Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 802
Filtrar
1.
Inflammation ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212888

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease featured by chronic synovitis and progressive joint damage. Early treatment before the onset of clinical symptoms (also known as the pre-RA stage) may slow or stop the progression of the disease. We sought to discover the dynamic metabolic changes during the evolution of collagen-induced arthritis (CIA) to better characterize the disease stages. Untargeted metabolomics analysis using gas chromatography-mass spectrometry revealed that the metabolic profiles of CIA mice gradually differed from that of the control group with the progression of the disease. During the induction phase, the CIA group showed some metabolic alterations in galactose metabolism, arginine biosynthesis, tricarboxylic acid cycle (TCA cycle), pyruvate metabolism, and starch/sucrose metabolism. During the early inflammatory phase, no joint swelling was observed in CIA mice, and metabolites changed mainly involving amino acid metabolism (arginine biosynthesis, arginine/proline metabolism, phenylalanine/tyrosine/tryptophan biosynthesis), and glutathione metabolism. During the peak inflammatory phase, severe arthritis symptoms were observed in CIA mice, and there were more extensive metabolic alterations in valine/leucine/isoleucine biosynthesis, phenylalanine/tyrosine/tryptophan biosynthesis, TCA cycle, galactose metabolism, and arginine biosynthesis. Moreover, the reduction of specific amino acids, such as glycine, serine, and proline, during the early stages may result in an imbalance in macrophage polarization and enhance the inflammatory response in CIA mice. Our study confirmed that specific perturbations in amino acid metabolism have occurred in CIA mice prior to the onset of joint symptoms, which may be related to autoimmune disorders. The findings could provide insights into the metabolic mechanism and the diagnosis of pre-RA.

2.
Inflammation ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153148

RESUMEN

Conflicting data exist in rheumatoid arthritis and the collagen-induced arthritis (CIA) murine model of autoimmune arthritis regarding the role of bacterial carnitine and choline metabolism into the inflammatory product trimethylamine (TMA), which is oxidized in the liver to trimethylamine-N-oxide (TMAO). Using two published inhibitors of bacterial TMA lyase, 3,3-dimethyl-1-butanol (DMB) and fluoromethylcholine (FMC), we tested if TMA/TMAO were relevant to inflammation in the development of CIA. Surprisingly, DMB-treated mice demonstrated > 50% reduction in arthritis severity compared to FMC and vehicle-treated mice, but amelioration of disease was independent of TMA/TMAO production. Given the apparent contradiction that DMB did not inhibit TMA, we then investigated the mechanism of protection by DMB. After verifying that DMB acted independently of the intestinal microbiome, we traced the metabolism of DMB within the host and identified a novel host-derived metabolite of DMB, 3,3-dimethyl-1-butyric acid (DMBut). In vivo studies of mice treated with DMB or DMBut demonstrated efficacy of both molecules in significantly reducing disease and proinflammatory cytokines in CIA, while in vitro studies suggest these molecules may act by modulating secretion of proinflammatory cytokines from macrophages. Altogether, our study suggests that DMB and/or its metabolites are protective in CIA through direct immunomodulatory effects rather than inhibition of bacterial TMA lyases.

3.
Front Pharmacol ; 15: 1423884, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108758

RESUMEN

Background: Fu-zi decoction (FZD) has a long history of application for treating Rheumatoid arthritis (RA) as a classic formulation. However, its underlying mechanisms have not been fully elucidated. This study aimed to decipher the potential mechanism of FZD in treating RA, with a specific focus on receptor activator of nuclear factor κB/receptor activator of nuclear factor κB ligand (RANK/RANKL) signaling pathway. Methods: The impact of FZD on RA was investigated in collagen-induced arthritis rats (CIA), and the underlying mechanism was investigated in an osteoclast differentiation cell model. In vivo, the antiarthritic effect of FZD at various doses (2.3, 4.6, 9.2 g/kg/day) was evaluated by arthritis index score, paw volume, toe thickness and histopathological examination of inflamed joints. Additionally, the ankle joint tissues were determined with micro-CT and safranin O fast green staining to evaluate synovial hyperplasia and articular cartilage damage. In vitro, osteoclast differentiation and maturation were evaluated by TRAP staining in RANKL-induced bone marrow mononuclear cells. The levels of pro- and anti-inflammatory cytokines as well as RANKL and OPG were evaluated by ELISA kits. In addition, Western blotting was used to investigate the effect of FZD on RANK/RANKL pathway activation both in vivo and in vitro. Results: FZD significantly diminished the arthritis index score, paw volume, toe thickness and weigh loss in CIA rats, alleviated the pathological joint alterations. Consistent with in vivo results, FZD markedly inhibited RANKL-induced osteoclast differentiation by decreasing osteoclast numbers in a dose-dependent manner. Moreover, FZD decreased the levels of pro-inflammatory cytokines IL-6, IL-1ß and TNF-α, while increasing anti-inflammatory cytokine IL-10 level both in serum and culture supernatants. Treatment with FZD significantly reduced serum RANKL levels, increased OPG levels, and decreased the RANKL/OPG ratio. In both in vivo and in vitro settings, FZD downregulated the protein expressions of RANK, RANKL, and c-Fos, while elevating OPG levels, further decreasing the RANKL/OPG ratio. Conclusion: In conclusion, FZD exerts a therapeutic effect in CIA rats by inhibiting RANK/RANKL-mediated osteoclast differentiation, which suggested that FZD is a promising treatment for RA.

4.
Int Immunopharmacol ; 139: 112738, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39053232

RESUMEN

BACKGROUND: Rheumatoid arthritis, a condition characterized by inflammation, has a substantial influence on both the worldwide economy and public health. Prior studies indicate that probiotics have the potential to enhance the composition of gut microbiota in instances of intestinal dysbiosis resulting from different disorders and contribute to the regulation of inflammation. The objective of this study is to investigate the impact of Saccharomyces boulardii on the gut microbiome in arthritis and its implications on inflammation. METHODS: The study utilized the Collagen Induced Arthritis (CIA) Sprague-Dawley (SD) rat model. After administering Saccharomyces boulardii (150 mg/kg/day) six days a week and Methotrexate (MTX) (0.2 mg/week) treatment for eight weeks, microbial DNA from the feces was sequenced using 16S rRNA. The evaluation of histopathology, bone loss, and cartilage degradation was conducted using histology, immunohistology assays, and micro-computed tomography (µCT) examinations. The enzyme-linked immunosorbent assay (ELISA) was used to analyze proinflammatory cytokines, while the western blot technique was applied to detect protein in the gut and in cell lines. The quantification of gene expression in gut,joint and cell lines was performed using real-time polymerase chain reaction. The cell lines were activated and then treated with the culture supernatant of S. boulardii for an in vitro investigation. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was utilized to assess cell proliferationand viability. Cellular motility was measured in a wound healing experiment, whereas apoptotic proteins were analyzed using Western blotting. RESULTS: S. boulardii has been found to enhance bone and joint integrity, modulate gut microbiota, and mitigate proinflammatory cytokine levels in rats with arthritis. It decreases the permeability of the intestines and promotes the production of gut tight-junction proteins. The administration of S. boulardii inhibits the proliferation of T-helper-17 (Th17) and Type 3 innate lymphoid cells (ILC3). Additionally, it elicits apoptosis in MH7A cell lines and hinders their migratory activity. CONCLUSION: This study provides valuable insights into the therapeutic potential of S. boulardii for treating and preventing arthritis in rats with collagen-induced arthritis by modulating gut microbiota and inflammation.


Asunto(s)
Artritis Experimental , Microbioma Gastrointestinal , Mucosa Intestinal , FN-kappa B , Probióticos , Ratas Sprague-Dawley , Saccharomyces boulardii , Transducción de Señal , Receptor Toll-Like 2 , Animales , Artritis Experimental/inmunología , Artritis Experimental/terapia , Probióticos/uso terapéutico , FN-kappa B/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/microbiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Ratas , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Humanos , Citocinas/metabolismo , Línea Celular , Artritis Reumatoide/terapia , Artritis Reumatoide/inmunología , Factor 88 de Diferenciación Mieloide
5.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3061-3069, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041166

RESUMEN

In order to study the toxic effect and mechanism of triptolide(TP) on the reproductive system of female rats with Ⅱ type collagen induced arthritis(CIA), 50 SD rats were randomly divided into normal control group, CIA model group, and three groups receiving TP tablets at clinically equivalent doses of 0. 5, 1, and 2 times, respectively(with TP dosages of 3. 75, 7. 5, and 15 µg·kg~(-1)·d~(-1)), each comprising 10 rats. Intragastric administration was started on the day after the first immunization, once a day, for 42 days.The results were taken on the 21st and 42nd days to calculate the uterine and ovarian organ indexes; pathological and morphological changes in uterus and ovaries were observed under a light microscope; and the levels of estradiol(E_2) and cytochrome P450A1(aromatase,CYP19A1) in ovarian homogenate were detected by ELISA. Furthermore, immunohistochemistry was employed to detect the expression levels of transforming growth factor ß3( TGFß3) pathway-related proteins, mothers against decapentaplegic homolog 3(Smad3) and steroidogenic factor-1(SF-1) in ovarian tissues. In vitro, the mouse Chinese hamster ovary(CHO) cell line was established, and after 24 hours of TP administration(30, 60, 120 nmol·L~(-1)), cell proliferation was detected by the thiazolyl blue tetrazolium bromide(MTT) method, apoptosis by the flow cytometry, and TGFß3, Smad3 and SF-1 protein expression in cells by the Western blot method, and the nuclear entry of SF-1 was detected by immunofluorescence. The results showed that compared with the CIA model group, all TP administration groups showed decreased number of uterine glands, total follicles, mature follicles, and corpus luteum on days 21 and 42 of administration, but there was no statistical difference, and only the administration of 2 times the clinically equivalent dose of TP could significantly increase the number of atretic follicles at 42 days of administration. TP at 3. 75 µg·kg-1·d-1significantly reduced the level of E_2 at 21 days of administration and the expression of TGFß3 and Smad3 factors in ovarian tissues,but had no significant effect on the rate-limiting enzyme in estrogen synthesis CYP19A1. TP at 7. 5 and 15 µg·kg~(-1)·d~(-1) significantly reduced the expression of SF-1 regardless of administration for 21 days or 42 days. TP can significantly promote ovarian cell apoptosis in vitro, with apoptosis mainly concentrated in the late stage of apoptosis after 24 hours of administration. In addition, 60 nmol·L~(-1) TP significantly reduced the protein expression of TGFß3, Smad3 and SF-1 in a dose-dependent manner. In summary, intragastric administration of TP at less than 2 times the clinically equivalent dose for 21 days and 42 days did not cause obvious reproductive damage to the uterus and ovarian tissues of CIA rats, and the number of atretic follicles changed significantly only when the 2 times the clinically equivalent dose was administered for 42 days. TP exerted reproductive toxicity in vivo on reproductive target organs and in vitro on ovarian cells by inhibiting the expression of TGFß3/Smad3/SF-1 pathway.


Asunto(s)
Diterpenos , Compuestos Epoxi , Ovario , Fenantrenos , Ratas Sprague-Dawley , Útero , Animales , Femenino , Diterpenos/farmacología , Fenantrenos/toxicidad , Ratas , Compuestos Epoxi/toxicidad , Compuestos Epoxi/administración & dosificación , Ovario/efectos de los fármacos , Ovario/metabolismo , Útero/efectos de los fármacos , Útero/metabolismo , Colágeno Tipo II/metabolismo , Proteína smad3/metabolismo , Proteína smad3/genética , Humanos , Reproducción/efectos de los fármacos , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Estradiol
6.
Biology (Basel) ; 13(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39056709

RESUMEN

BACKGROUND: The effects of collagen-induced arthritis (CIA), a model of systemic inflammation, on brain regional molecular markers associated with neurological disorders are uncertain. OBJECTIVE: This study investigated the brain regional molecular changes in markers associated with inflammation and neuronal dysfunction in a CIA model. METHODS: Fourteen male Sprague Dawley rats were divided into control (n = 5) or CIA (n = 9) groups. 10 weeks after CIA induction, brain tissue was collected. Brain regional mRNA expression of inflammatory markers (IL-1ß and IL-6), apoptotic markers (BAX and Bcl2) and neurotrophic factors (BDNF, CREB and TrkB) was determined. Monoamine distribution and abundance in different brain regions were determine by mass spectrometry imaging (MSI). RESULTS: Neuroinflammation was confirmed in the CIA group by increased IL-ß mRNA expression, concurrent with an increased BAX/Bcl2 ratio. The mRNA expression of CREB was increased in the midbrain and hippocampus while BDNF was increased and TrkB was decreased across all brain regions in CIA compared to control animals. Serotonin was decreased in the midbrain and hippocampus while dopamine was decreased in the striatum of CIA rats, compared to controls. CONCLUSION: CIA resulted in neuroinflammation concurrent with an apoptotic state and aberrant expression of neurotrophic factors and monoamines in the brain, suggestive of neurodegeneration.

7.
J Pharm Pharmacol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39066578

RESUMEN

OBJECTIVES: Rheumatoid arthritis (RA) seriously affects the daily life of people. The whole plant of Artemisia ordosica Krasch. (AOK) has been used in folk medicine. This study aimed to investigate the in vivo anti-RA effects of AOK extract (AOKE) on collagen-induced arthritis in rats. METHODS: AOKE (400, 200, or 100 mg/kg) was administered orally to animals for 30 days. Body weight, paw swelling, arthritis index, thymus, and spleen indices, and pathological changes were assessed for effects of AOKE on RA. Furthermore, the inflammatory cytokines in rat serum were detected. In addition, the expressions of STAT3, Caspase-3, Galectin-3, and S100A9 in synovial tissue were researched using immunohistochemistry. KEY FINDINGS: The AOKE significantly reduced the arthritis indices, paw swelling, spleen, and thymus indices. Meanwhile, AOKE (400 mg/kg) decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-17A, and increased the level of IL-10 in rat serum. Histopathological examination showed that AOKE reduced inflammatory cell infiltration and cartilage erosion. Then, AOKE decreased the expressions of STAT3, Galectin-3, S100A9, and increased the expression of Caspase-3. CONCLUSION: AOKE had interesting anti-RA activity in rats, which deserved further research for the development and clinical use of this medicinal resource.

8.
J Nanobiotechnology ; 22(1): 423, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026367

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease marked by synovitis and cartilage destruction. The active compound, icariin (ICA), derived from the herb Epimedium, exhibits potent anti-inflammatory properties. However, its clinical utility is limited by its water insolubility, poor permeability, and low bioavailability. To address these challenges, we developed a multifunctional drug delivery system-adipose-derived stem cells-exosomes (ADSCs-EXO)-ICA to target active macrophages in synovial tissue and modulate macrophage polarization from M1 to M2. High-performance liquid chromatography analysis confirmed a 92.4 ± 0.008% loading efficiency for ADSCs-EXO-ICA. In vitro studies utilizing cellular immunofluorescence (IF) and flow cytometry demonstrated significant inhibition of M1 macrophage proliferation by ADSCs-EXO-ICA. Enzyme-linked immunosorbent assay, cellular transcriptomics, and real-time quantitative PCR indicated that ADSCs-EXO-ICA promotes an M1-to-M2 phenotypic transition by reducing glycolysis through the inhibition of the ERK/HIF-1α/GLUT1 pathway. In vivo, ADSCs-EXO-ICA effectively accumulated in the joints. Pharmacodynamic assessments revealed that ADSCs-EXO-ICA decreased cytokine levels and mitigated arthritis symptoms in collagen-induced arthritis (CIA) rats. Histological analysis and micro computed tomography confirmed that ADSCs-EXO-ICA markedly ameliorated synovitis and preserved cartilage. Further in vivo studies indicated that ADSCs-EXO-ICA suppresses arthritis by promoting an M1-to-M2 switch and suppressing glycolysis. Western blotting supported the therapeutic efficacy of ADSCs-EXO-ICA in RA, confirming its role in modulating macrophage function through energy metabolism regulation. Thus, this study not only introduces a drug delivery system that significantly enhances the anti-RA efficacy of ADSCs-EXO-ICA but also elucidates its mechanism of action in macrophage function inhibition.


Asunto(s)
Tejido Adiposo , Artritis Reumatoide , Exosomas , Flavonoides , Macrófagos , Animales , Flavonoides/farmacología , Flavonoides/química , Exosomas/metabolismo , Ratas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Tejido Adiposo/citología , Masculino , Artritis Experimental/tratamiento farmacológico , Ratas Sprague-Dawley , Sistemas de Liberación de Medicamentos/métodos , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos
9.
J Ethnopharmacol ; 334: 118524, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38971344

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: As a traditional Chinese medicine, the flower of Rhododendron molle G. Don (RMF) is record in the Chinese pharmacopoeia, and is commonly utilized for treating rheumatoid arthritis (RA) in clinical practice. However, its precise mechanisms necessitate further exploration. AIM OF THE STUDY: To expound the effective components, targets, metabolites, and pathways participated in RMF's anti-RA effects by metabolomics integrated network pharmacology. MATERIALS AND METHODS: CIA rats were intragastric administered RMF for 2 weeks, following which the therapeutic effects were comprehensively evaluated. Serum metabolomics was adopted to investigate the differential metabolites (DEMs). UHPLC-Q-Exactive-MS method was applied to identify the components of RMF, and then network pharmacology was utilize to select the component-RA-targets. Molecular docking and Western blotting were utilized to validate the key targets. RESULTS: RA symptoms were alleviated by RMF through the inhibition secretion of pro-inflammatory factors IL-1ß, IL-6 and TNF-α, along with relief in bone destruction observed in CIA rats. Four targets, namely AKR1B1, TPH1, CYP1A1, and CYP1A2, were identified, along with their corresponding metabolites, namely D-glucose, D-mannose, L-tryptophan, 11-deoxycorticosterone, and 17α-hydroxyprogesterone. These were found to be involved in three key metabolic pathways: steroid hormone biosynthesis, tryptophan metabolism, and galactose metabolism. Additionally, five significant anti-RA active components were identified from RMF, including Rhodojaponin (Rj)-Ⅱ, Rj-Ⅲ, Rj-Ⅴ, Rj-Ⅵ, and quercetin. CONCLUSIONS: The anti-RA mechanisms of RMF were investigated in this study, focusing on active components, upstream targets, and downstream metabolites. These findings lay a foundation for the clinical practice and drug development of RMF.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Flores , Metabolómica , Farmacología en Red , Rhododendron , Animales , Rhododendron/química , Flores/química , Artritis Reumatoide/tratamiento farmacológico , Ratas , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Masculino , Antirreumáticos/farmacología , Antirreumáticos/aislamiento & purificación , Simulación del Acoplamiento Molecular , Medicamentos Herbarios Chinos/farmacología , Ratas Sprague-Dawley , Extractos Vegetales/farmacología
10.
Front Immunol ; 15: 1381802, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966637

RESUMEN

Background: Yishen-Tongbi Decoction (YSTB), a traditional Chinese prescription, has been used to improve syndromes of rheumatoid arthritis (RA) for many years. Previous research has shown that YSTB has anti-inflammatory and analgesic properties. However, the underlying molecular mechanism of the anti-RA effects of YSTB remains unclear. Purpose and study design: The purpose of this research was to investigate how YSTB affected mice with collagen-induced arthritis (CIA) and RAW264.7 cells induced with lipopolysaccharide (LPS). Results: The findings show that YSTB could significantly improve the clinical arthritic symptoms of CIA mice (mitigate paw swelling, arthritis score, thymus and spleen indices, augment body weight), downregulated expression of pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), IL-6 and IL-17, while upregulated the level of anti-inflammatory like IL-10 and transforming growth factor-ß (TGF-ß). Meanwhile, YSTB inhibits bone erosion and reduces inflammatory cell infiltration, synovial proliferation, and joint destruction in CIA mice. In addition, we found that YSTB was able to suppress the LPS-induced inflammation of RAW264.7 cells, which was ascribed to the suppression of nitric oxide (NO) production and reactive oxygen species formation (ROS). YSTB also inhibited the production of inducible nitric oxide synthase and reduced the releases of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 in LPS-induced RAW264.7 cells. Furthermore, the phosphorylation expression of JAK2, JAK3, STAT3, p38, ERK and p65 protein could be suppressed by YSTB, while the expression of SOCS3 could be activated. Conclusion: Taken together, YSTB possesses anti-inflammatory and prevention bone destruction effects in RA disease by regulating the JAK/STAT3/SOCS3 signaling pathway.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Medicamentos Herbarios Chinos , Quinasas Janus , Factor de Transcripción STAT3 , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas , Animales , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Células RAW 264.7 , Factor de Transcripción STAT3/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Experimental/metabolismo , Transducción de Señal/efectos de los fármacos , Quinasas Janus/metabolismo , Masculino , Citocinas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Ratones Endogámicos DBA , Modelos Animales de Enfermedad
11.
Immunol Rev ; 325(1): 90-106, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38867408

RESUMEN

Rheumatoid arthritis (RA) is considered a multifactorial condition where interaction between the genetic and environmental factors lead to immune dysregulation causing autoreactivity. While among the various genetic factors, HLA-DR4 and DQ8, have been reported to be the strongest risk factors, the role of various environmental factors has been unclear. Though events initiating autoreactivity remain unknown, a mucosal origin of RA has gained attention based on the recent observations with the gut dysbiosis in patients. However, causality of gut dysbiosis has been difficult to prove in humans. Mouse models, especially mice expressing RA-susceptible and -resistant HLA class II genes have helped unravel the complex interactions between genetic factors and gut microbiome. This review describes the interactions between HLA genes and gut dysbiosis in sex-biased preclinical autoreactivity and discusses the potential use of endogenous commensals as indicators of treatment efficacy as well as therapeutic tool to suppress pro-inflammatory response in rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide , Autoinmunidad , Disbiosis , Microbioma Gastrointestinal , Artritis Reumatoide/inmunología , Artritis Reumatoide/terapia , Artritis Reumatoide/etiología , Humanos , Microbioma Gastrointestinal/inmunología , Animales , Disbiosis/inmunología , Modelos Animales de Enfermedad , Ratones , Antígeno HLA-DR4/inmunología , Antígeno HLA-DR4/genética , Antígenos HLA-DQ/inmunología , Antígenos HLA-DQ/genética
12.
J Ethnopharmacol ; 334: 118463, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38908493

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Wutou Decoction (WTD) is a classic traditional Chinese medicine formula, which has shown clinical efficacy in treating rheumatoid arthritis (RA). The Treg stability and Th17/Treg imbalance is an important immunological mechanism in RA progression. Whether WTD regulates CD4+ T cell subsets has not been thoroughly investigated yet. AIM OF THE STUDY: This study aimed to explore the potential role and mechanisms of WTD in regulating the diminished stability of Treg cells and the imbalance of CD4+ T cell subsets via in vivo and in vitro experiments. MATERIALS AND METHODS: Firstly, the therapeutic effects of WTD on the collagen-induced arthritis (CIA) mouse and its potential regulatory function on CD4+ T cell subsets were evaluated in vivo. Animal specimens were collected after 31 days of treatment with WTD. The anti-arthritic and anti-inflammatory effects of WTD were assessed through arthritis scoring, body weight, spleen index, serum IL-6 levels, and micro-PET/CT imaging. Gene enrichment analysis was performed to evaluate the activation T cell-related signaling pathway. Flow cytometry was used to determine the proportions of CD4+ T cell subsets in vitro and in vitro. Additionally, ELISA was used to assess the secretion of IL-10 and TGF-ß by Treg cells under inflammatory conditions. The suppressive function of Treg cells on cell proliferation under inflammatory conditions was examined using CFSE labeling. Immunofluorescence staining was performed to detect the phosphorylation levels of STAT3 in CD4+ T cells from mouse spleen tissues. Western blotting was used to evaluate the phosphorylation levels of JAK2/STAT3 in Treg cells. RESULTS: WTD significantly alleviated joint inflammation in CIA mice. WTD reduced serum IL-6 levels in CIA mice, improved their body weight and spleen index. WTD treatment inhibited the activation of CD4+ T cell subgroup-related signaling in the joint tissues of CIA mice. In vitro and in vitro experiments showed that WTD increased the proportion of Treg cells and decreased the proportion of Th17 cells in CIA mice spleen. Furthermore, WTD promoted the secretion of IL-10 and TGF-ß by Treg cells and enhanced the inhibitory capacity of Treg cells on cell proliferation under inflammatory conditions. Immunofluorescence detected decreased STAT3 phosphorylation levels in CD4+ T cells from CIA mice spleen, while western blotting revealed a decrease in JAK2/STAT3 phosphorylation levels in Treg cells in vitro. CONCLUSIONS: Inhibiting JAK2/STAT3 phosphorylation is a potential mechanism through which WTD improves Treg cell stability, balances CD4+ T cell subsets, and attenuates RA joint inflammation.


Asunto(s)
Artritis Experimental , Medicamentos Herbarios Chinos , Janus Quinasa 2 , Ratones Endogámicos DBA , Factor de Transcripción STAT3 , Transducción de Señal , Linfocitos T Reguladores , Células Th17 , Animales , Factor de Transcripción STAT3/metabolismo , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/efectos de los fármacos , Células Th17/inmunología , Janus Quinasa 2/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Transducción de Señal/efectos de los fármacos , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
13.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928413

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease that significantly impacts quality of life by disrupting CD4+ T cell immune homeostasis. The identification of a low-side-effect drug for RA treatment is urgently needed. Our previous study suggests that Trichinella spiralis paramyosin (Ts-Pmy) has immunomodulatory effects, but its potential effect on CD4+ T cell response in RA remains unclear. In this study, we used a murine model to investigate the role of rTs-Pmy in regulating CD4+ T cell differentiation in collagen-induced arthritis (CIA). Additionally, we assessed the impact of rTs-Pmy on CD4+ T cell differentiation towards the Th1 and Th17 phenotypes, which are associated with inflammatory responses in arthritis, using in vitro assays. The results demonstrated that rTs-Pmy administration reduced arthritis severity by inhibiting Th1 and Th17 response while enhancing Treg response. Prophylactic administration of Ts-Pmy showed superior efficacy on CIA compared to therapeutic administration. Furthermore, in vitro assays demonstrated that rTs-Pmy could inhibit the differentiation of CD4+ T cells into Th1 and Th17 while inducing the production of Tregs, suggesting a potential mechanism underlying its therapeutic effects. This study suggests that Ts-Pmy may ameliorate CIA by restoring the immune balance of CD4+ T cells and provides new insights into the mechanism through which helminth-derived proteins exert their effects on autoimmune diseases.


Asunto(s)
Artritis Experimental , Linfocitos T CD4-Positivos , Diferenciación Celular , Células Th17 , Trichinella spiralis , Tropomiosina , Animales , Trichinella spiralis/inmunología , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Experimental/tratamiento farmacológico , Ratones , Diferenciación Celular/efectos de los fármacos , Tropomiosina/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Células TH1/inmunología , Masculino , Proteínas del Helminto/farmacología , Proteínas del Helminto/uso terapéutico , Proteínas del Helminto/inmunología , Artritis Reumatoide/inmunología , Artritis Reumatoide/tratamiento farmacológico , Linfocitos T Reguladores/inmunología , Modelos Animales de Enfermedad , Ratones Endogámicos DBA
14.
J Inflamm Res ; 17: 3587-3602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860009

RESUMEN

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease with abnormal differentiation of follicular helper T (Tfh) cells, Total alkaloids of Sophora alopecuroides Linn. (Leguminosae) (TASA) have potential effects on collagen-induced arthritis (CIA) mice, while the mechanism needs further elucidation. The purpose of this study is to explore the regulation of TASA on rheumatoid arthritis and related mechanism. Methods: The proportion of Tfh and B lymphocytes in peripheral blood lymphocytes of RA patients was examined by flow cytometry. We constructed the collagen induced arthritis DBA/1J mice model. Between days 15 and 45 following the first immunization, the mice were treated intraperitoneally with saline, TASA (100, 50, and 25 mg/kg), and dexamethasone (DXM) for 30 days. Molecular biological techniques such as FCM, PCR, ELISA, and Western-blotting were used to examine Tfh cells and associated signal pathways. Results: Our results indicated that the follicular helper T cells and B lymphocytes in rheumatoid arthritis patients were significantly increased compared with the healthy control. The percentage of Tfh cells are correlated with RA related inflammatory factors. Total alkaloids of Sophora alopecuroides Linn. could significantly attenuate joint swelling. Meanwhile, it reduced the frequencies of spleen Tfh, B lymphocytes and the expression of TLR2, TLR9, p-NF-κBp65, CXCR5, Bcl-6, ICOS of ankle joints in CIA mice. Conclusion: Total alkaloids of Sophora alopecuroides Linn. may down-regulate the frequency and function of Tfh cells and inhibit GCB cells via TLRs/NF-κB signal pathway to relieve the immune-pathological progression of CIA mice.

15.
J Ethnopharmacol ; 333: 118422, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38838922

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese herbal medicine Panax japonicus C.A. Meyer has a long history in clinical treatment of rheumatoid arthritis (RA). Total saponins of Panax japonicus C.A. Meyer (TSPJs) were extracted from the root of Panax japonicus C.A. Meyer, and its anti-rheumatism mechanism is still unclear. AIM OF THE STUDY: To investigate whether TSPJs attenuated synovial angiogenesis in RA and explore the potential mechanisms. MATERIALS AND METHODS: Potential TSPJs targets involving gene function were predicted by network pharmacology related databases. Bioinformatics analysis and molecular docking technology were used to predict the mechanism of TSPJs in the treatment of RA. The predicted results were validated by cell experiments and a collagen-induced arthritis (CIA) mouse model. RESULTS: Bioinformatics analysis results showed that TSPJs may inhibit RA-related angiogenesis through the hypoxia-inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) pathways. In vitro, different doses of TSPJs showed a good inhibitory effect on the tube formation of EA.hy926 cells. The results of the cellular thermal shift assay indicated that TSPJs can bind to the HIF-1α, VEGFA, and angiopoietin-1 (ANG-1) proteins. In vivo, the administration of TSPJs alleviated the symptoms of CIA mice, including the arthritis index, hind paw thickness, and swollen joint count. The histological results demonstrated that TSPJs inhibited inflammation, angiogenesis, bone damage, and cartilage destruction. Furthermore, TSPJs decreased the number of vessels and the expression level of CD31. The mechanistic results revealed that TSPJs decreased the expression of HIF-1α, VEGFA, and ANG-1 in the serum or synovial tissues of CIA mice. CONCLUSION: These results suggest that TSPJs effectively inhibit angiogenesis in RA, and the mechanism may be related to inhibiting the HIF-1α/VEGF/ANG-1 axis.


Asunto(s)
Inhibidores de la Angiogénesis , Angiopoyetina 1 , Artritis Experimental , Artritis Reumatoide , Subunidad alfa del Factor 1 Inducible por Hipoxia , Panax , Saponinas , Factor A de Crecimiento Endotelial Vascular , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Saponinas/farmacología , Saponinas/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Panax/química , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Humanos , Inhibidores de la Angiogénesis/farmacología , Masculino , Ratones , Angiopoyetina 1/metabolismo , Simulación del Acoplamiento Molecular , Ratones Endogámicos DBA , Neovascularización Patológica/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Raíces de Plantas/química
16.
Int Immunopharmacol ; 137: 112394, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38852517

RESUMEN

BACKGROUND: Ferroptosis is a distinct iron-dependent non-apoptotic type of programmed cell death that is implicated in the pathophysiology of rheumatoid arthritis (RA). Although asiatic acid (AA) is documented to have significant anti-inflammatory effects in various diseases, it is not known whether it can regulate RA via ferroptosis. METHODS: The effects of AA on rheumatoid arthritis fibroid-like synoviocytes (RA-FLS) were assessed in vitro, and a rat model of type II collagen-induced arthritis (CIA) was established to evaluate the effectiveness of AA treatment in vivo. RESULTS: AA significantly reduced both viability and colony formation in cultured RA-FLS, while increasing the levels of reactive oxygen species (ROS), ferrous iron (Fe2+), malondialdehyde (MDA), and lactate dehydrogenase (LDH), as well as the expression of COX2. Furthermore, AA induced ferroptosis in RA-FLS by promoting Fe2+ accumulation through downregulation of the expression of Keap1 and FTH1 and upregulation of Nrf2 and HMOX1. In vivo, AA treatment was found to reduce toe swelling and the arthritis score in CIA rats, as well as relieve inflammation and ankle damage and significantly upregulate the expression of Nrf2 and HMOX1 in the synovial fluid. CONCLUSION: Treatment with AA significantly reduced the viability of RA-FLS and triggered ferroptosis by promoting accumulation of Fe2+via the Nrf2-HMOX1 pathway, and was effective in relieving inflammation in CIA model rats. These findings suggest that the use of AA may be a promising strategy for the clinical treatment of RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ferroptosis , Factor 2 Relacionado con NF-E2 , Triterpenos Pentacíclicos , Transducción de Señal , Sinoviocitos , Animales , Ferroptosis/efectos de los fármacos , Artritis Reumatoide/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Triterpenos Pentacíclicos/uso terapéutico , Triterpenos Pentacíclicos/farmacología , Artritis Experimental/tratamiento farmacológico , Humanos , Ratas , Transducción de Señal/efectos de los fármacos , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Masculino , Células Cultivadas , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Hemo-Oxigenasa 1/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Hemo Oxigenasa (Desciclizante)
17.
Sci Rep ; 14(1): 12935, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839973

RESUMEN

The inhibition of tumor necrosis factor (TNF)-α trimer formation renders it inactive for binding to its receptors, thus mitigating the vicious cycle of inflammation. We designed a peptide (PIYLGGVFQ) that simulates a sequence strand of human TNFα monomer using a series of in silico methods, such as active site finding (Acsite), protein-protein interaction (PPI), docking studies (GOLD and Flex-X) followed by molecular dynamics (MD) simulation studies. The MD studies confirmed the intermolecular interaction of the peptide with the TNFα. Fluorescence-activated cell sorting and fluorescence microscopy revealed that the peptide effectively inhibited the binding of TNF to the cell surface receptors. The cell culture assays showed that the peptide significantly inhibited the TNFα-mediated cell death. In addition, the nuclear translocation of the nuclear factor kappa B (NFκB) was significantly suppressed in the peptide-treated A549 cells, as observed in immunofluorescence and gel mobility-shift assays. Furthermore, the peptide protected against joint damage in the collagen-induced arthritis (CIA) mouse model, as revealed in the micro focal-CT scans. In conclusion, this TNFα antagonist would be helpful for the prevention and repair of inflammatory bone destruction and subsequent loss in the mouse model of CIA as well as human rheumatoid arthritis (RA) patients. This calls upon further clinical investigation to utilize its potential effect as an antiarthritic drug.


Asunto(s)
Péptidos , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Ratones , Péptidos/farmacología , Péptidos/química , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Experimental/patología , Simulación del Acoplamiento Molecular , Células A549 , Simulación de Dinámica Molecular , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Masculino , Antirreumáticos/farmacología , Antirreumáticos/química , Antirreumáticos/uso terapéutico , Unión Proteica , Modelos Animales de Enfermedad
18.
J Autoimmun ; 146: 103235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38696926

RESUMEN

Soluble components secreted by Tfh cells are critical for the germinal center responses. In this study, we investigated whether Tfh cells could regulate the B-cell response by releasing small extracellular vesicles (sEVs). Our results showed that Tfh cells promote B-cell differentiation and antibody production through sEVs and that CD40L plays a crucial role in Tfh-sEVs function. In addition, increased Tfh-sEVs were found in mice with collagen-induced arthritis (CIA). Adoptive transfer of Tfh cells significantly exacerbated the severity of CIA; however, the effect of Tfh cells on exacerbating the CIA process was significantly diminished after inhibiting sEVs secretion. Moreover, the levels of plasma Tfh-like-sEVs and CD40L expression on Tfh-like-sEVs in RA patients were significantly higher than those in healthy subjects. In summary, Tfh cell-derived sEVs can enhance the B-cell response, and exacerbate the procession of autoimmune arthritis.


Asunto(s)
Artritis Experimental , Linfocitos B , Vesículas Extracelulares , Células T Auxiliares Foliculares , Animales , Artritis Experimental/inmunología , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Humanos , Células T Auxiliares Foliculares/inmunología , Masculino , Artritis Reumatoide/inmunología , Diferenciación Celular/inmunología , Activación de Linfocitos/inmunología , Traslado Adoptivo , Ligando de CD40/metabolismo , Ligando de CD40/inmunología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Índice de Severidad de la Enfermedad , Femenino
19.
Adv Rheumatol ; 64(1): 44, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816873

RESUMEN

OBJECTIVES: Research has demonstrated that obesity may be associated with rheumatoid arthritis (RA). In addition, gut microbiota and its metabolites contribute to the occurrence and development of RA and obesity. However, the mechanism by which obesity affects RA remains unclear. In this study, we aimed to investigate whether gut microbiota and their metabolites alter the effects of high fat diet (HFD) on the severity of collagen-induced arthritis (CIA) in mice. METHODS: Briefly, mice were divided into normal group (N), CIA model group (C), HFD group (T), and HFD CIA group (CT). Hematoxylin and Eosin staining(HE) and Safranin O-fast green staining were conducted, and levels of blood lipid and inflammatory cytokines were measured. 16S rDNA sequencing technique and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics were performed to explore changes in the microbiota structure to further reveal the pathomechanism of HFD on CIA. RESULTS: HFD aggravated the severity of CIA in mice. The CT group had the highest proportion of microbial abundance of Blautia, Oscillibacter, Ruminiclostridium-9, and Lachnospiraceae UCG 006 at the genus level, but had a lower proportion of Alistipes. Additionally, the fecal metabolic phenotype of the combined CT group shows significant changes, with differential metabolites enriched in 9 metabolic pathways, including primary bile acid biosynthesis, arginine biosynthesis, sphingolipid metabolism, purine metabolism, linoleic acid metabolism, oxytocin signaling pathway, aminoacyl-tRNA biosynthesis, the pentose phosphate pathway, and sphingolipid signaling pathway. Correlation analysis revealed that some of the altered gut microbiota genera were strongly correlated with changes in fecal metabolites, total cholesterol (TC), triglyceride (TG), and inflammatory cytokine levels. CONCLUSIONS: This study shows that HFD may aggravate inflammatory reaction in CIA mice by altering the gut microbiota and metabolic pathways.


Asunto(s)
Artritis Experimental , Dieta Alta en Grasa , Microbioma Gastrointestinal , Animales , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/fisiología , Ratones , Artritis Experimental/microbiología , Artritis Experimental/metabolismo , Citocinas/metabolismo , Masculino , Índice de Severidad de la Enfermedad , Obesidad/metabolismo , Obesidad/microbiología , Modelos Animales de Enfermedad
20.
Chin Herb Med ; 16(2): 274-281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38706818

RESUMEN

Objective: Rheumatoid arthritis (RA) is a chronic inflammatory and destructive arthritis, characterized by inflammatory infiltration and bone destruction. Huangqi Guizhi Wuwu Decoction (HGWD) is traditional Chinese medicine, which has been applied in the treatment of RA in clinical. The aim of this study was to investigate the therapeutic effect of HGWD on collagen-induced arthritis (CIA) mouse model. Methods: DBA/1J female mice were used to establish the collagen-induced arthritis (CIA) model. HGWD was administered intragastrically once a day for four weeks starting on the 22nd day after the first immunization. The body weight, hind paw thickness and clinical score were measured every five days. Gait analysis, histopathological staining, enzyme-linked immunosorbent assay (ELISA), ultrasound imaging and micro-computed tomography imaging were performed to determine the effects of HGWD treatment on inflammation and bone structure in this model. Moreover, Real-time PCR and Western blot analysis were used to detect inflammatory factors mRNA and protein levels after HGWD intervention in RAW 264.7 cells. Results: HGWD attenuated symptoms of arthritis, suppressed inflammatory synovium area and the serum levels of inflammatory factors, inhibited joint space enlargement in the knee and ankle joints, reduced numbers of osteoclasts, protected bone destruction, as well as improved motor function. HGWD decreased the expression of mRNA for inflammatory factors and the protein expression levels of p-NF-кB and IL-17. Conclusion: These results suggested that HGWD suppresses inflammation, attenuates bone erosion and maintains motor function in collagen-induced arthritis mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA