Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
Eur J Med Chem ; 278: 116805, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39232360

RESUMEN

The calcium release activated calcium (CRAC) channel is highly expressed in T lymphocytes and plays a critical role in regulating T cell proliferation and functions including activation of the transcription factor nuclear factor of activated T cells (NFAT), cytokine production and cytotoxicity. The CRAC channel consists of the Orai pore subunit and STIM (stromal interacting molecule) endoplasmic reticulum calcium sensor. Loss of CRAC channel mediated calcium signaling has been identified as an underlying cause of severe combined immunodeficiency (SCID), leading to drastically weakened immunity against infections. Gain-of-function mutations in Orai and STIM have been associated with tubular aggregated myopathy (TAM), a skeletal muscle disease. While a number of small molecules have shown activity in inhibiting the CRAC signaling pathway, the usefulness of those tool compounds is limited by their off-target activity against TRPM4 and TRPM7 ion channels, high lipophilicity, and a lack of understanding of their mechanism of action. We report structure-activity relationship (SAR) studies that resulted in the characterization of compound 4k [1-(cyclopropylmethyl)-N-(3-fluoropyridin-4-yl)-1H-indazole-3-carboxamie] as a fast onset, reversible, and selective CRAC channel blocker. 4k fully blocked the CRAC current (IC50: 4.9 µM) and the nuclear translocation of NFAT at 30 and 10 µM, respectively, without affecting the electrophysiological function of TRPM4 and TRPM7 channels. Computational modeling appears to support its direction binding to Orai proteins that form the transmembrane CRACchannel.

2.
Cell Calcium ; 123: 102947, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39226841

RESUMEN

S100A1, a calcium-binding protein, plays a crucial role in regulating Ca2+ signaling pathways in skeletal and cardiac myocytes via interactions with the ryanodine receptor (RyR) to affect Ca2+ release and contractile performance. Biophysical studies strongly suggest that S100A1 interacts with RyRs but have been inconclusive about both the nature of this interaction and its competition with another important calcium-binding protein, calmodulin (CaM). Thus, high-resolution cryo-EM studies of RyRs in the presence of S100A1, with or without additional CaM, were needed. The elegant work by Weninger et al. demonstrates the interaction between S100A1 and RyR1 through various experiments and confirms that S100A1 activates RyR1 at sub-micromolar Ca2+ concentrations, increasing the open probability of RyR1 channels.

3.
Discov Med ; 36(187): 1678-1691, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190383

RESUMEN

BACKGROUND: Remodeling of vascular smooth muscle cells (VSMCs), as a pathological hallmark of cardiovascular diseases, is related to the molecular rewiring of Calcium signaling, which induces upregulation of stromal interaction molecule (STIM) proteins. This study analyzed the influence of STIM1 proteins on the remodeling of VSMCs in atherosclerosis (AS). METHODS: After oxidized low-density lipoprotein (ox-LDL) treatment and transfection, VSMC viability, migration, and invasion were separately measured using Cell Counting Kit-8, Scratch assay, and Transwell assay. An animal AS model was constructed, and histological analysis via hematoxylin-eosin staining was conducted on the aorta. RESULTS: Ox-LDL promoted expression of STIM1 and Orai calcium release-activated calcium modulator 1 (Orai1). STIM1 or Orai1 downregulation suppressed viability, migration, invasion, and phenotypic switching of ox-LDL-treated VSMCs, whereas STIM1 or Orai1 upregulation had opposite effects. Orai1 level was upregulated by STIM1 overexpression. Orai1 silencing reversed the effects of STIM1 overexpression in VSMCs. STIM1 deficiency alleviated AS and regulated expression of Orai1 and phenotypic switch-related factors in vivo. CONCLUSION: STIM1 deficiency suppresses viability, migration, invasion, and phenotypic switching of ox-LDL-induced VSMCs and alleviates AS by inhibiting Orai1.


Asunto(s)
Aterosclerosis , Movimiento Celular , Lipoproteínas LDL , Músculo Liso Vascular , Miocitos del Músculo Liso , Proteína ORAI1 , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 1/genética , Aterosclerosis/patología , Aterosclerosis/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/metabolismo , Animales , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/antagonistas & inhibidores , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Lipoproteínas LDL/metabolismo , Movimiento Celular/efectos de los fármacos , Humanos , Masculino , Ratones , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Remodelación Vascular/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética
4.
Mol Ther Nucleic Acids ; 35(3): 102259, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39071953

RESUMEN

More than 700 pathogenic or probably pathogenic variations have been identified in the RYR1 gene causing various myopathies collectively known as "RYR1-related myopathies." There is no treatment for these myopathies, and gene therapy stands out as one of the most promising approaches. In the context of a dominant form of central core disease due to a RYR1 mutation, we aimed at showing the functional benefit of inactivating specifically the mutated RYR1 allele by guiding CRISPR-Cas9 cleavages onto frequent single-nucleotide polymorphisms (SNPs) segregating on the same chromosome. Whole-genome sequencing was used to pinpoint SNPs localized on the mutant RYR1 allele and identified specific CRISPR-Cas9 guide RNAs. Lentiviruses encoding these guide RNAs and the SpCas9 nuclease were used to transduce immortalized patient myoblasts, inducing the specific deletion of the mutant RYR1 allele. The efficiency of the deletion was assessed at DNA and RNA levels, and at the functional level after monitoring calcium release induced by the stimulation of the RyR1-channel. This study provides in cellulo proof of concept regarding the benefits of mutant RYR1 allele deletion, in the case of a dominant RYR1 mutation, from both a molecular and functional perspective, and could apply potentially to 20% of all patients with a RYR1 mutation.

5.
Biomedicines ; 12(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39061953

RESUMEN

In this study, we present in vitro actions of pure commercial preparations of oxidized and/or dehydrated metabolites of cholesterol (OS) identified in the lipid fraction of Fraction B (FB) prepared from a catfish skin preparation on calcium transients and on the formation of human neutrophil extracellular traps (NETs). These investigations are part of an ongoing effort to understand the important roles these compounds play as components of FB when FB is applied to accelerate the healing of wounds and the healing of highly infected non-healing diabetic foot ulcers, without the use of antibiotics. Our aim was to determine potential therapeutic interventions for various disease states. Our results reveal interesting findings, demonstrating specific actions of the individual compounds. Compounds 7α-hydroxy-cholesterol (S3), Cholestane-3,5,6-triol (S5), 5-cholesten-3ß-ol-7-one (S8) and Cholesta-3,5 dien-7-one (S10) are inhibitory, while Cholesterol 5ß,6ß-epoxide (S4) and 5α-cholestane-3,6-dione (S11) activate the response for calcium influx in human neutrophils. A somewhat similar response is observed in dHL60 cell lines, where S3, S5, S7, S8, and cholesta-2,4-diene (S14) inhibit the calcium influx, although S4, S10, and S11 activate the response in this cell line. Furthermore, we observed a relationship between actions against NETosis and calcium transients. Interestingly, relative to the vehicle control, S3, Cholesta-3,5 diene (S9), and S14 appeared to significantly stimulate DNA release (NETosis), while S2, 7α-hydroxy-cholesterol (S6) and cholesta-3,5 dien-7-one (S10) caused lesser stimulation. We provide the IC50 activities for each compound tested in each assay. Calcium influx and NETs formation (NETosis) correlate with diseases exacerbation. These findings offer valuable insights into the potential therapeutic applications of individual OS for various diseases, highlighting their importance in future interventions.

6.
Circ Res ; 135(5): 554-574, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011635

RESUMEN

BACKGROUND: Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy. METHODS: Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging. RESULTS: We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca2+-induced Ca2+ release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca2+ channels and ryanodine receptor Ca2+ release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components. CONCLUSIONS: Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.


Asunto(s)
Cardiomegalia , Disferlina , Ratones Noqueados , Miocitos Cardíacos , Retículo Sarcoplasmático , Animales , Disferlina/metabolismo , Disferlina/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Humanos , Ratones , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología , Ratones Endogámicos C57BL , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proliferación Celular , Células Cultivadas , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Quinasa de Cadena Ligera de Miosina
7.
Rev. neurol. (Ed. impr.) ; 78(7): 179-183, Ene-Jun, 2024. mapas, tab
Artículo en Español | IBECS | ID: ibc-232185

RESUMEN

Introducción: Las miopatías relacionadas con el receptor de rianodina de tipo 1 (RYR1-RM) constituyen la categoría más frecuente de miopatías congénitas. La introducción de técnicas genéticas ha cambiado el paradigma diagnóstico y sugiere la prioridad de estudios moleculares sobre biopsias. Este estudio busca explorar las características clinicoepidemiológicas de pacientes con variantes del gen RYR1 en un hospital pediátrico de tercer nivel con el objetivo de ampliar la comprensión de la correlación genotipo-fenotipo en las RYR1-RM. Pacientes y métodos: Estudio observacional, descriptivo y transversal, de pacientes menores de 14 años con síntomas miopáticos y variantes potencialmente patógenas del gen RYR1 entre enero de 2013 y diciembre de 2023, considerando variables como sexo, edad, desarrollo motor, variantes genéticas, patrón de herencia y otras manifestaciones. Todas las variables fueron tabuladas frente a la variante genética. Resultados: De los nueve pacientes incluidos, la incidencia estimada fue de aproximadamente 1/10.000 nacidos vivos. La mediana en el momento del diagnóstico fue de 6 años, con una variabilidad fenotípica significativa. Se observaron síntomas comunes, como debilidad y retraso del desarrollo motor. Las variantes genéticas afectaron al gen RYR1 de manera diversa, y hubo cinco variantes previamente no descritas. La biopsia muscular se realizó en cinco pacientes, en dos de ellos de tipo miopatía central core; en uno, multiminicore; en uno, desproporción congénita de fibras; y en otro, de patrón inespecífico. Conclusiones: Las RYR1-MR de nuestra serie ofrecieron variabilidad fenotípica y de afectación, con una incidencia en nuestra área de en torno a 1/10.000 recién nacidos. La mayoría de los casos fueron varones, de variantes missense dominantes. Aportamos cinco variantes genéticas no descritas con anterioridad.(AU)


Introduction: Ryanodine receptor type 1-related myopathies (RYR1-RM) represent the most prevalent category of congenital myopathies. The introduction of genetic techniques has shifted the diagnostic paradigm, suggesting the prioritization of molecular studies over biopsies. This study aims to explore the clinical and epidemiological characteristics of patients with RYR1 gene variants in a tertiary pediatric hospital, intending to enhance the understanding of the genotype-phenotype correlation in RYR1-RM. Patients and methods: An observational, descriptive, and cross-sectional study was conducted on patients under 14 years old with myopathic symptoms and potentially pathogenic RYR1 gene variants from January 2013 to December 2023. Variables such as gender, age, motor development, genetic variants, inheritance pattern, and other manifestations were considered. All variables were tabulated against the genetic variant. Results: Of the nine included patients, the estimated incidence was approximately 1 in 10,000 live births. The median age at diagnosis was six years, with significant phenotypic variability. Common symptoms such as weakness and delayed motor development were observed. Genetic variants affected the RYR1 gene diversely, including five previously undescribed variants. Muscle biopsy was performed in five patients, revealing central core myopathy in two, multiminicore in one, congenital fiber-type disproportion in one, and a nonspecific pattern in another.(AU)


Asunto(s)
Humanos , Masculino , Femenino , Niño , Enfermedades Musculares/clasificación , Canal Liberador de Calcio Receptor de Rianodina , Incidencia , Patrón de Herencia , Epidemiología Descriptiva , Estudios Transversales , Estudios de Asociación Genética
8.
Cogn Neurodyn ; 18(3): 1285-1305, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38826668

RESUMEN

The source and dynamics of calcium is the key factor that regulates dendritic integration. Apart from the voltage-gated and ligand-gated calcium influx, an important source of calcium is from inner store of endoplasmic reticulum with a regenerative process of calcium-induced calcium release (CICR). To trigger this process, inositol 1,4,5-trisphosphate (IP3) and calcium are needed to satisfy certain requirements. The aim of our paper is to investigate how the CICR depends on the dynamics of membrane potential. We utilize one dimensional dendritic model to calculate membrane potential by Nernst-Planck Equation (NPE) and cable model and Pure Diffusion (PD) model, computational simulations are carried out to inject the calcium influx by synaptic stimulation and to predict subsequent CICR and calcium wave propagation. Our results demonstrate that CICR initiation and calcium wave propagation have much difference between electro-diffusion process of NPE and cable model. We find that cable model has lower threshold of IP3 stimulation to trigger CICR but is more difficult for calcium propagation than NPE, PD model requires even higher threshold of IP3 to initiate CICR process and calcium duration is shorter than NPE; the regenerative calcium wave propagates with faster speed in NPE than that in cable model and in PD model. Our work addresses the important role of electro-diffusion dynamics of charged ions in regulating CICR process in dendritic structure; and provides theoretical predictions for neurological process which requires sustaining calcium for downstream signaling processes.

9.
Cureus ; 16(5): e60040, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38854283

RESUMEN

INTRODUCTION: Dental caries in primary teeth remains a critical public health challenge globally. Although fluoride toothpaste is the standard care for remineralization, its efficacy is limited by the requirement for bioavailable calcium and phosphate ions and its diminished performance on irregular dental surfaces. This study evaluates natural alternatives for dental care, focusing on their mineralizing potential compared to fluoride. AIM: This study aims to assess and compare the efficacy of remineralization by flaxseed paste and chicken eggshell paste to that of standard fluoride toothpaste on artificially demineralized primary teeth. MATERIALS AND METHODS: We utilized an in vitro model, creating standardized white spot lesions on extracted primary teeth to simulate early carious lesions. The teeth were treated with preparations of flaxseed paste, chicken eggshell paste, and fluoride toothpaste. Remineralization was quantitatively analyzed using scanning electron microscopy-energy dispersive x-ray analysis (SEM-EDX) conducted with a high-resolution scanning electron microscope (HRSEM) from Thermoscientific Apreo S at Sir C V Raman Research Park, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu. RESULTS: Quantitative analysis revealed that both flaxseed and chicken eggshell pastes not only met but, in some cases, exceeded the remineralization performance of fluoride toothpaste. Significant differences were observed in the deposition of calcium and phosphate ions on the lesion surfaces. CONCLUSION: The study conducted at the Department of Pediatric and Preventive Dentistry at SRM Dental College, Kattankulathur, confirms the potential of flaxseed and chicken eggshell pastes as viable, cost-effective, and accessible alternatives to fluoride toothpaste for the remineralization of enamel in primary teeth. These findings support the inclusion of these natural agents in oral hygiene regimens and underscore the importance of further research into holistic approaches for the prevention and treatment of dental caries in children.

10.
Int Heart J ; 65(3): 580-585, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825499

RESUMEN

Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia (CPVT). Conversely, RyR2 loss-of-function mutations cause a new disease entity, termed calcium release deficiency syndrome (CRDS), which may include RYR2-related long QT syndrome (LQTS). Importantly, unlike CPVT, patients with CRDS do not always exhibit exercise- or epinephrine-induced ventricular arrhythmias, which precludes a diagnosis of CRDS. Here we report a boy and his father, who both experienced exercise-induced cardiac events and harbor the same RYR2 E4107A variant. In the boy, an exercise stress test (EST) and epinephrine provocation test (EPT) did not induce any ventricular arrhythmias. QTc was slightly prolonged (QTc: 474 ms), and an EPT induced QTc prolongation (QTc-baseline: 466 ms, peak: 532 ms, steady-state: 527 ms). In contrast, in his father, QTc was not prolonged (QTc: 417 ms), and neither an EST nor EPT induced QTc prolongation. However, an EST induced multifocal premature ventricular contraction (PVC) bigeminy and bidirectional PVC couplets. Thus, they exhibited distinct clinical phenotypes: the boy exhibited LQTS (or CRDS) phenotype, whereas his father exhibited CPVT phenotype. These findings suggest that, in addition to the altered RyR2 function, other unidentified factors, such as other genetic, epigenetic, and environmental factors, and aging, may be involved in the diverse phenotypic manifestations. Considering that a single RYR2 variant can cause both CPVT and LQTS (or CRDS) phenotypes, in cascade screening of patients with CPVT and CRDS, an EST and EPT are not sufficient and genetic analysis is required to identify individuals who are at increased risk for life-threatening arrhythmias.


Asunto(s)
Síndrome de QT Prolongado , Fenotipo , Canal Liberador de Calcio Receptor de Rianodina , Taquicardia Ventricular , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Masculino , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/diagnóstico , Taquicardia Ventricular/genética , Taquicardia Ventricular/diagnóstico , Electrocardiografía , Linaje , Adulto , Prueba de Esfuerzo , Mutación
11.
Cell Biochem Biophys ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816653

RESUMEN

OBJECTIVE: To explore the molecular mechanisms of tumor-associated calcium signal transduction factor 2 (TROP2) affecting the occurrence and development of triple-negative breast cancer (TNBC). METHODS: The TCGA database, immunohistochemical staining, and qRT-PCR were used to analyze the expression of TROP2 in TNBC tissues and cells. The protein expressions of TROP2 and inositol 1,4,5-trisphosphate receptor (IP3R) after TROP2 knockdown were detected by western blot (WB). Cell proliferation was detected by CCK8 and colony formation assay, Annexin V-APC/PI flow cytometry was used to detect apoptosis, and intracellular calcium ion (Ca2+) was detected by flow cytometry with Fura 2-AM fluorescent probe. Finally, the morphological changes of the endoplasmic reticulum (ER) were observed by transmission electron microscopy, and the expression of ER stress (ERS)-related proteins was detected by WB and immunofluorescence staining. RESULTS: TROP2 was up-regulated in TNBC tumor tissues and cells. Silencing TROP2 decreased the proliferation rate and clone formation number, and increased the apoptosis rate and the Ca2+ level in TNBC cells. These phenomena were reversed after the addition of 2-APB. In addition, after TROP2 knockdown, the expressions of IP3R and ERS-related proteins were up-regulated, the ER was cystic dilated, and ERS was activated. And the addition of 2-APB significantly inhibited the activation of ERS induced by TROP2 knockdown. CONCLUSION: TROP2 regulated the proliferation and apoptosis of TNBC cells through a Ca2+-dependent ERS signaling pathway.

12.
Gene ; 923: 148563, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-38754569

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is a special type of cardiovascular disease, termed as a situation of abnormal myocardial structure and function that occurs in diabetic patients. However, the most fundamental mechanisms of DCM have not been fully explicated, and useful targets for the therapeutic strategies still need to be explored. METHODS: In the present study, we combined bioinformatics analysis and in vitro experiments throughout the process of DCM. Differentially Expressed Genes (DEGs) analysis was performed and the weighted gene co-expression network analysis (WGCNA) was constructed to determine the crucial genes that were tightly connected to DCM. Additionally, Functional enrichment analysis was conducted to define biological pathways. To identify the specific molecular mechanism, the human cardiomyocyte cell line (AC16) was stimulated by high glucose (HG, 50 mM D-glucose) and used to imitate DCM condition. Then, we tentatively examined the effect of high glucose on cardiomyocytes, the expression levels of crucial genes were further validated by in vitro experiments. RESULTS: Generally, NPPA, IGFBP5, SERPINE1, and C3 emerged as potential therapeutic targets. Functional enrichment analysis performed by bioinformatics indicated that the pathogenesis of DCM is mainly related to heart muscle contraction and calcium (Ca2+) release activation. In vitro, we discovered that high glucose treatment induced cardiomyocyte injury and exacerbated mitochondrial dysfunction remarkably. CONCLUSION: Our research defined four crucial genes, as well as determined that mitochondrial function impairment compromises calcium homeostasis ultimately resulting in contractile dysfunction is a central contributor to DCM progression. Hopefully, this study will offer more effective biomarkers for DCM diagnosis and treatment.


Asunto(s)
Cardiomiopatías Diabéticas , Glucosa , Miocitos Cardíacos , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Línea Celular , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Biología Computacional/métodos , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Mitocondrias/metabolismo , Mitocondrias/genética , Calcio/metabolismo
13.
Mol Biotechnol ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461180

RESUMEN

Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary disorder with complex causes. Calcium channel blockers have long been used in its treatment. Our study aimed to validate experimental results showing increased calcium ion concentration in PAH patients. We investigated the impact of genes related to calcium channel regulation on PAH development and developed an accurate diagnostic model. Clinical trial data from serum of 18 healthy individuals and 18 patients with PAH were retrospectively analyzed. Concentrations of calcium and potassium ions were determined and compared. Datasets were retrieved, selecting genes associated with calcium ion release. R packages processed the datasets, filtering 174 common genes, and conducting Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Six hub genes were identified, and nomogram and logistic regression prediction models were constructed. Random forest filtered cross genes, and a diagnostic model was developed and validated using an artificial neural network. The 174 intersection genes related to calcium ions showed significant correlations with biological processes, cellular components, and molecular functions. Six key genes were obtained by constructing a protein-protein interaction network. A diagnostic model with high accuracy (> 90%) and diagnostic capability (AUC = 0.98) was established using a neural network algorithm. This study validated the experimental results, identified key genes associated with calcium ions, and developed a highly accurate diagnostic model using a neural network algorithm. These findings provide insights into the role of calcium release genes in PAH and demonstrate the potential of the diagnostic model for clinical application. However, due to limitations in sample size and a lack of prognosis data, the regulatory mechanisms of calcium ions in PAH patients and their impact on the clinical prognosis of PAH patients still need further exploration in the future.

14.
Contact (Thousand Oaks) ; 7: 25152564241231092, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356482

RESUMEN

All living organisms need to respond appropriately to changes in the extracellular milieu. Cellular mechanisms that enable such responses evolved in parallel with organismal complexity and intracellular Ca2+ signaling is one such mechanism where extracellular signals received at the cell membrane communicate with endoplasmic reticular stores of Ca2+, to stimulate appropriate Ca2+-mediated changes in cellular physiology. The amplitude and dynamics of endoplasmic reticulum (ER)-Ca2+ release in response to extracellular signals determines the nature of the cellular response. An understanding of how ER-Ca2+ channels might regulate cellular Ca2+ signaling in different cell types is lacking. In a recent paper, this question has been addressed in the context of neurons ( Chakraborty et al., 2023) and the implications of these new findings are discussed here.

16.
Methods Mol Biol ; 2766: 191-198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38270880

RESUMEN

To achieve the most accurate assessment of functional Ca2+ channel or modulator properties and their regulation, a patch-clamp technique to record membrane currents is required. This technique has wide applications ranging from recording the activity of native channels in their natural environment to that of recombinant channels expressed in heterologous cells. This chapter introduces the methods that have been used for the detection of calcium release-activated calcium (CRAC) currents, one of the store-operated calcium entry pathways, in human primary T cells. This standard protocol is for laboratories already equipped with a full patch-clamp set-up or for investigators collaborating with laboratories experienced in patch clamp.


Asunto(s)
Calcio , Ambiente , Humanos , Transporte Iónico , Laboratorios , Técnicas de Placa-Clamp
17.
Foods ; 13(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38254528

RESUMEN

Two fermenters, Lactobacillus acidophilus (LA) and the active dry yellow wine yeast (HY), were utilized to ferment cattle bones in order to release calcium. The influences of fermenters and the fermentation process on the calcium release capacity, particle properties, morphology, and chemical composition of bone powders were assessed, and the underlying mechanism was discussed. The results showed that LA had a better capacity of acid production than yeast, and therefore released more calcium during the fermentation of bone powders. The released calcium in the fermentation broth mainly existed in the forms of free Ca2+ ions, organic acid-bound calcium and a small amount of calcium-peptide chelate. For bone powders, the fermentation induced swollen bone particles, increased particle size, and significant changes of the internal chemical structure. Therefore, fermentation has a great potential in the processing of bone-derived products, particularly to provide new ideas for the development of calcium supplement products.

18.
J Physiol ; 602(8): 1509-1518, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36866974

RESUMEN

Increasing evidence suggests that simply reducing ß-amyloid (Aß) plaques may not significantly affect the progression of Alzheimer's disease (AD). There is also increasing evidence indicating that AD progression is driven by a vicious cycle of soluble Aß-induced neuronal hyperactivity. In support of this, it has recently been shown that genetically and pharmacologically limiting ryanodine receptor 2 (RyR2) open time prevents neuronal hyperactivity, memory impairment, dendritic spine loss and neuronal cell death in AD mouse models. By contrast, increased RyR2 open probability (Po) exacerbates the onset of familial AD-associated neuronal dysfunction and induces AD-like defects in the absence of AD-causing gene mutations. Thus, RyR2-dependent modulation of neuronal hyperactivity represents a promising new target for combating AD.

19.
Trends Mol Med ; 30(1): 25-36, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37957056

RESUMEN

Hippocampal synaptic plasticity is widely considered the cellular basis of learning and spatial memory processes. This article highlights the central role of Ca2+ release from the endoplasmic reticulum (ER) in hippocampal synaptic plasticity and hippocampus-dependent memory in health and disease. The key participation of ryanodine receptor (RyR) channels, which are the principal Ca2+ release channels expressed in the hippocampus, in these processes is emphasized. It is proposed that the increased neuronal oxidative tone displayed by hippocampal neurons during aging or Alzheimer's disease (AD) leads to excessive activation of RyR-mediated Ca2+ release, a process that is highly redox-sensitive, and that this abnormal response contributes to and aggravates these deleterious conditions.


Asunto(s)
Enfermedad de Alzheimer , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Señalización del Calcio , Plasticidad Neuronal , Hipocampo , Enfermedad de Alzheimer/etiología
20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1023866

RESUMEN

AIM:To investigate the influence of fat mass and obesity-associated(Fto)gene on the aberrant contraction of aortic smooth muscle in diabetes mellitus(DM)mice,and to explore the mechanism of Fto gene underlying the calcium regulation.METHODS:Smooth muscle-specific Fto gene knockout(FtoSMKO)mice were generated using Cre-loxP technology.The experiment involved 3 groups of mice:wild-type(WT)group,DM model group and FtoSMKO-DM group,with 15 mice in each group.In DM group and FtoSMKO-DM group,type 1 DM was induced by intraperitoneal injec-tion of streptozotocin.The mice in WT group were injected with equal volume of citric acid-sodium citrate buffer solution.The influences of different drugs on the contraction responses of aortic smooth muscle in mice were analyzed using a multi-myograph system.The expression level of FTO protein in the aortic tissues was detected by Western blot.RESULTS:(1)Compared with WT mice,the expression levels of FTO protein in the aortic tissues of DM mice were significantly in-creased(P<0.01).(2)The expression level of FTO protein in smooth muscle was significantly decreased after knockout of Fto gene(P<0.01).Compared with WT group,the mice in DM group exhibited a significant decrease in body weight and a marked increase in fasting blood glucose level(P<0.05).There were no noticeable differences in body weight or fasting blood glucose level between FtoSMKO-DM group and DM group(P>0.05).(3)The contraction responses of aortic smooth muscle in DM group were substantially increased by phenylephrine compared with WT group.Specifically,vaso-constriction responses mediated by non-L-type calcium channels and store-operated calcium channels(SOCC)were signifi-cantly enhanced in DM group.In addition,the responses mediated by inositol 1,4,5-trisphosphate receptors(IP3R),which facilitate calcium release from the sarcoplasmic reticulum,were significantly enhanced.However,the responses mediated by caffeine-activated ryanodine receptors(RyR),which also facilitate calcium release from the sarcoplasmic re-ticulum,were significantly inhibited(P<0.05).(4)Compared with DM group,the phenylephrine-induced contraction re-sponses of aortic smooth muscle in FtoSMKO-DM group were greatly weakened(P<0.05).In particular,the vasoconstriction responses mediated by non-L-type calcium channels and SOCC in FtoSMKO-DM group were greatly suppressed(P<0.05),while those mediated by caffeine-activated RyR were dramatically boosted(P<0.05).However,IP3R-mediated responses were not affected(P>0.05).CONCLUSION:Smooth muscle-specific Fto gene knockout suppresses contractile hyperre-sponsiveness in the aortic smooth muscle of DM mice,which may be attributed to involvement of FTO protein in calcium regulation in the vascular smooth muscle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA