Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.361
Filtrar
1.
Biomaterials ; 312: 122709, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39094521

RESUMEN

Sonodynamic therapy (SDT) relies heavily on the presence of oxygen to induce cell death. Its effectiveness is thus diminished in the hypoxic regions of tumor tissue. To address this issue, the exploration of ultrasound-based synergistic treatment modalities has become a significant research focus. Here, we report an ultrasonic cavitation effect enhanced sonodynamic and 1208 nm photo-induced cancer treatment strategy based on thermoelectric/piezoelectric oxygen-defect bismuth oxychloride nanosheets (BNs) to realize the high-performance eradication of tumors. Upon ultrasonic irradiation, the local high temperature and high pressure generated by the ultrasonic cavitation effect combined with the thermoelectric and piezoelectric effects of BNs create a built-in electric field. This facilitates the separation of carriers, increasing their mobility and extending their lifetimes, thereby greatly improving the effectiveness of SDT and NIR-Ⅱ phototherapy on hypoxia. The Tween-20 modified BNs (TBNs) demonstrate ∼88.6 % elimination rate against deep-seated tumor cells under hypoxic conditions. In vivo experiments confirm the excellent antitumor efficacy of TBNs, achieving complete tumor elimination within 10 days with no recurrences. Furthermore, due to the high X-ray attenuation of Bi and excellent NIR-Ⅱ absorption, TBNs enable precise cancer diagnosis through photoacoustic (PA) imaging and computed tomography (CT).


Asunto(s)
Bismuto , Neoplasias de la Mama , Oxígeno , Terapia por Ultrasonido , Bismuto/química , Femenino , Animales , Neoplasias de la Mama/terapia , Terapia por Ultrasonido/métodos , Oxígeno/química , Ratones , Ratones Endogámicos BALB C , Humanos , Línea Celular Tumoral , Rayos Infrarrojos , Nanoestructuras/química , Fototerapia/métodos
2.
Int Neurourol J ; 28(3): 196-206, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39363410

RESUMEN

PURPOSE: Little is known about the soft tissue destruction by holmium laser clinically used for holmium laser enucleation of the prostate (HoLEP), subject to the distance between the laser fiber tip and the tissue surface. We aimed to investigate the impact of the distance between the laser fiber tip and the phantom surface (DLP) on a soft tissue phantom (STP) in relation to the surgical modes of HoLEP. METHODS: STP responses to the laser pulses produced by a commercial holmium:yttrium aluminum garnet (Holmium:YAG) laser at an output setting 2 J were observed at different values of the DLP (0, 1, 2, 3, and 4 mm) to look at (1) the single laser pulse-induced cavitation bubble and its penetration into the STP, (2) the STP destruction by a single pulse, (3) the STP destruction by 60 pulses repeated at 12 Hz, and (4) the thermal effect by the multiple pulses visualized on a thermosensitive bovine serum albumin (BSA) STP. RESULTS: We observed that the laser pulse produced a heated gas bubble in water centered at the laser fiber tip. The bubble shape depended on the DLP. The bubble completely penetrated into the STP at the DLP of 0 mm and the penetration decreased with the DLP. The size of the destruction of the STP by the laser pulses was shown to decrease as the DLP increased. Test with the BSA STP showed that, at the DLP of 3 mm, the destruction became insignificant while the thermal effects were still effective. CONCLUSION: We illustrated that soft tissue destruction by the Holmium:YAG laser is associated with cavitation effects. We provide for the first time experimental evidence for various surgical modes in HoLEP such as incision and hemostasis in relation to the DLP.

3.
Acta Biomater ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368720

RESUMEN

We introduce a method utilizing single laser-generated cavitation bubbles to stimulate cellular mechanotransduction in dermal fibroblasts embedded within 3D hydrogels. We demonstrate that fibroblasts embedded in either amorphous or fibrillar hydrogels engage in Ca2+ signaling following exposure to an impulsive mechanical stimulus provided by a single 250µm diameter laser-generated cavitation bubble. We find that the spatial extent of the cellular signaling is larger for cells embedded within a fibrous collagen hydrogel as compared to those embedded within an amorphous polyvinyl alcohol polymer (SLO-PVA) hydrogel. Additionally, for fibroblasts embedded in collagen, we find an increased range of cellular mechanosensitivity for cells that are polarized relative to the radial axis as compared to the circumferential axis. By contrast, fibroblasts embedded within SLO-PVA did not display orientation-dependent mechanosensitivity. Fibroblasts embedded in hydrogels and cultured in calcium-free media did not show cavitation-induced mechanotransduction; implicating calcium signaling based on transmembrane Ca2+ transport. This study demonstrates the utility of single laser-generated cavitation bubbles to provide local non-invasive impulsive mechanical stimuli within 3D hydrogel tissue models with concurrent imaging using optical microscopy. STATEMENT OF SIGNIFICANCE: : Currently, there are limited methods for the non-invasive real-time assessment of cellular sensitivity to mechanical stimuli within 3D tissue scaffolds. We describe an original approach that utilizes a pulsed laser microbeam within a standard laser scanning microscope system to generate single cavitation bubbles to provide impulsive mechanostimulation to cells within 3D fibrillar and amorphous hydrogels. Using this technique, we measure the cellular mechanosensitivity of primary human dermal fibroblasts embedded in amorphous and fibrillar hydrogels, thereby providing a useful method to examine cellular mechanotransduction in 3D biomaterials. Moreover, the implementation of our method within a standard optical microscope makes it suitable for broad adoption by cellular mechanotransduction researchers and opens the possibility of high-throughput evaluation of biomaterials with respect to cellular mechanosignaling.

4.
Phys Med Biol ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39362276

RESUMEN

OBJECTIVE: Cavitation dose monitoring plays a key role in ultrasound drug delivery to the brain. The use of CMUT technology has a great potential for passive cavitation detection (PCD). Approach. Here, a circular (diameter 7mm) capacitive micromachined ultrasonic transducer (CMUT) centered at 5MHz was designed to be inserted into a therapeutic transducer (1.5MHz) used for ultrasound-induced blood-brain barrier (BBB) disruption on mice. CMUT-based real-time cavitation detection was performed during the ultrasound procedure (50µL intravenous injection of SonoVue microbubbles, Frequency 1.5MHz, PNP 480kPa, Duty Cycle 10%, PRF 10Hz, Duration 60s). BBB disruption were confirmed by contrast-enhanced 7T-MRI. Main results. The CMUT device has a fractional bandwidth of 140%, almost twice a conventional piezocomposite PCD transducer. As expected, the CMUT device was able to detect the occurrence of harmonic, subharmonic and ultraharmonic frequencies as well as the increase of broadband signal indicating inertial cavitation in a wide frequency range (from 0.75 to 6 MHz). Signal-to-noise ratio was high enough (> 40 dB) to perform ultrafast monitoring and follow the subtle intrapulse variations of frequency components at a rate of 10 kHz. Significance. This first in vivo proof of concept demonstrates the interest of CMUT for PCD and encourages us to develop devices for PCD in larger animals by integrating an amplifier directly to the CMUT front-end to considerably increase the signal-to-noise ratio.

5.
Environ Res ; : 120077, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39366442

RESUMEN

Hydrodynamic cavitation and ozone nanobubble-coupled hydrodynamic cavitation have demonstrated effective algae control in laboratories, but their in-situ potential, especially impact on nutrient salt degradation and microbial communities remain unclear. This study applied two-stage nanobubble technology, combining hydrodynamic cavitation and ozone nanobubbles, in a 3300 m2 semi-enclosed area of Taihu Lake to address these gaps. Results show that the technology efficiently controls algae, reduces odors, improves anaerobic conditions, and lowers ammonia nitrogen. Over 20 days, chlorophyll-a concentration reduced by 77.46% and cyanobacterial phycocyanin by 89.47%. Additionally, the concentrations of 2-MIB, GSM, and DMTS fell below threshold values. Notably, the relative abundance of Cyanobacteria in sediment dropped from 8.53% in the control area to only 1.59% ∼ 3.65% in the experimental area. The technology also achieved a significant reduction in ammonia nitrogen, with removal efficiencies of 78.53% in the water column and 39.17% in sediments, though the removal of total phosphorus was limited. Furthermore, the two-stage nanobubble system enhanced the abundance of nitrogen-cycling microorganisms and genes in the water, while promoting nitrogen- and phosphorus-related microbial communities in sediments and inhibiting the cyanobacteria-associated genus Cyanobium PCC-6307. Thus, Two-stage nanobubble technology can be employed for in-situ algal control in aquatic ecosystems.

6.
Phys Med Biol ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39317234

RESUMEN

OBJECTIVE: Bacterial biofilms represent a major challenge for effective antibiotic therapy as they confer physical and functional changes that protect bacteria from their surrounding environment. In this work, focused ultrasound in combination with cavitation nuclei was used to disrupt biofilms of Staphylococcus aureus and Pseudomonas aeruginosa, both of which are on the World Health Organization's priority list for new antimicrobial research. Approach: Single species biofilms were exposed to ultrasound (0.5 MHz centre frequency, 0.5-1.5 MPa peak rarefactional pressure, 200 cycle pulses, 5 Hz repetition frequency, 30 s duration), in the presence of two different types of cavitation nuclei. Quantitative passive acoustic mapping (PAM) was used to monitor cavitation emissions during treatment using a calibrated linear array. Main Results: It was observed that the cumulative energy of acoustic emissions during treatment was positively correlated with biofilm disruption, with differences between bacterial species attributed to differences in biofilm morphology. PCaN provided increased biofilm reduction compared to microbubbles due in large part to their persistence over the duration of ultrasound exposure. There was also good correlation between the spatial distribution of cavitation as characterized by PAM and the extent of biofilm disruption observed with microscopy. Significance: Collectively, the results from this work indicate the potential broad applicability of cavitation for eliminating biofilms of priority pathogens and the opportunity presented by Passive Acoustic Mapping for real-time monitoring of antimicrobial processes.

7.
Ultrason Sonochem ; 111: 107064, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39277927

RESUMEN

In this study, we estimated the equilibrium bubble size of acoustic cavitation in a molten metal, which is basic information in ultrasonic casting. For this, the bubble shape instability of acoustic cavitation in the melt was numerically investigated by solving the Keller-Miksis equation and dynamic equation of the distortion amplitude. The acoustic cavitation bubbles are more stable in aluminum and magnesium melts than in water, and the parametric instability mainly determines the bubble stability at 20-160 kHz in molten metals. However, the afterbounce instability does not significantly affect the bubble stability in molten metals owing to the small number of bubble oscillations after the first rapid compression, and the distortion amplitude cannot grow significantly after the first compression. The bubbles in the melt become more unstable with an increase in the ultrasonic frequency owing to the corresponding increase in the bubble wall velocity. Through this stability analysis, we can estimate that the stable bubble size in the aluminum or magnesium melt is approximately three or four times larger than that in water at the same ultrasonic pressure amplitude.

8.
Ultrason Sonochem ; 111: 107066, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39288594

RESUMEN

Cavitation noise is the major noise in underwater, and the study of acoustic radiation from bubble clusters is the primary means to reveal the mechanism of cavitation noise. In this study, direct numerical simulation (DNS) of bubble clusters with volume fractions of 20-40 % with different bubble sizes and bubble position distributions are performed, and the far-field sound pressure is calculated using the Ffowcs Williams-Hawkings (FW-H) method. Then, we compare the collapse and acoustic radiation of bubble clusters with equivalent bubble. The results show that the collapse times of bubble clusters at the same volume fraction are identical and close to equivalent bubble, despite the different bubble sizes and positions in the bubble cluster. Further, in terms of acoustic radiation, the layered arrangement of bubble positions results in bubble clusters exhibiting layer-by-layer collapse and emitting multiple sound pressure pulses. In contrast, a random arrangement of bubble positions lacks this feature, resulting in the collapse of the bubble cluster without a layered phenomenon and radiating only a single primary sound pulse, which is consistent with the equivalent bubble. Additionally, the distribution of bubble sizes in the bubble cluster has almost no effect on the acoustic radiation of the bubble cluster. Notably, when the volumetric fraction exceeds 25 %, the sound pressure levels of bubble clusters with different distributions in the frequency domain are nearly identical, with differences from the equivalent bubble within 5 dB.

9.
Ultrason Sonochem ; 111: 107063, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39293096

RESUMEN

How to precisely control and efficiently utilize the physical processes such as high temperature, high pressure, and shockwaves during the collapse of cavitation bubbles is a focal concern in the field of cavitation applications. The viscosity change of the liquid will affect the bubble dynamics in turn, and further affect the precise control of intensity of cavitation field. This study used high-speed photography technology and schlieren optical path system to observe the spatiotemporal evolution of shockwaves in liquid with different viscosities. It was found that as the viscosity of the liquid increased, the wave front of the collapse shockwave of the cavitation bubble gradually thickened. Furthermore, a high-frequency pressure testing system was used to quantitatively analyze the influence of viscosity on the intensity of the shockwave. It was found that the pressure peak of the shockwave in different viscous liquid was proportional to Lb (L represented the distance between the center of bubble and the sensor measuring point), and the larger the viscosity was, the smaller the value of b was. Through in-depth analysis, it was found that as the viscosity of the liquid increased, the proportion of the shockwave energy of first bubble collapse to the maximal mechanical energy of bubble gradually decreased. The proportion of the mechanical energy of rebounding bubble to the maximal mechanical energy of bubble gradually increased. These new findings have an important theoretical significance for the efficient utilization of ultrasonic cavitation.

10.
Ultrason Sonochem ; 111: 107074, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39312812

RESUMEN

Hydrofoils, as fundamental components of hydraulic machinery, directly influence the performance of such machinery. This study conducted an analysis of the cavitation characteristics of hydrofoils at a + 4° angle of attack under various cavitation numbers using numerical simulation and experimental research methods. The focus of the research was to explore the phenomenon of unstable sheet cavitation and its causes, as well as to reveal the characteristics of the re-entrant jet. The large eddy simulation method was employed to calculate the cavitation morphology under three different cavitation numbers. The method is highly consistent with the experimental results in simulating the small-scale detachment at the tail of unstable sheet cavitation and the large-scale shedding of cloud cavitation. The study found that the detachment of unstable sheet cavitation is closely related to the re-entrant jet, which exhibits transient and abrupt characteristics during the unstable sheet cavitation phase. Furthermore, by applying FFT processing to the distribution of maximum reverse velocity and the spatiotemporal changes of Ux on characteristic lines, eigenfrequency of the detachment of unstable sheet cavitation were identified. The research results indicate that cavitation mainly show as sheet cavitation when the cavitation closure point does not exceed the zero-slope point. Beyond this point, it transitions to cloud cavitation. This study provides new insights into the cavitation phenomenon of hydrofoils and offers quantitative research on the phenomenon of unstable sheet cavitation.

11.
Glob Health Med ; 6(4): 236-243, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39219582

RESUMEN

The aim of this study was to explore the effects of low-frequency ultrasound (US) combined with microbubbles (MBs) on breast cancer xenografts and explain its underlying mechanisms. A total of 20 xenografted nude mice were randomly divided into four groups: a group treated with US plus MBs (the US + MBs group), a group treated with US alone (the US group), a group treated with MBs alone (the MBs group), and a control group. In different groups, mice were treated with different US and injection regimens on an alternate day, three times in total. Histological changes, apoptosis of cells, microvascular changes, and the apoptosis index (AI) and microvascular density (MVD) of the breast cancer xenograft were analyzed after the mice were sacrificed. Results indicated that the tumor volume in the US + MBs group was smaller than that in the other three groups (p < 0.001 for all). The rate of tumor growth inhibition in the US + MBs group was significantly higher than that in the US and MBs groups (p < 0.001 for both). There were no significant differences in histological changes among the four groups. However, the AI was higher in the US + MBs group than that in the other three groups while the MVD was lower (p < 0.001 for all). All in all, low-frequency US combined with MBs can effectively slow down the growth of breast cancer in nude mice. In summary, low-frequency US combined with MBs has a significant effect on breast cancer treatment. Cavitation, thermal effects, and mechanical effects all play a vital role in the inhibition of tumor growth.

12.
Heliyon ; 10(16): e36359, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253190

RESUMEN

This research has dealt with the simulation of liquid nitrogen cavitation inside a convergent nozzle. This is important in cryogenic industrial applications. So in this study, computational fluid dynamics methods have been used for simulating the cavitation phenomenon. The Two-phase model in this research has been a hybrid/mixed model. Also, k- ε turbulence model has been employed in realizable state. For meshing the nozzle geometry, Gambit software has been used, while for numerical simulation, Ansys Fluent software has been employed. For simulation of cavitation, Schnerr and Sauer cavitation model has been utilized. This research has also examined the effect of changing the nozzle outlet diameter and the impact of changing the pressure difference in the inlet and outlet of the nozzle on the cavitation. As a novelty and unlike what would have been expected based on the Bernoulli effect, the results obtained from the simulation showed that the increase/decrease in the nozzle's outlet diameter resulted in an enhanced/diminished extent of cavitation in the nozzle's outlet region. Also, the increase/decrease of the pressure difference in the input and output of the nozzle would lead to a higher/lower extent of cavitation. This research also found that the effect of altering the nozzle's outlet diameter on the extent of cavitation has been far higher than the effect of changing pressure difference in its inlet and outlet. The results also indicated that upon reduction of the nozzle's outlet diameter from the base state (1.02 mm) by 10, 20, 30, 40, and 50 %, the volume fraction of the vapor diminished by 22.23, 43.029, 60.66, 74.73, and 87.16 % respectively. Finally, with the increase in the nozzle's outlet diameter from the base state (1.02 mm) by 10, 20, 30, 40, and 50 %, the volume fraction of the vapor increased by 26.83, 55.27, 84.47, 117.12, and 149.31 % respectively.

13.
Cureus ; 16(8): e66867, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39280464

RESUMEN

Lemierre's syndrome primarily affects healthy adolescents and young adults as a complication of oropharyngeal infection, most commonly pharyngitis or peritonsillar abscess. Fusobacterium necrophorum is the principal pathogen, and the infection presents with classic symptoms including fever, sore throat, and neck tenderness. However, atypical presentations can pose diagnostic challenges. This report discusses a patient in her early 60s, contrary to the typical demographic, who presented with a one-week history of varied symptoms including sore throat, pleuritic chest pain, and haemoptysis. Examination revealed mild neck tenderness and lung crepitations. Laboratory tests indicated leucocytosis, thrombocytopenia, and elevated C-reactive protein (CRP). Imaging revealed pulmonary infiltrates with cavitation. F. necrophorum was detected in blood culture, promoting a CT scan of the neck, which confirmed soft tissue swelling and a small peritonsillar collection, leading to the diagnosis of Lemierre's syndrome. The classical feature of jugular vein thrombus was absent, further underscoring the atypical nature of this case. The patient received immediate initiation of intravenous antibiotics, piperacillin/tazobactam, followed by meropenem. This was complemented by a carefully tailored 21-day intravenous course, followed by an eight-week regimen of oral antibiotics consisting of amoxicillin and metronidazole. The patient demonstrated significant clinical improvement in pulmonary complications. Follow-up imaging showed minor residual changes, and the patient remained asymptomatic. Lemierre's syndrome presents a diagnostic challenge due to diverse clinical manifestations. Key diagnostic markers include deep neck infections, septicemia, and metastatic infections. Timely utilization of diagnostic tools, such as blood cultures and imaging, aid in confirmation. Early diagnosis is crucial for prompt treatment and prevention of complications. This case emphasizes the importance of maintaining a high index of suspicion for Lemierre's syndrome, especially in atypical presentations. Increased awareness among healthcare providers is vital for timely diagnosis and optimal patient outcomes.

14.
J Food Sci Technol ; 61(10): 1976-1985, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39285999

RESUMEN

Hydrodynamic cavitation (HC) is thought weaken the allergenicity of beer gluten proteins. However, the mechanism of action has not been thoroughly studied. In this study, an HC device was used to treat wheat gliadin and two specific celiac-toxic peptides, P1 and P2. FT-IR, MFS, HPLC, and CD were used to monitor the structural characteristics of gliadin and the two peptides. HC reduced the abundance of the coeliac toxic peptides P1 and P2 in solution and the contents of secondary structure ß-turns and PPII, which are related to reduced allergen immunoreactivity. This meant that both the primary and secondary structures of P1 and P2 were affected by HC, leading to fewer allergic reactions. This study was focused on the impact of HC on the secondary structures of allergens produced from gluten raw materials, and it has positive implications for reducing product allergenicity. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05973-7.

15.
Data Brief ; 57: 110873, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39290423

RESUMEN

The Natural Pothole Dataset within River Environments is an extensive collection of 3992 high-resolution images [1] documenting various natural potholes located in riverine settings. Each image has been rigorously annotated utilizing the YOLO (You Only Look Once) object detection framework, which ensures precise bounding box coordinates and accurate class labels for identified potholes. The annotations are provided in XML format, facilitating seamless integration with machine learning algorithms and computer vision applications. This dataset is particularly valuable for researchers and professionals in Geomorphology, Hydrology, River Science, Machine Learning, Environmental Science, and geospatial analysis, offering a robust foundation for tasks such as pothole detection, classification, and predictive modelling. By focusing exclusively on the natural occurrence of potholes, the dataset captures the diversity in shapes, sizes, and environmental contexts, thereby enriching the study and understanding of riverine geomorphological processes.

16.
Ultrason Sonochem ; 110: 107049, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39226658

RESUMEN

Ultrasonic delamination is a low energy approach for direct recycling of spent lithium-ion batteries. The efficiency of the ultrasonic delamination relies both on the thermophysical properties (such as viscosity, surface tension, and vapour pressure) of the solvent in which the delamination process is carried out, and the properties of the ultrasound source as well as the geometry of the containment vessel. However, the effect of tailoring solutions to optimise cavitation and delamination of battery cathode coatings has not yet been sufficiently investigated. Acoustic detection, high-speed imaging, and sonochemiluminescence (SCL) are employed to study the cavitation processes in water-glycol systems and identify the effect of tailoring solvent composition on cavitation strength. The addition of small volume fractions of organic solvent (ca. 10-30 vol%), including ethylene glycol or glycerol, to the aqueous delamination solution were found to significantly improve the delamination efficiency of lithium-ion battery cathode coatings due to the alteration of these thermophysical properties. However, greater volume fractions of glycol decrease delamination efficiency due to the signal-dampening effect of viscosity on the ultrasonic waves. The findings of this study offer valuable insights for optimising ultrasonic bath solution composition to enhance film delamination processes.

17.
Opt Lasers Eng ; 1812024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39219742

RESUMEN

Ultrasound is a ubiquitous technology in medicine for screening, diagnosis, and treatment of disease. The functionality and efficacy of different ultrasound modes relies strongly on our understanding of the physical interactions between ultrasound waves and biological tissue structures. This article reviews the use of photoelasticity imaging for investigating ultrasound fields and interactions. Physical interactions are described for different ultrasound technologies, including those using linear and nonlinear ultrasound waves, as well as shock waves. The use of optical modulation of light by ultrasound is presented for shadowgraphic and photoelastic techniques. Investigations into shock wave and burst wave lithotripsy using photoelastic methods are summarized, along with other endoscopic forms of lithotripsy. Photoelasticity in soft tissue surrogate materials is reviewed, and its deployment in investigating tissue-bubble interactions, generated ultrasound waves, and traumatic brain injury, are discussed. With the continued growth of medical ultrasound, photoelasticity imaging can play a role in elucidating the physical mechanisms leading to useful bioeffects of ultrasound for imaging and therapy.

18.
Cureus ; 16(8): e66075, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39224733

RESUMEN

Cavitary lung lesions pose a formidable diagnostic challenge due to their multifaceted etiologies. While tuberculosis and other prevalent pathogens typically dominate discussions, instances of community-acquired Pseudomonas aeruginosa (P. aeruginosa) pneumonia leading to cavitation in immunocompetent individuals remain exceptionally rare. Herein, we present a compelling case of such pneumonia in a 61-year-old man with a past medical history of hypertension and coronary artery disease who presented with cough, chest pain, and subjective fever. Chest imaging revealed cavitary lung lesions, which is atypical for community-acquired pneumonia (CAP). Initial workup excluded common CAP pathogens, following which bronchoscopy with bronchoalveolar lavage (BAL) definitively diagnosed P. aeruginosa, prompting targeted antibiotic therapy. Treatment led to clinical and radiographic improvement. P. aeruginosa rarely causes CAP, especially in immunocompetent patients, and cavitary lesions further complicate diagnosis. This case highlights the importance of considering P. aeruginosa in CAP with unusual features and emphasizes the utility of bronchoscopy with BAL for diagnosis and guiding management.

19.
Sci Total Environ ; 952: 175929, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39226960

RESUMEN

The scouring and migration of sediments in sewer systems are the key contributors to overflow pollution. Both physical and biological factors affect the erosion and migration of layered sediments. However, the functional characteristics of these factors and their quantification process still need to be further explored. In this study, the physical form and biological metabolism of the sediment are coupled, and the suspension mechanism under the dual action is proposed systematically and deeply. The influence coefficient of scour initiation was redefined as A^/prime, where the physical factors were particle size and mass, and the biological factors were bio-viscosity and internal cavitation. The bio-viscosity of layered sediment particles is provided by Extracellular Polymeric Substances (EPS). The slope value of |ΔD/-Δf| (ΔD: Dissipation; Δf: frequency) of surface EPS decreased from 0.489 to 0.315 when Quartz Crystal Microbalance with Dissipation (QCM-D) was used to analyse EPS viscosity, indicating that biological activities formed a dense biofilm on the sediment surface and enhanced the bond between particles. Meanwhile, by monitoring the accumulation density of sediments at different depths, it was found that the packing density of the bottom layer decreased from 1.50 to 1.45 g/cm3, which was mainly due to the internal cavitation caused by microorganism consuming organic matrix and releasing H2S and CH4. The delamination difference of EPS results in the uneven change of adhesion between different layers. This, combined with the internal erosion characteristics triggered by microbial stratified metabolism, collectively constitutes the biological effects on the sediment structure. Finally, the coupling mechanism of particle distribution and bio-viscous-cavitation erosion was formed, and the correctness of the formula was verified by repeated experiments, which proved the agreement between the theory and the practice and provided a scientific method for systematically analysing the erosion and migration law of sediment in the sewer system.

20.
Materials (Basel) ; 17(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274569

RESUMEN

Laser beam remelting is a relatively simple and highly effective technique for the physical modification of surfaces to improve resistance to cavitation erosion. In this study, we investigated the effect of laser remelting on the surface of cast stainless steel with 0.40% C, 25% Cr, 20% Ni, and 1.5% Si on cavitation erosion behavior in tap water. The investigation was conducted using a piezoceramic crystal vibrator apparatus. Base laser beam parameters were carefully selected to result in a defect-free surface (no porosity, material burn, cracks) with hardness capable of generating better resistance to cavitation erosion. The experimental results were compared with those of the reference material. Surface morphology and microstructure evolution after cavitation tests were analyzed using an optical metallographic microscope (OM), scanning electron microscope (SEM), and hardness tests to explore the mechanism of improving surface degradation resistance. The conducted research demonstrated that surfaces modified by laser remelting exhibit a 4.8-5.1 times greater increase in cavitation erosion resistance due to the homogenization of chemical composition and refinement of the microstructure, while maintaining the properties of the base material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA