Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140702

RESUMEN

Nuclear Ca²âº signaling is crucial for symbiotic interactions between legumes and beneficial microbes, such as rhizobia and arbuscular mycorrhizal fungi. Key to generating repetitive nuclear Ca²âº oscillations are the ion channels DMI1 and CNGC15. Despite over 20 years of research on symbiotic nuclear Ca²âº spiking, important questions remain, including the exact function of the DMI1 channel. This review highlights recent developments that have filled knowledge gaps regarding the regulation of CNGC15 and its interplay with DMI1. We also explore new insights into the evolutionary conservation of DMI1-induced symbiotic nuclear Ca²âº oscillations and the roles of CNGC15 and DMI1 beyond symbiosis, such as in nitrate signaling, and discuss new questions this raises. As we delve deeper into the regulatory mechanisms and evolutionary history of these ion channels, we move closer to fully understanding the roles of nuclear Ca²âº signaling in plant life.

2.
Proc Natl Acad Sci U S A ; 119(34): e2205920119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35972963

RESUMEN

Nuclear Ca2+ oscillations allow symbiosis signaling, facilitating plant recognition of beneficial microsymbionts, nitrogen-fixing rhizobia, and nutrient-capturing arbuscular mycorrhizal fungi. Two classes of channels, DMI1 and CNGC15, in a complex on the nuclear membrane, coordinate symbiotic Ca2+ oscillations. However, the mechanism of Ca2+ signature generation is unknown. Here, we demonstrate spontaneous activation of this channel complex, through gain-of-function mutations in DMI1, leading to spontaneous nuclear Ca2+ oscillations and spontaneous nodulation, in a CNGC15-dependent manner. The mutations destabilize a hydrogen-bond or salt-bridge network between two RCK domains, with the resultant structural changes, alongside DMI1 cation permeability, activating the channel complex. This channel complex was reconstituted in human HEK293T cell lines, with the resultant calcium influx enhanced by autoactivated DMI1 and CNGC15s. Our results demonstrate the mode of activation of this nuclear channel complex, show that DMI1 and CNGC15 are sufficient to create oscillatory Ca2+ signals, and provide insights into its native mode of induction.


Asunto(s)
Canales de Calcio , Señalización del Calcio , Medicago truncatula , Proteínas de Plantas , Nodulación de la Raíz de la Planta , Raíces de Plantas , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Núcleo Celular/metabolismo , Mutación con Ganancia de Función , Regulación de la Expresión Génica de las Plantas , Células HEK293 , Humanos , Medicago truncatula/genética , Medicago truncatula/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Nodulación de la Raíz de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Simbiosis/fisiología
3.
Plant Signal Behav ; 16(10): 1938441, 2021 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-34180337

RESUMEN

Nitrate signaling integrates and coordinates the expression of a wide range of genes, metabolic pathways and ultimately, plant growth and development. Calcium signaling is proved to be involved in the primary nitrate response pathway. However, it is much less understood how calcium signaling mediates nitrate sensing and responses from the extracellular space to cytoplasm, then to the nucleus. In this review, we describe how transceptor-channel complex (cyclic nucleotide-gated channel protein 15 interacting with nitrate transceptor, CNGC15-NRT1.1), calcineurin B-like proteins (CBLs, CBL1, CBL9), CBL-interacting protein kinases (CIPKs), phospholipase C (PLC) and calcium-dependent protein kinases (CDPKs, also CPKs), acting as key players, complete a potential backbone of the nitrate-signaling pathway, from the plasma membrane to the nucleus. NRT1.1 together with CBL1/9-CIPK23 and CBL-CIPK8 links the NO3- signaling to cytoplasmic and nuclear regulators and triggers downstream NO3- responses. PLCs and inositol 1, 4, 5-triphosphate (IP3) connect NO3- signaling and cytoplasmic Ca2+ signature. CPK10/30/32 fill the gap between NRT1.1 and NIN-like protein (NLP) transcription factors. The arabidopsis nitrate regulated1 (ANR1) is induced from the endosome by the Ca2+-CPKs-NLPs signaling pathway activated by the unphosphorylated form of NRT1.1 (NRT1.1 T101A) at high nitrate condition. Understanding how calcium signaling interconnects the upstream nitrate sensor complex with downstream multiple sensors of the nitrate-signaling pathway is key to completing the nutrient-growth regulatory networks.


Asunto(s)
Arabidopsis/metabolismo , Señalización del Calcio , Nitratos/metabolismo , Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/metabolismo , Predicción , Proteínas de Plantas/metabolismo , Canales de Potasio/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA