosorbent assay analysis. RESULTS: Among 222 elderly hypertensive patients, 149 were without HF, 59 had HFpEF, and 14 had HFmrEF. Plasma BMP-4 levels were strikingly downregulated in hypertensive patients with HFpEF/HFmrEF [median (25th, 75th percentile): 15.89 (7.69, 23.12) pg/mL vs. 19.67 (10.60, 33.04) pg/mL; P = 0.002]. After univariate and multivariate logistic regression analysis, the risk of HFpEF/HFmrEF was declined in the 4th quartile BMP-4 group when compared with the 1st quartile BMP-4 group (odds ratio, 0.20, 95% confidence interval (CI), 0.04 to 1.00; P = 0.050, P for trend = 0.025). Receiver operating characteristic curve analysis revealed that BMP-4 ≤ 28.5 pg/mL exhibited a sensitivity of 95.9% and a specificity of 28.2% in HFpEF/HFmrEF diagnosis. Furthermore, the area under the curve (AUC) was 0.619 (95% CI:0.540-0.698, P < 0.001). The corresponding AUC for brain natriuretic peptide (BNP) was 0.781 (95% CI: 0.710-0.852), P < 0.001. Adding BMP-4 to BNP increased the AUC to 0.790 (95% CI: 0.724-0.856), vs. BMP-4, P < 0.001; vs. BNP, P = 0.730, respectively. CONCLUSIONS: Plasma BMP-4 levels are downregulated in elderly hypertensive patients with HFpEF. BMP-4 is a promising biomarker for diagnosing HFpEF/HFmrEF during hypertension.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Humanos , Anciano , Volumen Sistólico , Biomarcadores , Péptido Natriurético Encefálico , Pronóstico
19.
Int J Oncol ; 62(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36999621

RESUMEN

Cancer stem cells serve key roles in liver cancer recurrence and metastasis. Therefore, the present study evaluated novel regulators of stem cell factor expression to identify novel therapeutic strategies that could target liver cancer stem cells. Deep sequencing was performed to identify novel microRNAs (miRNAs) that were specifically altered in liver cancer tissues. The expression levels of stem cell markers were investigated by reverse transcription­quantitative PCR and western blotting. Sphere formation assays and flow cytometry were used to assess tumor sphere­forming ability and evaluate the population of cluster of differentiation 90+ cells. Tumor xenograft analyses were used to evaluate tumorigenicity, metastasis and stemness in vivo. Bioinformatics analyses and enhanced green fluorescent protein reporter assays or luciferase reporter assays were performed to identify the direct targets of miR­HCC2 and its upstream transcription factors. MiR­HCC2 strongly promoted the cancer stem cell­like properties of liver cancer cells in vitro; it also contributed to tumorigenicity, metastasis and stemness in vivo. Bone morphogenic protein and activin membrane­bound inhibitor homolog, a direct target of miR­HCC2, activated the Wnt/ß­catenin signaling pathway to promote stemness in liver cancer cells. The transcription factor YY1 bound to the promoter of miR­HCC2 and activated its transcription. The present study demonstrated the importance of miR­HCC2 in the induction of stemness in liver cancer, providing new insights into liver cancer metastasis and recurrence.


Asunto(s)
Neoplasias Hepáticas , MicroARNs , Humanos , Línea Celular Tumoral , MicroARNs/metabolismo , Neoplasias Hepáticas/patología , Vía de Señalización Wnt/genética , Xenoinjertos , Células Madre Neoplásicas/patología , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Proteínas de la Membrana/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
20.
Biochem Biophys Res Commun ; 656: 53-62, 2023 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-36958255

RESUMEN

Type 1 alveolar epithelial cells (AT1s) and type 2 alveolar epithelial cells (AT2s) regulate the structural integrity and function of alveoli. AT1s mediate gas exchange, whereas AT2s serve multiple functions, including surfactant secretion and alveolar repair through proliferation and differentiation into AT1s as progenitors. However, mechanisms regulating AT2 proliferation and differentiation remain unclear. Here we demonstrate that Gremlin, an intrinsic inhibitor of bone morphogenetic protein (BMP), induces AT2 proliferation and differentiation. Transient overexpression of Gremlin in rat lungs by adenovirus vector delivery suppressed BMP signaling, induced proliferation of AT2s and the production of Bmp2, which in turn led to the recovery of BMP signaling and induced AT2 differentiation into AT1s. Bleomycin-induced lung injury upregulated Gremlin and showed a similar time course of biomarker expression comparable to the adenovirus model. TGF-ß and IL-1ß induced Gremlin expression in fibroblasts. Taken together, our findings implicate that Gremlin expression during lung injury leads to precisely timed inhibition of BMP signaling and activates AT2s, leading to alveolar repair.


Asunto(s)
Células Epiteliales Alveolares , Lesión Pulmonar , Ratas , Animales , Células Epiteliales Alveolares/metabolismo , Lesión Pulmonar/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...