Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36978757

RESUMEN

This article discusses a new continuous flow mini pump that has been developed to improve symptoms and prognosis in patients with Heart Failure with Preserved Ejection Fraction (HFpEF), for which there are currently no established treatments. The pump is designed to discharge a reduced percentage of blood volume from the left atrium to the subclavian artery, clamped at the bifurcation with the aortic arch. The overall specifications, design parameters, and hemodynamics of this new device are discussed, along with data from in vitro circulation loop tests and numerical simulations. The article also compares the results for two configurations of the pump with respect to key indicators of hemocompatibility used in blood pump development.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36157896

RESUMEN

Centrifugal blood pumps have become popular for adult extracorporeal membrane oxygenation (ECMO) due to their superior blood handling and reduced thrombosis risk featured by their secondary flow paths that avoid stagnant areas. However, the high rotational speed within a centrifugal blood pump can introduce high shear stress, causing a significant shear-induced hemolysis rate. The Revolution pump, the Rotaflow pump, and the CentriMag pump are three of the leading centrifugal blood pumps on the market. Although many experimental and computational studies have focused on evaluating the hydraulic and hemolytic performances of the Rotaflow and CentriMag pumps, there are few on the Revolution pump. Furthermore, a thorough direct comparison of these three pumps' flow characteristics and hemolysis is not available. In this study, we conducted a computational and experimental analysis to compare the hemolytic performances of the Revolution, Rotaflow, and CentriMag pumps operating under a clinically relevant condition, i.e., the blood flow rate of 5 L/min and pump pressure head of 350 mmHg, for adult ECMO support. In silico simulations were used to characterize the shear stress distributions and predict the hemolysis index, while in vitro blood loop studies experimentally determined hemolysis performance. Comparative simulation results and experimental data demonstrated that the CentriMag pump caused the lowest hemolysis while the Revolution pump generated the highest hemolysis.

3.
Biomed Tech (Berl) ; 67(6): 471-480, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36041741

RESUMEN

In vitro thrombogenicity tests for rotary blood pumps (RBPs) could benefit from assessing coagulation kinematics, as RBP design improves. In this feasibility study, we investigated if the method of thromboelastometry (TEM) is able to assess coagulation kinematics under the in vitro conditions of RBP tests. We conducted in vitro thrombogenicity tests (n=4) by placing Deltastream® DP3 pumps into test loops that were filled with 150 mL of slightly anti-coagulated porcine blood, adjusted to an activated clotting time (ACT) well below clinically recommended levels. Blood samples were taken at certain time points during the experiment until a continuous decrease in pump flow indicated major thrombus formation. Blood samples were analyzed for ACT, platelet count (PLT), and several TEM parameters. While visible thrombus formation was observed in three pumps, ACT indicated an ongoing activation of coagulation, PLT might have indicated platelet consumption. Unexpectedly, most TEM results gave no clear indications. Nonetheless, TEM clotting time obtained by non-anticoagulated and chemically non-activated whole blood (HEPNATEM-CT) appeared to be more sensitive for the activation of coagulation in vitro than ACT, which might be of interest for future pump tests. However, more research regarding standardization of thrombogenicity pump tests is urgently required.


Asunto(s)
Circulación Asistida , Corazón Auxiliar , Trombosis , Porcinos , Animales , Tromboelastografía , Coagulación Sanguínea , Plaquetas
4.
Int J Artif Organs ; 44(11): 829-837, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34494469

RESUMEN

Blood pumps have been increasingly used in mechanically assisted circulation for ventricular assistance and extracorporeal membrane oxygenation support or during cardiopulmonary bypass for cardiac surgery. However, there have always been common complications such as thrombosis, hemolysis, bleeding, and infection associated with current blood pumps in patients. The development of more biocompatible blood pumps still prevails during the past decades. As one of those newly developed pumps, the Breethe pump is a novel extracorporeal centrifugal blood pump with a hybrid magnetic and mechanical bearing with attempt to reduce device-induced blood trauma. To characterize the hydrodynamic and hemolytic performances of this novel pump and demonstrate its superior biocompatibility, we use a combined computational and experimental approach to compare the Breethe pump with the CentriMag and Rotaflow pumps in terms of flow features and hemolysis under an operating condition relevant to ECMO support (flow: 5 L/min, pressure head: ~350 mmHg). The computational results showed that the Breethe pump has a smaller area-averaged wall shear stress (WSS), a smaller volume with a scalar shear stress (SSS) level greater than 100 Pa and a lower device-generated hemolysis index compared to the CentriMag and Rotaflow pumps. The comparison of the calculated residence times among the three pumps indicated that the Breethe pump might have better washout. The experimental data from the in vitro hemolysis testing demonstrated that the Breethe pump has the lowest normalized hemolysis index (NIH) than the CentriMag and Rotaflow pumps. It can be concluded based on both the computational and experimental data that the Breethe pump is a viable pump for clinical use and it has better biocompatibility compared to the clinically accepted pumps.


Asunto(s)
Circulación Asistida , Oxigenación por Membrana Extracorpórea , Corazón Auxiliar , Puente Cardiopulmonar , Hemólisis , Humanos , Hidrodinámica
5.
J Transl Med ; 19(1): 2, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402176

RESUMEN

BACKGROUND: Treating severe forms of the acute respiratory distress syndrome and cardiac failure, extracorporeal membrane oxygenation (ECMO) has become an established therapeutic option. Neonatal or pediatric patients receiving ECMO, and patients undergoing extracorporeal CO2 removal (ECCO2R) represent low-flow applications of the technology, requiring lower blood flow than conventional ECMO. Centrifugal blood pumps as a core element of modern ECMO therapy present favorable operating characteristics in the high blood flow range (4 L/min-8 L/min). However, during low-flow applications in the range of 0.5 L/min-2 L/min, adverse events such as increased hemolysis, platelet activation and bleeding complications are reported frequently. METHODS: In this study, the hemolysis of the centrifugal pump DP3 is evaluated both in vitro and in silico, comparing the low-flow operation at 1 L/min to the high-flow operation at 4 L/min. RESULTS: Increased hemolysis occurs at low-flow, both in vitro and in silico. The in-vitro experiments present a sixfold higher relative increased hemolysis at low-flow. Compared to high-flow operation, a more than 3.5-fold increase in blood recirculation within the pump head can be observed in the low-flow range in silico. CONCLUSIONS: This study highlights the underappreciated hemolysis in centrifugal pumps within the low-flow range, i.e. during pediatric ECMO or ECCO2R treatment. The in-vitro results of hemolysis and the in-silico computational fluid dynamic simulations of flow paths within the pumps raise awareness about blood damage that occurs when using centrifugal pumps at low-flow operating points. These findings underline the urgent need for a specific pump optimized for low-flow treatment. Due to the inherent problems of available centrifugal pumps in the low-flow range, clinicians should use the current centrifugal pumps with caution, alternatively other pumping principles such as positive displacement pumps may be discussed in the future.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Insuficiencia Cardíaca , Niño , Simulación por Computador , Hemodinámica , Hemólisis , Humanos , Recién Nacido
6.
Crit Care ; 23(1): 348, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694688

RESUMEN

BACKGROUND: Extracorporeal carbon dioxide removal (ECCO2R) uses an extracorporeal circuit to directly remove carbon dioxide from the blood either in lieu of mechanical ventilation or in combination with it. While the potential benefits of the technology are leading to increasing use, there are very real risks associated with it. Several studies demonstrated major bleeding and clotting complications, often associated with hemolysis and poorer outcomes in patients receiving ECCO2R. A better understanding of the risks originating specifically from the rotary blood pump component of the circuit is urgently needed. METHODS: High-resolution computational fluid dynamics was used to calculate the hemodynamics and hemocompatibility of three current rotary blood pumps for various pump flow rates. RESULTS: The hydraulic efficiency dramatically decreases to 5-10% if operating at blood flow rates below 1 L/min, the pump internal flow recirculation rate increases 6-12-fold in these flow ranges, and adverse effects are increased due to multiple exposures to high shear stress. The deleterious consequences include a steep increase in hemolysis and destruction of platelets. CONCLUSIONS: The role of blood pumps in contributing to adverse effects at the lower blood flow rates used during ECCO2R is shown here to be significant. Current rotary blood pumps should be used with caution if operated at blood flow rates below 2 L/min, because of significant and high recirculation, shear stress, and hemolysis. There is a clear and urgent need to design dedicated blood pumps which are optimized for blood flow rates in the range of 0.5-1.5 L/min.


Asunto(s)
Diseño de Equipo/normas , Oxigenación por Membrana Extracorpórea/instrumentación , Ensayo de Materiales/métodos , Diseño de Equipo/estadística & datos numéricos , Circulación Extracorporea/métodos , Circulación Extracorporea/normas , Oxigenación por Membrana Extracorpórea/tendencias , Hemodinámica/fisiología , Humanos , Estrés Mecánico
7.
Perfusion ; 31(8): 662-667, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27272509

RESUMEN

OVERVIEW:: Recent advances in blood pump technology have led to an increased use of centrifugal pumps for prolonged extracorporeal membrane oxygenation (ECMO). Data from the Extracorporeal Life Support Organization confirms that many institutions have converted to centrifugal pumps after prior experience with roller pump technology. Centrifugal pump technology is more compact and may generate less heat and hemolysis than a conventional roller pump. Based on the potential advantages of centrifugal pumps, a decision was made institution-wide to convert to centrifugal pump technology in pediatric implementation of ECMO. Based on limited prior experience with centrifugal pumps, a multidisciplinary approach was used to implement this new technology. The new centrifugal pump (Sorin Revolution, Arvada, CO) was intended for ECMO support in the cardiac intensive care unit (CICU), the pediatric intensive care unit (PICU) and the neonatal intensive care unit (NICU). DESCRIPTION:: The perfusion team used their knowledge and expertise with centrifugal pumps to create the necessary teaching tools and interactive training sessions for the technical specialists who consisted primarily of registered nurses and respiratory therapists. The first phase consisted of educating all personnel involved in the care of the ECMO patient, followed by patient implementation in the CICU, followed by the PICU and NICU. CONCLUSION:: The institution-wide conversion took several months to complete and was well received among all disciplines in the CICU and PICU. The NICU personnel did use the centrifugal pump circuit, but decided to revert back to using the roller pump technology. A systematic transition from roller pump to centrifugal pump technology with a multidisciplinary team can ensure a safe and successful implementation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA