Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 763
Filtrar
1.
Eur Spine J ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365434

RESUMEN

BACKGROUND: To reduce the amount of radiation that patients receive during surgery, surgeons can evaluate the quality of the bone prior to surgery using computed tomography (CT) or dual-energy X-ray absorptiometry. Recently, lumbar spine vertebral bone quality has been evaluated using an MRI-based scoring system. However, few studies have investigated the connection between cage subsidence in patients following cervical interbody fusion and site-specific MRI bone evaluation. It is unknown how cage subsidence following anterior cervical corpectomy decompression and fusion is related to MRI-based endplate bone quality assessment. PURPOSE: To create a similar MRI-based cervical spine scoring system (C-EBQ) and to investigate the predictive value of the MRI cervical endplate bone quality (C-EBQ) score for cage subsidence after ACCF. METHODS: The patients' demographic, surgical, and radiological data were collected. Cage subsidence was defined as fusion segment height loss ≥ 3 mm. Multivariate logistic regression models were developed to determine correlations between potential risk factors and subsidence, and simple linear regression analyses of statistically significant indicators were performed. RESULTS: Among the patients who underwent single-level ACCF, 72 met the requirements for inclusion. The C-VBQ scores also improved from 2.28 ± 0.12, indicating no subsidence, to 3.27 ± 0.35, which indicated subsidence, and the C-EBQ scores improved in both the nonsubsidence group (1.95 ± 0.80) and the subsidence group (2.38 ± 0.54). There was a statistically significant difference (p < 0.05) among the groups. Higher C-EBQ scores were strongly correlated with subsidence in the multivariate analysis (odds ratio [OR] = 17.249, 95% CI = 2.269 to 7.537, P < 0.001), and the C-VBQ score was the major independent predictor of subsidence following ACCF ([OR] = 4.752, 95% CI = 3.824 to 8.781, P < 0.05). The C-EBQ score outperformed the C-VBQ score (75.6%) in terms of predictive accuracy, with a ROC curve indicating an 89.4% score. CONCLUSIONS: After ACCF, cage subsidence was strongly correlated with higher C-EBQ scores on preoperative MRI. Assessing C-EBQ before ACCF may be a useful way to estimate the likelihood of postoperative subsidence.

2.
J Endocrinol Invest ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361238

RESUMEN

BACKGROUND: Fabry disease (FD) is an inherited X-linked lysosomal storage disease characterized by increased risk of osteoporosis and fractures. The impact of FD on clinical measures of bone quality is unknown. This considered, aim of our study was to evaluate whether trabecular bone microarchitecture, measured by trabecular bone score (TBS), is altered in patients with FD compared to control subjects. METHODS: This retrospective monocentric study enrolled 14 patients (M/F 1/1, median age 46 [37-63] years, range 31-72 years) newly diagnosed with FD between January 2016 and July 2023 who underwent dual-energy X-ray absorptiometry (DXA) image at the time of diagnosis and 42 matched controls. In all subjects, data about bone mineral density (BMD) and lumbar spine TBS were collected and total calcium, parathyroid hormone (PTH), 25(OH) vitamin D, alkaline phosphatase (ALP), creatinine and estimated glomerular filtration rate (eGFR) were evaluated. In subjects with FD, globotriaosylsphingosine (lyso-Gb3), 24-hour proteinuria and albumin-creatinine ratio were also assessed. RESULTS: Patients with FD presented significantly lower lumbar spine TBS (1.29 [1.22-1.38] vs. 1.42 [1.39-1.47], p < 0.001) and lower lumbar spine BMD (0.916 ± 0.166 vs. 1.031 ± 0.125 g/cm2, p = 0.008) compared to controls; moreover, FD was shown to be an independent risk factor for both low lumbar spine TBS (ß = -0.118, p < 0.001) and BMD (ß = -0.115, p = 0.009). No differences were found in serum calcium, ALP, 25(OH) vitamin D and eGFR in both groups, but FD patients had significantly higher PTH levels compared to controls (p = 0.016). Finally, 8 patients with FD presented either moderately or severely increased albuminuria and only 2 patients presented normal lyso-Gb3 levels. CONCLUSION: Patients affected by FD present significantly lower lumbar spine TBS and BMD compared to controls. Our findings strongly support the importance of carrying out a thorough evaluation of bone status in all patients affected by FD at baseline.

3.
Neurospine ; 21(3): 913-924, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39363471

RESUMEN

OBJECTIVE: Poor bone quality is a risk factor for postoperative complications after degenerative lumbar fusion surgery. The magnetic resonance imaging-based vertebral bone quality (VBQ) score is a good tool for assessing bone quality, and this is the first meta-analysis performed to summarize the predictive value of the VBQ score for cage subsidence and screw loosening in patients undergoing degenerative lumbar surgery. METHODS: Studies were comprehensively searched in electronic databases. The quality of the studies was assessed. The pooled sensitivity, specificity and summary receiver operating characteristic curve were calculated. Publication bias was assessed and meta-regression was conducted. RESULTS: We ultimately included 9 studies with a total of 1,404 patients with a mean age of 60.4 years and a percentage of females of 57.0%. According to the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) tool to assess methodological quality, the quality of the included studies was relatively low and risks of bias might exist. Results showed that a high VBQ was significantly associated with cage subsidence and screw loosening, and risk factor analysis revealed that the merged odds ratio was 5.37 for cage subsidence and 3.87 for screw loosening. With a VBQ cutoff value of 3.34±0.45, the pooled sensitivity and specificity for the diagnosis of postoperative complications were 0.75 and 0.75, respectively, and the area under the curve was 0.82 (95% confidence interval, 0.78-0.85). CONCLUSION: A high VBQ was associated with a high risk of cage subsidence and screw loosening in patients who underwent degenerative lumbar surgery. The VBQ score could be considered for identifying high-risk patients for further evaluation.

4.
Front Endocrinol (Lausanne) ; 15: 1426490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257899

RESUMEN

Background and aims: Reduced bone mineral density (BMD) and microarchitectural deterioration contribute to increased fracture risk. Although the effects of anti-fracture medications (AFMs) on BMD are well-documented, their impact on bone material properties (BMPs) remains poorly characterized. Accordingly, we conducted a systematic review and meta-analysis to evaluate the effects of AFMs on BMPs. Based on data availability, we further categorized AFMs into anti-resorptives, bisphosphonates alone, and strontium ranelate subgroups to perform additional analyses of BMPs in osteoporotic patients. Methods: We did a comprehensive search of three databases, namely, PubMed, Web of Science, and Google Scholar, using various permutation combinations, and used Comprehensive Meta-Analysis software to analyze the extracted data. Results: The 15 eligible studies (randomized and non-randomized) compared the following: (1) 301 AFM-treated patients with 225 on placebo; (2) 191 patients treated with anti-resorptives with 131 on placebo; (3) 86 bisphosphonate-treated patients with 66 on placebo; and (4) 84 strontium ranelate-treated patients with 70 on placebo. Pooled analysis showed that AFMs significantly decreased cortical bone crystallinity [standardized difference in means (SDM) -1.394] and collagen maturity [SDM -0.855], and collagen maturity in cancellous bone [SDM -0.631]. Additionally, anti-resorptives (bisphosphonates and denosumab) significantly increased crystallinity [SDM 0.387], mineral-matrix ratio [SDM 0.771], microhardness [SDM 0.858], and contact hardness [SDM 0.952] of cortical bone. Anti-resorptives increased mineral-matrix ratio [SDM 0.543] and microhardness [SDM 0.864] and decreased collagen maturity [SDM -0.539] in cancellous bone. Restricted analysis of only bisphosphonate-treated studies showed a significant decrease in collagen maturity [SDM -0.650] in cancellous bone and an increase in true hardness [SDM 1.277] in cortical bone. In strontium ranelate-treated patients, there was no difference in BMPs compared to placebo. Conclusion: Collectively, our study suggests that AFMs improve bone quality, which explains their anti-fracture ability that is not fully accounted for by increased BMD in osteoporosis patients.


Asunto(s)
Conservadores de la Densidad Ósea , Densidad Ósea , Humanos , Huesos/efectos de los fármacos , Huesos/metabolismo , Densidad Ósea/efectos de los fármacos , Conservadores de la Densidad Ósea/uso terapéutico , Conservadores de la Densidad Ósea/farmacología , Difosfonatos/uso terapéutico , Difosfonatos/farmacología , Osteoporosis/complicaciones , Osteoporosis/tratamiento farmacológico , Fracturas Osteoporóticas/prevención & control , Tiofenos/uso terapéutico
5.
Regen Biomater ; 11: rbae095, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346687

RESUMEN

With mechanical strength close to cortical bone, biodegradable and osteopromotive properties, magnesium (Mg)-based implants are promising biomaterials for orthopedic applications. However, during the degradation of such implants, there are still concerns on the potential adverse effects such as formation of cavities, osteolytic phenomena and chronic inflammation. Therefore, to transform Mg-based implants into clinical practice, the present study evaluated the local effects of high-purity Mg screws (HP-Mg, 99.99 wt%) by comparing with clinically approved polylactic acid (PLA) screws in epiphyseal trabecular bone of rabbits. After implantation of screws at the rabbit distal femur, bone microstructural, histomorphometric and biomechanical properties were measured at various time points (weeks 4, 8 and 16) using micro-CT, histology and histomorphometry, micro-indentation and scanning electron microscope. HP-Mg screws promoted peri-implant bone ingrowth with higher bone mass (BV/TV at week 4: 0.189 ± 0.022 in PLA group versus 0.313 ± 0.053 in Mg group), higher biomechanical properties (hardness at week 4: 35.045 ± 1.000 HV in PLA group versus 51.975 ± 2.565 HV in Mg group), more mature osteocyte LCN architecture, accelerated bone remodeling process and alleviated immunoreactive score (IRS of Ram11 at week 4: 5.8 ± 0.712 in PLA group versus 3.75 ± 0.866 in Mg group) as compared to PLA screws. Furthermore, we conducted finite element analysis to validate the superiority of HP-Mg screws as orthopedic implants by demonstrating reduced stress concentration and uniform stress distribution around the bone tunnel, which led to lower risks of trabecular microfractures. In conclusion, HP-Mg screws demonstrated greater osteogenic bioactivity and limited inflammatory response compared to PLA screws in the epiphyseal trabecular bone of rabbits. Our findings have paved a promising way for the clinical application of Mg-based implants.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125035, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39217957

RESUMEN

This study presents a novel methodology for optimizing the number of Raman spectra required per sample for human bone compositional analysis. The methodology integrates Artificial Neural Network (ANN) and Monte Carlo Simulation (MCS). We demonstrate the robustness of ANN in enabling prediction of Raman spectroscopy-based bone quality properties even with limited spectral inputs. The ANN algorithms tailored to individual sex and age groups, which enhance the specificity and accuracy of predictions in bone quality properties. In addition, ANN guided MCS systematically explores the variability and uncertainty inherent in different sample sizes and spectral datasets, leading to the identification of an optimal number of spectra per sample for characterizing human bone tissues. The findings suggest that as low as 2 spectra are sufficient for biochemical analysis of bone, with R2 values between real and predicted values of v1/PO4/Amide I and ∼I1670/I1640 ratios, ranging from 0.60 to 0.89. Our results also suggest that up to 8 spectra could be optimal when balancing other factors. This optimized approach streamlines experimental workflows, reduces data and acquisition costs. Additionally, our study highlights the potential for advancing Raman spectroscopy in bone research through the innovative integration of ANN-guided probabilistic modeling techniques. This research could significantly contribute to the broader landscape of bone quality analyses by establishing a precedent for optimizing the number of Raman spectra with sophisticated computational tools. It also sets a novel platform for future optimization studies in Raman spectroscopy applications in biomedical field.

7.
JBMR Plus ; 8(10): ziae106, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39224571

RESUMEN

Volumetric bone mineral density (vBMD) is commonly assessed using QCT. Although standard vBMD calculation methods require phantom rods that may not be available, internal-reference phantomless (IPL) and direct measurements of Hounsfield units (HU) can be used to calculate vBMD in their absence. Yet, neither approach has been systemically assessed across skeletal sites, and HU need further validation as a vBMD proxy. This study evaluated the accuracy of phantomless methods, including IPL and regression-based phantomless (RPL) calibration using HU to calculate vBMD, compared to phantom-based (PB) methods. vBMD from QCT scans of 100 male post-mortem human subjects (PMHS) was calculated using site-specific PB calibration at multiple skeletal sites throughout the body. A development sample of 50/100 PMHS was used to determine site-specific reference material density for IPL calibration and RPL equations. Reference densities and equations from the development sample were used to calculate IPL and RPL vBMD on the remaining 50/100 PMHS for method validation. PB and IPL/RPL vBMD were not significantly different (p > .05). Univariate regressions between PB and IPL/RPL vBMD were universally significant (p < 0.05), except for IPL Rad-30 (p = 0.078), with a percent difference across all sites of 6.97% ± 5.95% and 5.22% ± 4.59% between PB and IPL/RPL vBMD, respectively. As vBMD increased, there were weaker relationships and larger differences between PB vBMD and IPL/RPL vBMD. IPL and RPL vBMD had strong relationships with PB vBMD across sites (R2 = 97.99, R2 = 99.17%, respectively), but larger residual differences were found for IPL vBMD. As the accuracy of IPL/RPL vBMD varied between sites, phantomless methods should be site-specific to provide values more comparable to PB vBMD. Overall, this study suggests that RPL calibration may better represent PB vBMD compared to IPL calibration, increases the utility of opportunistic QCT, and provides insight into bone quality and fracture risk.

8.
J Clin Densitom ; 27(4): 101522, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39288472

RESUMEN

INTRODUCTION: Reliable peripheral quantitative computed tomography (pQCT) assessment is essential to the accurate longitudinal reporting of bone and muscle quality. However, the between-day reliability of pQCT and the influence of age on outcome reliability is currently unknown. OBJECTIVE: To quantify the same- and between-day reliability of morphological pQCT at proximal and distal segments of the forearm, shank, and thigh, and explore the influence of participant body size, age, and sex on outcome reliability. METHODS: Men and women (49 % female, 18-85 years, n=72-86) completed two consecutive-day pQCT testing sessions, where repeat measurements were conducted on day-one for technical error, and between-day for biological error quantification. Testing was undertaken following best practice body composition testing guidance, including standardized presentation and consistent time-of-day. RESULTS: All measurements of bone were classified as having 'good' to 'excellent' reliability [intraclass correlation coefficient (r=0.786- 0.999], as were measurements of muscle area (ICC r=0.991-0.999) and total fat (r=0.996-0.999). However, between- and same-day muscle density measurements at the thigh and forearm were classified as 'poor' (r=0.476) and 'moderate' (r=0.622), respectively. Likewise, intramuscular fat area at the thigh was classified as 'moderate' (r=0.737) for between-day measurement. Biological error was inflated compared to technical error by an average of 0.4 % for most measurements. Error values tended to increase proportionally with the amount of tissue quantified and males had significantly greater biological error for measurement of distal tibial bone (p<0.002) and trabecular area (p<0.002). Biological error was inflated among older adults for measurement of forearm muscle density (p<0.002). CONCLUSIONS: Most pQCT outcomes can be implemented with confidence, especially outcomes that assess bone area and density at any of the radial, tibial, and femoral sites investigated herein. However, it is important to account for the influence of biological measurement error in further studies, especially for muscle and intramuscular fat outcomes derived by pQCT.

9.
Front Bioeng Biotechnol ; 12: 1439262, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286343

RESUMEN

Introduction: This investigation delves into the mechanical behaviour of titanium dental implants, a preferred choice for tooth replacement due to their superior reliability over alternative materials. The phenomenon of implant loosening, frequently induced by masticatory activities, underscores the significance of surface modification or texturing to bolster the interaction between the implant and bone tissue. This research comprehensively examines the effects of four distinct surface texturing techniques and five varied bone quality conditions on the biomechanical performance of these implants. Methods: The scope of this study is delineated by its focus on implants of diameters 4 mm and 6 mm, with lengths measuring 9 mm and 12 mm respectively. Furthermore, the analysis incorporates the evaluation of four different coatings-hydroxyapatite, HA3TO, HA3Sr, and HA1.5TO1.5Sr-to investigate their efficacy in enhancing the osseointegration process on textured surfaces of dental implants. Results: The experimental design entails the assessment of stress distribution within the implant and its coatings, alongside the strain exerted on the surrounding cancellous bone, under the conditions of an average vertical biting force. A comparative analysis between solid implants and those subjected to surface texturing techniques has been conducted. This comparison elucidates the advantageous microstrain profiles presented by certain textured surfaces, which are deemed more conducive to optimal osseointegration. Discussion: Notably, across all examined textures, the application of hydroxyapatite (HA) and a modified HA composition (HA1.5TO1.5Sr) demonstrates significant improvements in mechanical stability, particularly in scenarios involving weak and very weak bone conditions. This study's findings contribute to the ongoing advancement in dental implant technology, emphasizing the critical role of surface texturing and coating strategies in promoting implant longevity and integration within the biomechanical environment of the human oral cavity.

10.
Anim Nutr ; 18: 340-355, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39290856

RESUMEN

This study was aimed to investigate the effects of dietary calcitriol or quercetin supplementation on eggshell and bone quality of laying hens. In trial 1, 72 Hy-Line Brown layers (80-week-old) with weak-shelled strength (25 to 30 N) were assigned into 4 dietary treatments with 6 replicates of 3 birds and fed a basal diet (4% calcium level) or basal diets supplemented with 0.5% calcium, 5 µg/kg calcitriol or 500 mg/kg quercetin for 4 weeks. In trial 2, 360 Hy-Line Brown layers (60-week-old) were divided into 3 groups with 8 replicates of 15 birds: control group (basal diet), calcitriol group (basal diet + 5 µg/kg calcitriol), and quercetin group (basal diet + 500 mg/kg quercetin). This trial lasted for 12 weeks. The results showed that dietary calcitriol or quercetin improved eggshell quality in both trials (P < 0.05). In trial 2, compared with the control group, both calcitriol and quercetin supplementations improved femoral bone quality, calcium retention of hens and calcium content in uterine fluid at 18.5 h post-oviposition (PO) (P < 0.05), along with enhancing uterine morphology. Compared to the control group, supplemental calcitriol or quercetin up-regulated the relative mRNA expression levels of uterine transient receptor potential cation channel, subfamily V, member 6 (TRPV6) at 8.5 h PO and plasma membrane calcium-ATPase (PMCA), vitamin D receptor (VDR), estrogen receptor alpha (ERα) at 18.5 h PO (P < 0.05), but down-regulated the uterine caspase 3 (CASP3) relative mRNA expression level at 8.5 h PO (P < 0.05). Meanwhile, the femoral relative mRNA expression levels of tartrate-resistant acid phosphatase (TRAP) (up-regulated at 8.5 and 18.5 h PO) and alkaline phosphatase (ALP) (up-regulated at 8.5 h PO but down-regulated at 18.5 h PO) were also affected by calcitriol or quercetin supplementation (P < 0.05). Compared to the calcitriol, quercetin increased hen-day egg production and femoral medullary bone volume/bone tissue volume but reduced femoral stiffness (P < 0.05), which were accompanied by increased relative mRNA expression levels of uterine TRPV6, estrogen receptor beta (ERß) at 18.5 h PO (P < 0.05). Overall, both dietary calcitriol and quercetin could improve eggshell and bone quality by modulating calcium metabolism of aged layers. Compared to calcitriol, dietary quercetin up-regulated the expression of uterine calcium transporters, without affecting eggshell quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA