Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Cytogenet ; 15(1): 40, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064723

RESUMEN

BACKGROUND: Hemophilia A is considered one of the most common severe hereditary disorders. It is an X-linked recessive disease caused by a deficiency or lack of function of the blood clotting factor VIII. Klinefelter syndrome is a genetic disorder that affects male individuals due to one or more extra X chromosomes, present in all cells or with mosaicism. The aneuploidy is due to either mitotic or meiotic chromosome non-disjunction. Chromosomal translocations are a group of genome abnormalities in which a region or regions of a chromosome break and are transferred to a nonhomologous chromosome or a new location in the same chromosome. CASE PRESENTATION: Our subject was born in Ecuador at 36 weeks of gestation by vaginal delivery. At 3 months old, the Factor VIII activity measure showed a 23.7% activity indicating a diagnosis of mild hemophilia A. At 1 year old, the karyotype showed an extra X chromosome, consistent with a diagnosis of Klinefelter syndrome, and a translocation between the long arms of chromosomes 1 and 19, at positions q25 and q13, respectively. CONCLUSIONS: Klinefelter syndrome and hemophilia are a rare combination. In the present case report, the subject presents both, meaning that he has inherited one X chromosome from the father and one X chromosome from the mother. Since the father has severe hemophilia A; and the subject presents a below 40% Factor VIII activity, a skewed X inactivation is suggested. Additionally, the proband presents a translocation with the karyotype 47,XXY,t(1;19)(q25;q13). No similar report with phenotypic consequences of the translocation was found. The present report highlights the importance of a correct diagnosis, based not only on the clinical manifestations of a disease but also on its genetic aspects, identifying the value of integrated diagnostics. The subject presents three different genetic alterations, Klinefelter syndrome, hemophilia A, and a 1;19 chromosomal translocation.

2.
Mol Syndromol ; 10(5): 264-271, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32021597

RESUMEN

Wolf-Hirschhorn syndrome (WHS) is caused by a distal 4p monosomy usually involving the region of the WHSC1 and WHSC2 genes. About 40-45% of WHS patients show an unbalanced translocation leading to both 4p monosomy and partial trisomy of another chromosome arm. In this case report, we describe 2 female cousins (P1 and P2) with a derivative chromosome leading to a 4p16.3pter deletion and 12q24.31qter duplication. Conventional karyotyping and genomic analyses showed that they both had the same rearrangement derived from a balanced parental translocation involving chromosomes 4 and 12, t(4;12)(p16.3;q24.31). The rearrangements occurred between 4p16.3pter and 12q24.31qter detected by array-CGH analysis, with a 2.7-Mb loss at 4p and a large 12.4-Mb gain at 12q. Both affected patients shared global developmental delay and craniofacial dysmorphisms with some distinct phenotypic findings associated with both WHS and 12qter trisomy. P2 was more severely impaired than P1, and she showed severe intellectual disability, seizures, midface hypoplasia, unilateral microtia, and deafness which were absent in P1. Previous studies of distal 4p monosomies have found phenotypic variability in WHS which does not correlate with haploinsufficiency of specific genes. Features of 12q trisomies are diverse with developmental and growth delay, intellectual disability, behavioral problems, and facial abnormalities. Collectively, our analysis of the literature of 3 similar translocations involving 4p and 12q, together with the clinical features of the affected cousins in this familial translocation, permits an evaluation of genes closely linked to WHSC1 and WHSC2 in the context of WHS and the genes involved in 12q trisomy.

3.
Int J Mol Sci ; 20(10)2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096545

RESUMEN

Acute lymphoblastic leukemia is the most common type of childhood cancer worldwide. Mexico City has one of the highest incidences and mortality rates of this cancer. It has previously been recognized that chromosomal translocations are important in cancer etiology. Specific fusion genes have been considered as important treatment targets in childhood acute lymphoblastic leukemia (ALL). The present research aimed at the identification and characterization of novel fusion genes with potential clinical implications in Mexican children with acute lymphoblastic leukemia. The RNA-sequencing approach was used. Four fusion genes not previously reported were identified: CREBBP-SRGAP2B, DNAH14-IKZF1, ETV6-SNUPN, ETV6-NUFIP1. Although a fusion gene is not sufficient to cause leukemia, it could be involved in the pathogenesis of the disease. Notably, these new translocations were found in genes encoding for hematopoietic transcription factors which are known to play an important role in leukemogenesis and disease prognosis such as IKZF1, CREBBP, and ETV6. In addition, they may have an impact on the prognosis of Mexican pediatric patients with ALL, with the potential to be included in the current risk stratification schemes or used as therapeutic targets.


Asunto(s)
Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Translocación Genética/genética , Adolescente , Adulto , Proteína de Unión a CREB/genética , Niño , Preescolar , Dineínas/genética , Femenino , Proteínas Activadoras de GTPasa/genética , Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico , Humanos , Factor de Transcripción Ikaros/genética , Lactante , Masculino , México , Proteínas Nucleares/genética , Pronóstico , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas de Unión a Caperuzas de ARN/genética , Proteínas de Unión al ARN/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética , Adulto Joven , Proteína ETS de Variante de Translocación 6
4.
J Cell Biochem ; 114(11): 2569-76, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23744730

RESUMEN

One of the most frequent chromosomal translocation found in patients with acute myeloid leukemia (AML) is the t(8;21). This translocation involves the RUNX1 and ETO genes. The breakpoints regions for t(8;21) are located at intron 5 and intron 1 of the RUNX1 and ETO gene respectively. To date, no homologous sequences have been found in these regions to explain their recombination. The breakpoint regions of RUNX1 gene are characterized by the presence of DNasaI hypersensitive sites and topoisomerase II cleavage sites, but no information exists about complementary regions of ETO gene. Here, we report analysis of chromatin structure of ETO breakpoint regions. Chromatin immunoprecipitation (ChIP) were performed with antibodies specific to acetylated histone H3, H4, and total histone H1. Nucleosomal distribution at the ETO locus was evaluated by determining total levels of histone H3. Our data show that in myeloid cells, the breakpoint regions at the ETO gene are enriched in hyperacetylated histone H3 compared to a control region of similar size where no translocations have been described. Moreover, acetylated H4 associates with both the whole ETO breakpoint regions as well as the control intron. Interestingly, we observed no H1 association either at the breakpoint regions or the control region of the ETO gene. Our data indicate that a common chromatin structure enriched in acetylated histones is present in breakpoint regions involved in formation of (8;21) leukemic translocation.


Asunto(s)
Cromosomas Humanos Par 21/metabolismo , Cromosomas Humanos Par 8/metabolismo , Histonas/metabolismo , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Translocación Genética/fisiología , Acetilación , Inmunoprecipitación de Cromatina , Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 8/genética , Células HL-60 , Humanos , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 Compañera de Translocación de RUNX1 , Factores de Transcripción/metabolismo , Translocación Genética/genética
5.
Genet Mol Biol ; 33(1): 27-35, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21637601

RESUMEN

In silkworms, sex-limited strains are either obtained spontaneously or induced by X-rays or gamma rays. When a fragment of an autosome carrying a dominant allele of those genes responsible for certain characters is translocated onto a W chromosome, the female of the successive generations will express these phenotypic characters and sex discrimination can be facilitated. Gensei-kouken strains are sex-limited strains of silkworms developed by irradiating the pupae with gamma rays, by which a portion of the second chromosome is translocated onto the W chromosome. In these improved strains, the females are yellow-blooded and spin yellow cocoons. By using the EST-cDNA clones mapped on the Z chromosome, we identified the sex according to the polymorphic banding pattern or intensity of the signals. Furthermore, by using the clones on the second chromosome, the region of the second chromosome translocated onto the W chromosome was also defined. In both the A95 and A 96 strains selected for the present study, only the mid-portion of the second chromosome was translocated. The differences in length of the fragments translocated in these strains are discussed.

6.
Genet. mol. biol ; Genet. mol. biol;33(1): 27-35, 2010. ilus, tab
Artículo en Inglés | LILACS | ID: lil-566140

RESUMEN

In silkworms, sex-limited strains are either obtained spontaneously or induced by X-rays or gamma rays. When a fragment of an autosome carrying a dominant allele of those genes responsible for certain characters is translocated onto a W chromosome, the female of the successive generations will express these phenotypic characters and sex discrimination can be facilitated. Gensei-kouken strains are sex-limited strains of silkworms developed by irradiating the pupae with gamma rays, by which a portion of the second chromosome is translocated onto the W chromosome. In these improved strains, the females are yellow-blooded and spin yellow cocoons. By using the EST-cDNA clones mapped on the Z chromosome, we identified the sex according to the polymorphic banding pattern or intensity of the signals. Furthermore, by using the clones on the second chromosome, the region of the second chromosome translocated onto the W chromosome was also defined. In both the A95 and A 96 strains selected for the present study, only the mid-portion of the second chromosome was translocated. The differences in length of the fragments translocated in these strains are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA