Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
J Exp Pharmacol ; 16: 311-320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39345799

RESUMEN

Introduction: Plant treatment has been used for thousands of years and has been proven to treat acute and chronic diseases. The function of the traditional plant Centella asiatica is as an antimicrobial agent, anticancer, antioxidant, and therapeutic gene in healing wounds and inflammation. Lung fibrosis caused by bleomycin can develop into chronic lung disease, which ends in tissue death if not treated immediately. The purpose of this study is to predict and explain the impact of Centella asiatica extract on model rats exposed to bleomycin in their lungs as a treatment or anti-fibrinolysis. Methods: This research is an analytical study with a randomized in-vivo experimental design divided into 3 groups of 5 male Wistar rats aged 10 weeks. Negative control group (K) with intratracheal induction of bleomycin alone. The positive group was given intratracheal bleomycin 4 mg/kg/BB on days 0 and 21 and added Centella asiatica induction at 400 mg (P1) on days 15 to 49. The other positive group was given intratracheal bleomycin 4 mg/kg/BB on days 0 and 21 and added Centella asiatica induction at 800 mg (P2) on days 15 to 49. Data were collected according to findings of lung histology analysis of rat samples. Results: In the interalveolar septum group, there was a difference in Masson's Trichrome staining results in groups K and P1 with p<0.05 (p=0.036). However, there was no difference in histopathological staining results in groups K and P2 (p>0.05). Conclusion: The induction of bleomycin 4 mg/kg/BB was proven to cause fibrosis in the lungs of rats, and Centella asiatica extract was used as a treatment. Therefore, further research regarding antifibrotic drugs is hoped to reduce fibrotic areas significantly.

2.
Front Microbiol ; 15: 1452127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39323893

RESUMEN

Probiotics and their derivatives offer significant health benefits by supporting digestive health, boosting the immune system, and regulating the microbiomes not only of the internal gastrointestinal track but also of the skin. To be effective, probiotics and their derivatives must exhibit robust antimicrobial activity, resilience to adverse conditions, and colonization capabilities in host tissues. As an alternative to animal-derived probiotics, plant-derived lactic acid bacteria (LAB) present promising advantages, including enhanced diversity and tolerance to challenging environments. Our study focuses on exploring the potential of plant-derived LAB, particularly from the medicinal plant Centella asiatica, in improving skin conditions. Through a bacterial isolation procedure from C. asiatica leaves, Enterococcus rotai CMTB-CA6 was identified via 16S rRNA sequencing, whole genome sequencing, and bioinformatic analyses. Based on genomic analysis, antimicrobial-resistance and virulence genes were not detected. Additionally, the potential functions of E. rotai CMTB-CA6 were characterized by its lysates' ability to regulate skin microbes, such as stimulating the growth of Staphylococcus epidermidis while inhibiting that of Cutibacterium acnes, to restore the viability of human dermal fibroblasts under inflammatory conditions, and to demonstrate effective antioxidant activities both in a cell-free system and in human dermal fibroblasts. Our investigation revealed the efficacy of E. rotai CMTB-CA6 lysates in improving skin conditions, suggesting its potential use as a probiotic-derived agent for skin care products. Considering the ecological relationship between plant-inhabited bacteria and their host plants, we suggest that the utilization of E. rotai CMTB-CA6 strain for fermenting its host plant, C. asiatica, could be a novel approach to efficiently enriching bioactive molecules for human health benefits.

3.
Plants (Basel) ; 13(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39339611

RESUMEN

Centella asiatica, a traditional herb, is widely recognized for its pharmacologically active components, such as asiaticoside, madecassoside, asiatic acid, and madecassic acid. These components render it a highly sought-after ingredient in various industries, including cosmetics and pharmaceuticals. This study aimed to enhance the production and activity of these pharmacological constituents of C. asiatica using the plant growth-promoting rhizobacterium Priestia megaterium HyangYak-01 during its cultivation. To achieve this goal, the researchers conducted field experiments, which revealed an increase in the production of pharmacologically active compounds in C. asiatica cultivated with a P. megaterium HyangYak-01 culture solution. Additionally, quadrupole time-of-flight mass spectrometry (Q-TOF MS) confirmed that the composition ratios of the C. asiatica extract treated with the P. megaterium HyangYak-01 culture solution differed from those of the untreated control and type strain-treated groups. Skin cell experiments indicated that the C. asiatica extract treated with the P. megaterium HyangYak-01 culture solution exhibited greater skin barrier improvement and less pronounced inflammatory responses than those from plants grown without the bacterial culture solution. This study demonstrates that microbial treatment during plant cultivation can beneficially influence the production of pharmacological constituents, suggesting a valuable approach toward enhancing the therapeutic properties of plants.

4.
Neurochem Int ; 180: 105865, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307460

RESUMEN

Centella asiatica Linn Urban (C. asiatica), aka Mandukparni, is one of the flagship herbs used in traditional medicines to effectively manage neurological problems. Although this plant has a wealth of comprehensive preclinical pharmacological profiles, further clinical research and execution of its molecular mode of action are still required. We searched electronic databases (Google Scholar, SciFinder, MEDLINE, Scopus, EMBASE, Science Direct, and PubMed) using relevant key words to retrieve information pertaining to C. asiatica till June 2023 and performed network pharmacology to understand the mechanism related to their neurobiological roles. This study extensively analyses its pharmacological properties, nutritional profile, ethnomedical uses, safety, and mechanistic role in treating neurological and neurodegenerative disorders. Additionally, a network pharmacology study was performed which suggests that its phytomolecules are involved in different neuroactive ligand-receptor pathways, glial cell differentiation, gliogenesis, and astrocyte differentiation. Hopefully, this report will lead to a paradigm shift in medical practice, research, and the creation of phytopharmaceuticals derived from C. asiatica that target the central nervous system.

5.
Phytochemistry ; 228: 114246, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39163914

RESUMEN

Centella asiatica (L.) Urban is a medical plant rich in triterpenoids, frequently used in Asia to treat skin conditions such as acne. To search for anti-photoaging agents, 16 known triterpenoids and five undescribed triterpenoids, including three ursane, one oleanane and one nor-ursane were isolated from the whole herb of C. asiatica. The structures and relative stereochemistry of these compounds were elucidated by detailed NMR spectra and HRESIMS. Compounds 1 and 2 were isomers of ursane-type and oleane-type triterpenes with rare aldehyde groups on C-23. Compound 4 was a unique example of a nor-ursane type triterpenoid. The Ultraviolet B (UVB) induced HaCaT cell damage model was used to measure the in vitro anti-photoaging activity of all 21 compounds. Twenty compounds significantly increased HaCaT viability and inhibited lactate dehydrogenase (LDH) release after UVB exposure. These findings highlight the protective effects of C. asiatica-derived triterpenoids against UVB damage and indicate their potential as natural agents that can protect the skin against photoaging.


Asunto(s)
Centella , Triterpenos , Rayos Ultravioleta , Triterpenos/farmacología , Triterpenos/química , Triterpenos/aislamiento & purificación , Centella/química , Humanos , Supervivencia Celular/efectos de los fármacos , Estructura Molecular , Envejecimiento de la Piel/efectos de los fármacos , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , L-Lactato Deshidrogenasa/metabolismo , Células HaCaT
6.
Surg Neurol Int ; 15: 248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108365

RESUMEN

Background: Mortality and morbidity in traumatic brain injury (TBI) cases remain a global problem. Various therapeutic modalities have been researched, including using herbal medicine. Centella asiatica has a lot of potential in neuropharmacology for various diseases. This systematic review aims to comprehensively review the currently available data about the impact of C. asiatica on TBI in a rat model. Methods: Systematic searches were conducted on PubMed, Scopus, and Google Scholar up to July 2023. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. Researchers screened the titles and abstracts of all identified studies and then selected relevant studies through full-text reviews. Studies reported the effect of C. asiatica on animal model of TBI were included in the study. Data were extracted, and the result was reported using descriptive analysis. The risk of bias was evaluated using SYRCLE. Results: Four studies met the inclusion criteria. One study highlighted the potential neuroprotective effects of Asiatic acid, one study explored spade leaf extract phytosome, while the rest used C. asiatica extracts. The primary findings of the included research revealed that C. asiatica might reduce oxidative stress, decrease neuronal apoptosis, have anti-inflammatory properties, alleviate neurological dysfunction, reduce cerebral edema, and boost cognitive performance in the TBI-induced rat's model. Conclusion: This review suggests that C. asiatica had the potential to benefit the TBI-induced rat model in terms of decreasing morbidity. Nevertheless, more studies are needed to perform a meta-analysis and ascertain the effects of C. asiatica on TBI in animal models.

7.
Bioinformation ; 20(5): 508-514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132239

RESUMEN

Nephrotoxicity is a condition caused by toxic effects of medications and poisons resulting in the rapid decline of kidney function. Centella asiatica is a medicinal herb with antioxidative and anti-inflammatory characteristics that is used to treat a variety of ailments. The present study intends to explore the ability of Centella asiatica in preventing AlCl3 and D-Galactose-induced nephrotoxicity in rats. In this study 30 male albino Wistar rats were induced with nephrotoxicity using AlCl3 and D-galactose, and oral administration of Centella asiatica extract (100, 200, and 300mg/kg/day) was administered for 70 days. The kidneys were extracted after treatment and levels of oxidative and antioxidative enzymes, serum creatinine, and serum albumin were measured. The kidney's histopathological changes were studied. Administration of Centella asiatica extract significantly increased serum albumin, superoxide dismutase (SOD), and catalase levels in kidney homogenates while suppressing serum creatinine and malondialdehyde (MDA) levels and attenuating histopathological changes associated with nephrotoxicity. Centella asiatica extract lowered serum creatinine and oxidative stress levels in a drug-induced nephrotoxicity rat model, while simultaneously increasing serum albumin levels, as evidenced by mitigation of histological changes and normalisation of biomarkers of oxidative stress in the kidney.

8.
In Vivo ; 38(5): 2318-2327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39187315

RESUMEN

BACKGROUND/AIM: Skin wound healing is a physiological process restoring the structural and functional integrity of injured skin. During this process, wound management preventing bacterial infection and complications is important for the regeneration of skin layers and adnexa, as well as the protective function of the skin. Therefore, the development of an effective ointment to promote wound healing without complications is beneficial. MATERIALS AND METHODS: This study developed Raepenol™ cream, comprising a base cream and natural compounds including paeonol, D-panthenol and extract of Centella asiatica, and assessed its therapeutic effect in wound healing. A rat model of skin wound healing and a mouse model of imiquimod-induced pruritus were employed. The effect of Raepenol™ cream was evaluated by wound size and histological analysis, including the integrity of skin structures and inflammatory response. RESULTS: Raepenol™ cream treatment effectively restored the structural integrity of the skin in rats, including wound closure, regeneration of skin adnexa, and reconstitution of collagen, comparable to commercial ointment. Additionally, Raepenol™ cream significantly suppressed pruritus by inhibiting mast cell infiltration or retention in the inflammatory site of mouse ears. CONCLUSION: Raepenol™ cream effectively promoted wound healing and relieved pruritus in animal models. These results suggest that it could be a promising option for wound care and pruritus relief, offering potential advantages over current ointments.


Asunto(s)
Modelos Animales de Enfermedad , Prurito , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Ratones , Ratas , Prurito/tratamiento farmacológico , Masculino , Piel/efectos de los fármacos , Piel/patología , Piel/lesiones , Pomadas , Crema para la Piel , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico
9.
J Food Sci ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138633

RESUMEN

This study investigated the use of microencapsulated Asiatic pennywort (Centella asiatica) (CA) as a functional ingredient to formulate a novel chocolate oat milk beverage. The main objectives of the study were to characterize and encapsulate bioactive components from CA and to determine the polyphenol content and sensory properties of the beverage. CA extract was microencapsulated using maltodextrin and gum Arabic as carriers and subsequently freeze-dried to produce microcapsules. Microencapsulated CA was incorporated into chocolate oat milk at varying concentrations. Polyphenol content of the beverages was quantified using liquid chromatography-mass spectrometry. Consumer acceptability and sensory perception of the beverages were evaluated through an acceptance test and a check-all-that-apply test, respectively, to assess the sensory characteristics of the chocolate oat milk beverage. CA fortified chocolate oat milk contained fourteen polyphenols. Increasing the concentration of microencapsulated CA led to an increase in the polyphenol content of the beverage. Among the identified polyphenols, asiatic acid and asiaticoside stood out as the unique and most abundant compounds in CA (p < 0.05). Additionally, the incorporation of cocoa powder into the beverage further contributed to the polyphenol content, introducing bioactive compounds such as benzoic acid, caffeic acid, catechin, chlorogenic acid, kaempferol, luteolin, madecassic acid, p-coumaric acid, and quercetin. Evaluation of consumer acceptability revealed that chocolate oat milk beverages containing 2% and 4% microencapsulated CA were liked by consumers. However, beverages with higher concentrations of CA were perceived as less acceptable, characterized by grassy, bitter, and earthy attributes. In conclusion, this study demonstrates the potential of microencapsulated CA as a functional ingredient in chocolate oat milk beverages. PRACTICAL APPLICATION: This study reveals new insights on the microencapsulation of bioactive compounds in CA, proposing its potential as a novel functional ingredient in food and beverage applications in Western markets. The study revealed microencapsulated CA retained polyphenols in CA including asiatic acid and asiaticoside responsible for its bioactive properties. Consumer perception of CA added to oat milk revealed that it can be added at an acceptable level of 4%; however, higher amounts can decrease consumer acceptability. As practitioners explore the incorporation of CA as a functional component in food products, it is crucial to explore preservation techniques for the sensitive bioactive components while balancing the optimal amount of CA to enhance overall consumer liking.

10.
BMC Complement Med Ther ; 24(1): 268, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997637

RESUMEN

Wound is defined as the damage to biological tissues including skin, mucous membranes and organ tissues. The acute wound heals in less than 4 weeks without complications, while a chronic wound takes longer than 6 weeks to heal. Wound healing occurs in 4 phases, namely, coagulation, inflammatory, proliferative and remodeling phases. Triclosan and benzalkonium chloride are commonly used as skin disinfectants in wound healing. However, they cause allergic contact dermatitis and antibiotic resistance. Medicinal plants are widely studied due to the limited availability of wound healing agents. The present review included six commonly available medicinal plants in Malaysia such as Aloe barbadensis Miller, Carica papaya Linn., Centella asiatica Linn., Cymbopogon nardus Linn., Ficus benghalensis Linn. and Hibiscus rosa sinensis Linn. Various search engines and databases were used to obtain the scientific findings, including Google Scholar, ScienceDirect, PubMed Central and Research Gate. The review discussed the possible mechanism of action of medicinal plants and their active constituents in the wound healing process. In addition, their application in nanotechnology and wound dressings was also discussed in detail.


Asunto(s)
Plantas Medicinales , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Plantas Medicinales/química , Humanos , Malasia , Carica , Extractos Vegetales/farmacología , Aloe , Ficus , Hibiscus/química , Centella/química , Fitoterapia
11.
Animals (Basel) ; 14(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998067

RESUMEN

Two in vitro experiments were conducted to evaluate the effects of Centella asiatica extract (CAE) supplementation on the rumen's in vitro fermentation characteristics. In the first experiment, CAE with five concentrations (C: 0%; T1: 3.05%; T2: 6.1%; T3: 12.2%; and T4: 24.4% CAE in diet) was supplemented in the rumen fluid and incubated for 6, 24, and 48 h to determine the optimal dosage. The total gas and methane production increased in all incubation times, and the total volatile fatty acids increased at 6 and 48 h. Ammonia nitrogen, branched chain volatile fatty acids, acetate, and butyrate were increased by CAE supplementation. T1 was chosen as the optimal dosage based on the total volatile fatty acids, branched chain volatile fatty acids, and ammonia nitrogen production. The CAE with the identified optimal dosage (T1) was incubated to identify its effect on the rumen's in vitro degradability in the second experiment. The CAE supplementation did not influence the in vitro dry matter, crude protein, or neutral detergent fiber degradability. In conclusion, CAE has no CH4 abatement or digestion promotion effects. However, CAE could be utilized as a feed additive to increase the rumen's total volatile fatty acid production without an adverse effect on the in vitro dry matter, crude protein, or neutral detergent fiber degradability.

12.
Heliyon ; 10(13): e33762, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027607

RESUMEN

Oral submucous fibrosis (OSMF) is a potentially malignant disorder with no permanent cure that affects the quality of life due to trismus. Computational pharmacology has accelerated the discovery of drug candidates for the treatment of incurable diseases. The present study aimed to screen the compounds of the miracle herb Centella asiatica with drug-likeness properties based on the absorption, distribution, metabolism, and excretion (ADME) properties. The pharmacological actions of these screened compounds against OSMF were identified by network pharmacology, gene ontology, pathway enrichment analysis, molecular docking, and simulation. Fifteen drug-like ligands were identified after virtual screening viz; asiatic acid, kaempferol, quercetin, luteolin, apigenin, bayogenin, gallic acid, isothankunic acid, madecassic acid, madasiatic acid, arjunolic acid, terminolic acid, catechin, epicatechin, and nobiletin. 850 potential targets were predicted for the ligands, which were analyzed against 354 proteins associated with OSMF. Compound pathway analysis and disease pathway analysis identified 53 common proteins. The GO enrichment analysis identified 472 biological process terms, 76 molecular function terms, and 44 cellular component terms. Pathway enrichment analysis predicted 142 KEGG pathways, 35 Biocarta pathways, and 236 Reactome pathways for the target proteins. The analysis revealed that the herb targets crucial events of fibrosis such as inflammation, oxidative stress, apoptosis, collagen deposition, and epithelial-mesenchymal transition. The common 53 proteins were used for protein-protein interaction (PPI) network analysis, which revealed 4 key proteins interacting with the phytocompounds viz; transforming growth factor-ß1 (TGF-ß1), mothers against decapentaplegic-3 (SMAD-3), mitogen-activated protein kinase-1 (MAPK-1) and proto-oncogene tyrosine-protein kinase (SRC). Molecular docking revealed that all ligands had a good binding affinity to the target proteins. Bayogenin had the highest binding affinity towards MAPK-1 (-9.7 kcal/mol), followed by isothankunic acid towards SRC protein (-9.3 kcal/mol). Madasiatic acid had the highest binding affinity to SMAD-3 (-7.6 kcal/mol) and TGF-ß1 (-7.1 kcal/mol). Molecular dynamics simulation demonstrated stable ligand protein interactions of bayogenin and MAPK complex, isothankunic acid and SRC complex. This in silico study is the first to identify potential phytochemicals present in Centella asiatica and their target molecules, which might be responsible for reversing OSMF.

13.
Surg Neurol Int ; 15: 217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974565

RESUMEN

Background: Traumatic brain injury (TBI) is a global health problem with the potential to cause dangerous neurological problems. Based on histopathological findings in Sprague Dawley (SD) rats with TBI in the acute phase, the study seeks to discover the effect of Centella asiatica, cinnamon, and spirulina as neuroprotective. Methods: We conducted an experimental study with 30 SD rats randomly divided into three groups. The intervention was the administration of C. asiatica, cinnamon, and spirulina to the control and the experimental groups. Histological features were assessed using hematoxylin and eosin (H&E) staining and immunohistochemical examination. The data were analyzed using statistical analysis through correlation tests. Results: The test samples' average body weights had P > 0.05, indicating no significant difference in the test sample body weights. Therefore, the variations in the expression level of the dependent variable were expected to be caused by the induction of brain injury and the administration of C. asiatica, cinnamon, and spirulina. In addition, the variables were not normally distributed. Thus, the Spearman test was carried out and showed the correlation was very strong, with a value of r = 0.818 and P < 0.05. Conclusion: Based on histopathological findings from the brains of SD rats with TBI, pegagan, cinnamon, and spirulina will protect the brain (neuroprotective) in the acute phase.

14.
J Biopharm Stat ; : 1-16, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860461

RESUMEN

Physiologically based pharmacokinetic (PBPK) modeling serves as a valuable tool for determining the distribution and disposition of substances in the body of an organism. It involves a mathematical representation of the interrelationships among crucial physiological, biochemical, and physicochemical parameters. A lack of the values of pharmacokinetic parameters can be challenging in constructing a PBPK model. Herein, we propose an artificial intelligence framework to evaluate a key pharmacokinetic parameter, the intestinal effective permeability (Peff). The publicly available Peff dataset was utilized to develop regression machine learning models. The XGBoost model demonstrates the best test accuracy of R-squared (R2, coefficient of determination) of 0.68. The model is then applied to compute the Peff of asiaticoside and madecassoside, the parent compounds found in Centella asiatica. Subsequently, PBPK modeling was conducted to evaluate the biodistribution of the herbal substances following oral administration in a rat model. The simulation results were evaluated and validated, which agreed with the existing in vivo studies in rats. This in silico pipeline presents a potential approach for investigating the pharmacokinetic parameters and profiles of drugs or herbal substances, which can be used independently or integrated into other modeling systems.

15.
Open Vet J ; 14(5): 1154-1160, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38938421

RESUMEN

Background: Oxygen deprivation (OD) is a critical condition that can lead to brain damage and even death. Current hypoxia management approaches are limited in effectiveness. Centella asiatica (CA), known for its neuroprotective properties, offers a potential alternative for OD treatment. Aims: This study aims to investigate the neuroprotective effects of CA on the expression of brain-derived neurotrophic factor (BDNF) and vesicular glutamate transporter 1 (VGLUT1) in zebrafish larvae under oxygen-deficient conditions. Methods: Zebrafish embryos were subjected to low oxygen levels (1.5 mg/l) 0-2 hours post-fertilization (hpf) until 3 days post-fertilization (dpf), simulating the early stages of OD. Subsequent treatment involved varying concentrations of CA (1.25-5 µg/ml) up to 9 days post-fertilization. The expression levels of BDNF and VGLUT1 were measured using PCR methods. Statistical analysis was conducted using a two-way analysis of variance to evaluate the impact of CA on the expression of BDNF and VGLUT1 in zebrafish larvae aged 3 and 9 dpf in oxygen-deprived conditions. Results: CA significantly influenced the expression of BDNF and VGLUT1 under OD (p < 0.001). An increase in BDNF expression (p < 0.001) and a decrease in VGLUT1 (p < 0.01) were observed in zebrafish larvae experiencing OD and treated with CA. There was no significant difference in BDNF and VGLUT1 expression across age variations in zebrafish larvae at 3 dpf and 9 dpf in the treatment groups (p > 0.05). CA concentration of 2.5 µg/ml effectively enhanced BDNF and reduced VGLUT1 in 3-9 dpf zebrafish larvae. Conclusion: CA demonstrates potential as a neuroprotective agent, modulating increased BDNF expression and reduced VGLUT1 under OD conditions. These findings lay a foundation for further research in developing therapies for oxygen deficiency.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Centella , Larva , Extractos Vegetales , Triterpenos , Pez Cebra , Animales , Centella/química , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Triterpenos/farmacología , Triterpenos/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Fármacos Neuroprotectores/farmacología , Oxígeno/metabolismo , Enfermedades de los Peces/inducido químicamente , Enfermedades de los Peces/tratamiento farmacológico , Hipoxia/veterinaria , Hipoxia/tratamiento farmacológico
16.
Plant Commun ; : 101005, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38902923

RESUMEN

Certain plant species within the Apiales order accumulate triterpenoid saponins that feature a distinctive glucose-glucose-rhamnose (G-G-R) sugar chain attached at the C-28 position of the pentacyclic triterpene skeleton. Until recently, the genomic basis underlying the biosynthesis and evolution of this sugar chain has remained elusive. In this study, we identified two novel glycoside glycosyltransferases (GGTs) that can sequentially install the sugar chain's second D-glucose and third L-rhamnose during the biosynthesis of asiaticoside and madecassoside, two representative G-G-R sugar chain-containing triterpenoid saponins produced by Centella asiatica. Enzymatic assays revealed the remarkable substrate promiscuity of the two GGTs and the key residues crucial for sugar-donor selectivity of the glucosyltransferase and rhamnosyltransferase. We further identified syntenic tandem gene duplicates of the two GGTs in the Apiaceae and Araliaceae families, suggesting a well-conserved genomic basis underlying sugar chain assembly that likely has evolved in the early ancestors of the Apiales order. Moreover, expression patterns of the two GGTs in pierced leaves of C. asiatica were found to be correlated with the production of asiaticoside and madecassoside, implying their involvement in host defense against herbivores and pathogens. Our work sheds light on the biosynthesis and evolution of complex saponin sugars, paving the way for future engineering of diverse bioactive triterpenoids with unique glycoforms.

17.
Biomed Pharmacother ; 176: 116855, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850651

RESUMEN

Nano-particles demonstrating excellent anticancer properties have gradually found application in cancer therapy. However, their widespread use is impeded by their potential toxicity, high cost, and the complexity of the preparation process. In this study, we achieved exosome-like Centella asiatica-derived nanovesicles (ADNVs) through a straightforward juicing and high-speed centrifugation process. We employed transmission electron microscopy and nanoparticle flow cytometry to characterize the morphology, diameter, and stability of the ADNVs. We evaluated the in vitro anticancer effects of ADNVs using Cell Counting Kit-8 and apoptosis assays. Through sequencing and bicinchoninic acid protein analysis, we discovered the abundant presence of proteins and microRNAs in ADNVs. These microRNAs can target various diseases such as cancer and infection. Furthermore, we demonstrated the effective internalization of ADNVs by HepG2 cells, resulting in an increase in reactive oxygen species levels, mitochondrial damage, cell cycle arrest at the G1 phase, and apoptosis. Finally, we analyzed changes in cellular metabolites post-treatment using cell metabolomics techniques. Our findings indicated that ADNVs primarily influence metabolic pathways such as amino acid metabolism and lipid biosynthesis, which are closely associated with HepG2 treatment. Our results demonstrate the potential utility of ADNVs as anticancer agents.


Asunto(s)
Apoptosis , Proliferación Celular , Centella , Exosomas , Metabolómica , Nanopartículas , Extractos Vegetales , Triterpenos , Humanos , Células Hep G2 , Centella/química , Proliferación Celular/efectos de los fármacos , Exosomas/metabolismo , Exosomas/efectos de los fármacos , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Triterpenos/farmacología , Triterpenos/química , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , MicroARNs/metabolismo , MicroARNs/genética
18.
Phytochem Anal ; 35(6): 1383-1398, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38747201

RESUMEN

INTRODUCTION: Centella is an important genus in the Apiaceae family. It includes Centella asiatica, which has significant edible and medicinal values. However, this species is easily confused due to its similar morphological traits to Hydrocotyle umbellata, hindering its utilization in the consumer and pharmacological industries. OBJECTIVE: The study aims to differentiate these two closely related plant species using reliable methods of confirming the authenticity of natural herbal medicines. METHODS: Our work mainly focuses on the basic morphological characteristics, chemical markers, genetic fingerprints, and their biological responses. RESULTS: The plants can be clearly differentiated using their leaf shapes, stipules, petioles, inflorescences, and fruit structures. Although the phytochemical compositions of the C. asiatica extract were similar to that of H. umbellata which included flavonoids, tannins, and saponins important to the plant's ability to reduce inflammation and promote healing of wounds, the H. umbellata extract showed significantly higher toxicity than that of C. asiatica. High-performance liquid chromatography analysis was used to identify chemical fingerprints. The result revealed that C. asiatica had major triterpene glycoside constituents including asiaticoside, asiatic acid, madecassoside, and madecassic acid, which have a wide range of medicinal values. In contrast, triterpenoid saponins were not identified in H. umbellata. Furthermore, using SCoT1-6 primers was possible to effectively and sufficiently created a dendrogram which successfully identified the closeness of the plants and confirmed the differences between the two plant species. CONCLUSION: Therefore, differentiation can be achieved through the combination of morphometrics, molecular bioactivity, and chemical analysis.


Asunto(s)
Centella , Triterpenos , Centella/química , Cromatografía Líquida de Alta Presión/métodos , Triterpenos/análisis , Triterpenos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química
19.
Mol Neurobiol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703344

RESUMEN

Major depressive disorder (MDD) is a severe disorder that causes enormous loss of quality of life, and among the factors underlying MDD is stress in maternal deprivation (MD). In addition, classic pharmacotherapy has presented severe adverse effects. Centella asiatica (C. asiatica) demonstrates a potential neuroprotective effect but has not yet been evaluated in MD models. This study aimed to evaluate the effect of C. asiatica extract and the active compound madecassic acid on possible depressive-like behavior, inflammation, and oxidative stress in the hippocampus and serum of young rats submitted to MD in the first days of life. Rats (after the first day of birth) were separated from the mother for 3 h a day for 10 days. When adults, these animals were divided into groups and submitted to treatment for 14 days. After subjecting the animals to protocols of locomotor activity in the open field and behavioral despair in the forced swimming test, researchers then euthanized the animals. The hippocampus and serum were collected and analyzed for the inflammatory cytokines and oxidative markers. The C. asiatica extract and active compound reversed or reduced depressive-like behaviors, inflammation in the hippocampus, and oxidative stress in serum and hippocampus. These results suggest that C. asiatica and madecassic acid have potential antidepressant action, at least partially, through anti-inflammatory and antioxidant profiles.

20.
Front Aging ; 5: 1357922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770167

RESUMEN

Background: A water extract (CAW) of the Ayurvedic plant Centella asiatica administered in drinking water has been shown to improve cognitive deficits in mouse models of aging and neurodegenerative diseases. Here the effects of CAW administered in drinking water or the diet on cognition, measures of anxiety and depression-like behavior in healthy aged mice are compared. Methods: Three- and eighteen-month-old male and female C57BL6 mice were administered rodent AIN-93M diet containing CAW (0, 0.2, 0.5 or 1% w/w) to provide 0, 200 mg/kg/d, 500 mg/kg/d or 1,000 mg/kg/d CAW for a total of 5 weeks. An additional group of eighteen-month-old mice were treated with CAW (10 mg/mL) in their drinking water CAW for a total of 5 weeks to deliver the same exposure of CAW as the highest dietary dose (1,000 mg/kg/d). CAW doses delivered were calculated based on food and water consumption measured in previous experiments. In the fourth and fifth weeks, mice underwent behavioral testing of cognition, anxiety and depression (n = 12 of each sex per treatment group in each test). Results: Aged mice of both sexes showed cognitive deficits relative to young mice while only female aged mice showed increased anxiety compared to the young female mice and no differences in depression were observed between the different ages. CAW (1,000 mg/kg/d) in the drinking water improved deficits in aged mice in learning, executive function and recognition memory in both sexes and attenuated the increased measures of anxiety observed in the aged female mice. However, CAW in the diet only improved executive function in aged mice at the highest dose (1,000 mg/kg/d) in both sexes and did so less robustly than when given in the water. There were no effects of CAW on depression-like behavior in aged animals regardless of whether it was administered in the diet or the water. Conclusions: These results suggest that CAW can ameliorate age-related changes in measures of anxiety and cognition and that the mode of administration is important for the effects of CAW on resilience to these age-related changes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA