Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.433
Filtrar
1.
Syst Appl Microbiol ; 47(5): 126540, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39068732

RESUMEN

We present new genomes from the bacterial symbiont Candidatus Dactylopiibacterium carminicum obtained from non-domesticated carmine cochineals belonging to the scale insect Dactylopius (Hemiptera: Coccoidea: Dactylopiidae). As Dactylopiibacterium has not yet been cultured in the laboratory, metagenomes and metatranscriptomics have been key in revealing putative symbiont functions. Dactylopiibacterium is a nitrogen-fixing beta-proteobacterium that may be vertically transmitted and shows differential gene expression inside the cochineal depending on the tissue colonized. Here we found that all cochineal species tested had Dactylopiibacterium carminicum which has a highly conserved genome. All Dactylopiibacterium genomes analyzed had genes involved in nitrogen fixation and plant polymer degradation. Dactylopiibacterium genomes resemble those from free-living plant bacteria, some found as endophytes. Notably, we found here a new putative novel function where the bacteria may protect the insect from viruses, since all Dactylopiibacterium genomes contain CRISPRs with a spacer matching nucleopolyhedrovirus that affects insects.

2.
Genes (Basel) ; 15(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39062671

RESUMEN

Since the dawn of agriculture, crops have been genetically altered for desirable characteristics. This has included the selection of natural and induced mutants. Increasing the production of plant oils such as soybean (Glycine max) oil as a renewable resource for food and fuel is valuable. Successful breeding for higher oil levels in soybeans, however, usually results in reduced seed protein. A soybean fast neutron population was screened for oil content, and three high oil mutants with minimal reductions in protein levels were found. Three backcross F2 populations derived from these mutants exhibited segregation for seed oil content. DNA was pooled from the high-oil and normal-oil plants within each population and assessed by comparative genomic hybridization. A deletion encompassing 20 gene models on chromosome 14 was found to co-segregate with the high-oil trait in two of the three populations. Eighteen genes in the deleted region have known functions that appear unrelated to oil biosynthesis and accumulation pathways, while one of the unknown genes (Glyma.14G101900) may contribute to the regulation of lipid droplet formation. This high-oil trait can facilitate the breeding of high-oil soybeans without protein reduction, resulting in higher meal protein levels.


Asunto(s)
Neutrones Rápidos , Glycine max , Semillas , Glycine max/genética , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Semillas/genética , Semillas/metabolismo , Aceite de Soja/genética , Aceite de Soja/metabolismo , Fenotipo , Aceites de Plantas/metabolismo , Genes de Plantas , Hibridación Genómica Comparativa
3.
Mol Genet Genomics ; 299(1): 73, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066857

RESUMEN

Exploring the intricate relationships between plants and their resident microorganisms is crucial not only for developing new methods to improve disease resistance and crop yields but also for understanding their co-evolutionary dynamics. Our research delves into the role of the phyllosphere-associated microbiome, especially Actinomycetota species, in enhancing pathogen resistance in Theobroma grandiflorum, or cupuassu, an agriculturally valuable Amazonian fruit tree vulnerable to witches' broom disease caused by Moniliophthora perniciosa. While breeding resistant cupuassu genotypes is a possible solution, the capacity of the Actinomycetota phylum to produce beneficial metabolites offers an alternative approach yet to be explored in this context. Utilizing advanced long-read sequencing and metagenomic analysis, we examined Actinomycetota from the phyllosphere of a disease-resistant cupuassu genotype, identifying 11 Metagenome-Assembled Genomes across eight genera. Our comparative genomic analysis uncovered 54 Biosynthetic Gene Clusters related to antitumor, antimicrobial, and plant growth-promoting activities, alongside cutinases and type VII secretion system-associated genes. These results indicate the potential of phyllosphere-associated Actinomycetota in cupuassu for inducing resistance or antagonism against pathogens. By integrating our genomic discoveries with the existing knowledge of cupuassu's defense mechanisms, we developed a model hypothesizing the synergistic or antagonistic interactions between plant and identified Actinomycetota during plant-pathogen interactions. This model offers a framework for understanding the intricate dynamics of microbial influence on plant health. In conclusion, this study underscores the significance of the phyllosphere microbiome, particularly Actinomycetota, in the broader context of harnessing microbial interactions for plant health. These findings offer valuable insights for enhancing agricultural productivity and sustainability.


Asunto(s)
Enfermedades de las Plantas , Hojas de la Planta , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Microbiota/genética , Ecosistema , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Metagenómica/métodos , Metagenoma/genética , Filogenia , Brassicaceae/microbiología , Brassicaceae/genética
4.
Microorganisms ; 12(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39065225

RESUMEN

Bacillus cereus is responsible for 1.4-12% food poisoning outbreaks worldwide. The safety concerns associated with the applications of B. cereus in health and medicine have been controversial due to its dual role as a pathogen for foodborne diseases and a probiotic in humans and animals. In this study, the pathogenicity of B. cereus GW-01 was assessed by comparative genomic, and transcriptome analysis. Phylogenetic analysis based on a single-copy gene showed clustering of the strain GW-01, and 54 B. cereus strains from the NCBI were classified into six major groups (I-VI), which were then associated with the source region and sequence types (STs). Transcriptome results indicated that the expression of most genes related with toxins secretion in GW-01 was downregulated compared to that in the lag phase. Overall, these findings suggest that GW-01 is not directly associated with pathogenic Bacillus cereus and highlight an insightful strategy for assessing the safety of novel B. cereus strains.

5.
Microorganisms ; 12(7)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39065255

RESUMEN

Leuconostoc encompasses a number of species that frequently appear in foods where they play different roles, ranging from ripening to spoiling. The number of available Leuconostoc genomes has recently increased and enabled the precise taxonomic and phylogenetic delineation of species. Nonetheless, a thorough investigation of the functions and the metabolic potential of Leuconostoc species has never been accomplished. In this study, all the currently available 553 Leuconostoc genomes were downloaded from NCBI GenBank and annotated utilizing specific tools in order to reconstruct the metabolic potential of the genus in terms of carbohydrate hydrolysis and fermentative pathways, transporters, and anabolic potential. The analysis revealed that species cluster based on their metabolic potential, showing unique adaptation and ecological roles. Pentose phosphate and phosphoketolase pathways were highlighted as the main ones of central metabolism. The various identified PTS and ABC transporters showed adaptability to different sugars. The metabolic diversity described in this study not only supports the role of Leuconostoc spp. in natural ecosystems but also highlights their potential in industrial applications, particularly in the fermentation industry where their ability to metabolize a wide range of substrates can be harnessed for the production of various fermented foods and bioproducts.

6.
Res Sq ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38947078

RESUMEN

Background: The Borreliaceae family includes many obligate parasitic bacterial species which are etiologically associated with a myriad of zoonotic borrelioses including Lyme disease and vector-borne relapsing fevers. Infections by the Borreliaceae are difficult to detect by both direct and indirect methods, often leading to delayed and missed diagnoses. Efforts to improve diagnoses center around the development of molecular diagnostics (MDx), but due to deep tissue sequestration of the causative spirochaetes and the lack of persistent bacteremias, even MDx assays suffer from a lack of sensitivity. Additionally, the highly extensive genomic heterogeneity among isolates, even within the same species, contributes to the lack of assay sensitivity as single target assays cannot provide universal coverage. This within-species heterogeneity is partly due to differences in replicon repertoires and genomic structures that have likely arisen to support the complex Borreliaceae lifecycle in which these parasites have to survive in multiple hosts each with unique immune responses. Results: We constructed a Borreliaceae family-level pangenome and characterized the phylogenetic relationships among the constituent taxa which supports the recent taxonomy of splitting the family into at least two genera. Gene content pro les were created for the majority of the Borreliaceae replicons, providing for the first time their unambiguous molecular typing. Conclusion: Our characterization of the Borreliaceae pan-genome supports the splitting of the former Borrelia genus into two genera and provides for the phylogenetic placement of several non-species designated isolates. Mining this family-level pangenome will enable precision diagnostics corresponding to gene content-driven clinical outcomes while also providing targets for interventions.

7.
Front Microbiol ; 15: 1424868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962128

RESUMEN

As a common foodborne pathogen, infection with L. monocytogenes poses a significant threat to human life and health. The objective of this study was to employ comparative genomics to unveil the biodiversity and evolutionary characteristics of L. monocytogenes strains from different regions, screening for potential target genes and mining novel target genes, thus providing significant reference value for the specific molecular detection and therapeutic targets of L. monocytogenes strains. Pan-genomic analysis revealed that L. monocytogenes from different regions have open genomes, providing a solid genetic basis for adaptation to different environments. These strains contain numerous virulence genes that contribute to their high pathogenicity. They also exhibit relatively high resistance to phosphonic acid, glycopeptide, lincosamide, and peptide antibiotics. The results of mobile genetic elements indicate that, despite being located in different geographical locations, there is a certain degree of similarity in bacterial genome evolution and adaptation to specific environmental pressures. The potential target genes identified through pan-genomics are primarily associated with the fundamental life activities and infection invasion of L. monocytogenes, including known targets such as inlB, which can be utilized for molecular detection and therapeutic purposes. After screening a large number of potential target genes, we further screened them using hub gene selection methods to mining novel target genes. The present study employed eight different hub gene screening methods, ultimately identifying ten highly connected hub genes (bglF_1, davD, menE_1, tilS, dapX, iolC, gshAB, cysG, trpA, and hisC), which play crucial roles in the pathogenesis of L. monocytogenes. The results of pan-genomic analysis showed that L. monocytogenes from different regions exhibit high similarity in bacterial genome evolution. The PCR results demonstrated the excellent specificity of the bglF_1 and davD genes for L. monocytogenes. Therefore, the bglF_1 and davD genes hold promise as specific molecular detection and therapeutic targets for L. monocytogenes strains from different regions.

8.
Front Microbiol ; 15: 1410024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962131

RESUMEN

The Deinococcus genus is renowned for its remarkable resilience against environmental stresses, including ionizing radiation, desiccation, and oxidative damage. This resilience is attributed to its sophisticated DNA repair mechanisms and robust defense systems, enabling it to recover from extensive damage and thrive under extreme conditions. Central to Deinococcus research, the D. radiodurans strains ATCC BAA-816 and ATCC 13939 facilitate extensive studies into this remarkably resilient genus. This study focused on delineating genetic discrepancies between these strains by sequencing our laboratory's ATCC 13939 specimen (ATCC 13939K) and juxtaposing it with ATCC BAA-816. We uncovered 436 DNA sequence differences within ATCC 13939K, including 100 single nucleotide variations, 278 insertions, and 58 deletions, which could induce frameshifts altering protein-coding genes. Gene annotation revisions accounting for gene fusions and the reconciliation of gene lengths uncovered novel protein-coding genes and refined the functional categorizations of established ones. Additionally, the analysis pointed out genome structural variations due to insertion sequence (IS) elements, underscoring the D. radiodurans genome's plasticity. Notably, ATCC 13939K exhibited a loss of six ISDra2 elements relative to BAA-816, restoring genes fragmented by ISDra2, such as those encoding for α/ß hydrolase and serine protease, and revealing new open reading frames, including genes imperative for acetoin decomposition. This comparative genomic study offers vital insights into the metabolic capabilities and resilience strategies of D. radiodurans.

9.
Arch Microbiol ; 206(8): 342, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967823

RESUMEN

A novel mangrove soil-derived actinomycete, strain S2-29T, was found to be most closely related to Saccharopolyspora karakumensis 5K548T based on 16 S rRNA sequence (99.24% similarity) and genomic phylogenetic analyses. However, significant divergence in digital DNA-DNA hybridization, average nucleotide identity, and unique biosynthetic gene cluster possession distinguished S2-29T as a distinct Saccharopolyspora species. Pan genome evaluation revealed exceptional genomic flexibility in genus Saccharopolyspora, with > 95% accessory genome content. Strain S2-29T harbored 718 unique genes, largely implicated in energetic metabolisms, indicating different metabolic capacities from its close relatives. Several uncharacterized biosynthetic gene clusters in strain S2-29T highlighted the strain's untapped capacity to produce novel functional compounds with potential biotechnological applications. Designation as novel species Saccharopolyspora mangrovi sp. nov. (type strain S2-29T = JCM 34,548T = CGMCC 4.7716T) was warranted, expanding the known Saccharopolyspora diversity and ecology. The discovery of this mangrove-adapted strain advances understanding of the genus while highlighting an untapped source of chemical diversity.


Asunto(s)
ADN Bacteriano , Genoma Bacteriano , Filogenia , ARN Ribosómico 16S , Saccharopolyspora , Microbiología del Suelo , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Saccharopolyspora/clasificación , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Familia de Multigenes , Genómica , Análisis de Secuencia de ADN , Humedales , Hibridación de Ácido Nucleico , Técnicas de Tipificación Bacteriana
10.
Infect Genet Evol ; 123: 105642, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39013496

RESUMEN

Nosocomial outbreaks caused by carbapenem-resistant Acinetobacter baumannii (CRAB) strains are rapidly emerging worldwide and are cause for concern. Herein, we aimed to describe the genomic characteristics of CRAB strains isolated from two hospitals in China in 2023. The A. baumannii isolates were mainly collected from the ICU and isolated from the sputum (71.43%, 15/21), followed by urine (14.29%, 3/21). Twenty-one A. baumannii strains possessed a multidrug-resistant (MDR) profile, and whole-genome sequencing showed that they all carried blaOXA-23. Based on the Pasteur multilocus sequence typing (MLST) scheme, all strains were typed into a sequence type 2 (ST2). Based on the Oxford MLST scheme, six strains belonged to ST540, three of which were ST208, and four strains were assigned to ST784. Kaptive showed most of the strains (38.10%, 8/21) contained KL93. As for the lipoolygosaccharide (OC locus) type, OCL1c and OCL1d were identified, accounting for 33.33% (7/21) and 66.67% (14/21), respectively. Based on the BacWGSTdb server, we found that the strains belonging to ST540 and ST784 were all collected from China. However, the ST938 strains were isolated from Malaysia and Thailand. Comparative genomics analysis showed that the AB10 strain had a closed relationship with SXAB10-SXAB13 strains, suggesting the transmission happened in these two hospitals and other hospital in China. In addition, the 4300STDY7045869 strain, which was collected from Thailand, possessed near genetic relationship with our isolates in this study, suggesting the possible spread among various countries. Additionally, 3-237 single nucleotide polymorphisms were observed among these strains. In conclusion, this study conducted a genome-based study for A. baumannii strains collected from two hospitals in China and revealed their epidemiological and molecular features. Clone spreading occurred in these two hospitals. Hence, there is an urgent need for increased surveillance in hospitals and other clinical settings to prevent and control CRAB spreading.

11.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39007295

RESUMEN

This study delves into the genomic features of 10 Vibrio strains collected from deep-sea hydrothermal vents in the Pacific Ocean, providing insights into their evolutionary history and ecological adaptations. Through sequencing and pan-genome analysis involving 141 Vibrio species, we found that deep-sea strains exhibit larger genomes with unique gene distributions, suggesting adaptation to the vent environment. The phylogenomic reconstruction of the investigated isolates revealed the presence of 2 main clades: The first is monophyletic, consisting exclusively of Vibrio alginolyticus, while the second forms a monophyletic clade comprising both Vibrio antiquarius and Vibrio diabolicus species, which were previously isolated from deep-sea vents. All strains carry virulence and antibiotic resistance genes related to those found in human pathogenic Vibrio species which may play a wider ecological role other than host infection in these environments. In addition, functional genomic analysis identified genes potentially related to deep-sea survival and stress response, alongside candidate genes encoding for novel antimicrobial agents. Ultimately, the pan-genome we generated represents a valuable resource for future studies investigating the taxonomy, evolution, and ecology of Vibrio species.


Asunto(s)
Genoma Bacteriano , Respiraderos Hidrotermales , Filogenia , Vibrio , Vibrio/genética , Respiraderos Hidrotermales/microbiología , Evolución Molecular , Adaptación Fisiológica/genética , Océano Pacífico
12.
bioRxiv ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39005434

RESUMEN

Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomics resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomics resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as critical models for understanding widespread genomic characteristics, including evolutionary genome expansions and contractions given they have the largest range in genome sizes of any animal taxon and multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The advent of long-read sequencing technologies, along with computational techniques that enhance scaffolding capabilities and streamline computational workload is now enabling the ability to overcome some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC) in early 2023. This burgeoning community already has more than 282 members from 41 countries (6 in Africa, 131 in the Americas, 27 in Asia, 29 in Australasia, and 89 in Europe). The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and outline how the AGC can enable amphibian genomics research to "leap" to the next level.

13.
J Mol Evol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017924

RESUMEN

In the present work, we carried out a comparative genomic analysis to trace the evolutionary trajectory of the bacterial species that make up the Liquorilactobacillus genus, from the identification of genes and speciation/adaptation mechanisms in their unique characteristics to the identification of the pattern grouping these species. We present phylogenetic relationships between Liquorilactobacillus and related taxa such as Bacillus, basal lactobacilli and Ligilactobacillus, highlighting evolutionary divergences and lifestyle transitions across different taxa. The species of this genus share a core genome of 1023 genes, distributed in all COGs, which made it possible to characterize it as Liquorilactobacillus sensu lato: few amino acid auxotrophy, low genes number for resistance to antibiotics and general and specific cellular reprogramming mechanisms for environmental responses. These species were divided into four clades, with diversity being enhanced mainly by the diversity of genes involved in sugar metabolism. Clade 1 presented lower (< 70%) average amino acid identity with the other clades, with exclusive or absent genes, and greater distance in the genome compared to clades 2, 3 and 4. The data pointed to an ancestor of clades 2, 3 and 4 as being the origin of the genus Ligilactobacillus, while the species of clade 1 being closer to the ancestral Bacillus. All these traits indicated that the species of clade 1 could be soon separated in a distinct genus.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39031268

RESUMEN

PURPOSE: To determine the genomic feature of novel spotted fever-causing Rickettsia koreansis strain CNH17-7, which is different from R. japonica that is a causative agent for Japanese spotted fever (JSF), and to perform its comparative genomic analysis. METHODS: Whole genome sequencing (WGS) was performed on R. koreansis strain CNH17-7 by using the Illumina Miseq system. After WGS, assembly and annotation were done by SPAdes. Then, its genomic features were compared with 19 different Rickettsia species. Based on the average nucleotide identity (ANI) value, an unweighted pair group method with an arithmetic mean (UPGMA) dendrogram was generated. Following the dendrogram analysis, pan-and core-genome analysis was performed. Then additional comparative analyses with two genetically closest Rickettsia species were conducted based on gene repertoire. RESULTS: R. koreansis strain CNH17-7 has a chromosome consisting of 1,392,633 bp with GC content of 32.4%. The ANI-derived UPGMA showed that R. koreansis strain CNH17-7 is genetically close to R. japonica YH and R. heilongjiangensis 054 but is distinctively differentiated. The ANI value of R. koreansis strain CNH17-7 to R. japonica YH and R. heilongjiangensis 054 are 98.14% and 98.04% respectively, indicating R. koreansis strain CNH17-7 is sufficient to be classified as a new species. Other than ANI, R. koreansis strain CNH17-7 also contains novel CDS and its COG functional category proportion which is distinct compared to R. japonica YH and R. heilongjiangensis 054. CONCLUSION: We have revealed genomic features of the novel R. koreansis strain CNH17-7. Hence, we propose R. koreansis strain CNH17-7 as new Rickettsia species.

15.
Genome Biol Evol ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031605

RESUMEN

The major histocompatibility complex plays a vital role in the vertebrate immune system due to its role in infection, disease and autoimmunity, or recognition of "self". The marsupial MHC class II genes show divergence from eutherian MHC class II genes and are a unique taxon of therian mammals that give birth to altricial and immunologically naïve young providing an opportune study system for investigating evolution of the immune system. Additionally, the MHC in marsupials has been implicated in disease associations, including susceptibility to Chlamydia pecorum infection in koalas. Due to the complexity of the gene family, automated annotation is not possible so here we manually annotate 384 class II MHC genes in 29 marsupial species. We find losses of key components of the marsupial MHC repertoire in the Dasyuromorphia order and the Pseudochiridae family. We perform PGLS analysis to show the gene losses we find are true gene losses and not artefacts of unresolved genome assembly. We investigate the associations between the number of loci and life history traits, including lifespan and reproductive output in lineages of marsupials and hypothesise that gene loss may be linked to the energetic cost and trade-offs associated with pregnancy and reproduction. We found support for litter size being a significant predictor of the number of DBA and DBB loci, indicating a trade-off between the energetic requirements of immunity and reproduction. Additionally, we highlight the increased susceptibility of Dasyuridae species to neoplasia and a potential link to MHC gene loss. Finally, these annotations provide a valuable resource to the immunogenetics research community to move forward and further investigate diversity in MHC genes in marsupials.

16.
Antonie Van Leeuwenhoek ; 117(1): 103, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042225

RESUMEN

Genus Thermus is the main focus of researcher among the thermophiles. Members of this genus are the inhabitants of both natural and artificial thermal environments. We performed phylogenomic analyses and comparative genomic studies to unravel the genomic diversity among the strains belonging to the genus Thermus in geographically different thermal springs. Sixteen Thermus strains were isolated and sequenced from hot springs, Qucai hot springs in Tibet and Tengchong hot springs in Yunnan, China. 16S rRNA gene based phylogeny and phylogenomic analyses based on concatenated set of 971 Orthologous Protein Families (supermatrix and gene content methods) revealed a mixed distribution of the Thermus strains. Whole genome based phylogenetic analysis showed, all 16 Thermus strains belong to five species; Thermus oshimai (YIM QC-2-109, YIM 1640, YIM 1627, 77359, 77923, 77838), Thermus antranikianii (YIM 73052, 77412, 77311, 71206), Thermus brokianus (YIM 73518, 71318, 72351), Thermus hydrothermalis (YIM 730264 and 77927) and one potential novel species 77420 forming clade with Thermus thalpophilus SYSU G00506T. Although the genomes of different strains of Thermus of same species were highly similar in their metabolic pathways, but subtle differences were found. CRISPR loci were detected through genome-wide screening, which showed that Thermus isolates from two different thermal locations had well developed defense system against viruses and adopt similar strategy for survival. Additionally, comparative genome analysis screened competence loci across all the Thermus genomes which could be helpful to acquire DNA from environment. In the present study it was found that Thermus isolates use two mechanism of incomplete denitrification pathway, some Thermus strains produces nitric oxide while others nitrious oxide (dinitrogen oxide), which show the heterotrophic lifestyle of Thermus genus. All isolated organisms encoded complete pathways for glycolysis, tricarboxylic acid and pentose phosphate. Calvin Benson Bassham cycle genes were identified in genomes of T. oshimai and T. antranikianii strains, while genomes of all T. brokianus strains and organism 77420 were lacking. Arsenic, cadmium and cobalt-zinc-cadmium resistant genes were detected in genomes of all sequenced Thermus strains. Strains 77,420, 77,311, 73,518, 77,412 and 72,351 genomes were found harboring genes for siderophores production. Sox gene clusters were identified in all sequenced genomes, except strain YIM 730264, suggesting a mode of chemolithotrophy. Through the comparative genomic analysis, we also identified 77420 as the genome type species and its validity as novel organism was confirmed by whole genome sequences comparison. Although isolate 77420 had 99.0% 16S rRNA gene sequence similarity with T. thalpophilus SYSU G00506T but based on ANI 95.86% (Jspecies) and digital DDH 68.80% (GGDC) values differentiate it as a potential novel species. Similarly, in the phylogenomic tree, the novel isolate 77,420 forming a separate branch with their closest reference type strain T. thalpophilus SYSU G00506T.


Asunto(s)
Genoma Bacteriano , Genómica , Manantiales de Aguas Termales , Filogenia , ARN Ribosómico 16S , Thermus , Thermus/genética , Thermus/clasificación , Thermus/aislamiento & purificación , Manantiales de Aguas Termales/microbiología , ARN Ribosómico 16S/genética , Tibet , China , ADN Bacteriano/genética , Análisis de Secuencia de ADN
17.
Am J Bot ; 111(7): e16370, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38989916

RESUMEN

PREMISE: Leafless, heterotrophic plants are prime examples of organismal modification, the genomic consequences of which have received considerable interest. In particular, plastid genomes (plastomes) are being sequenced at a high rate, allowing continual refinement of conceptual models of reductive evolution in heterotrophs. However, numerous sampling gaps exist, hindering the ability to conduct comprehensive phylogenomic analyses in these plants. METHODS: Using floral tissue from an herbarium specimen, we sequenced and analyzed the plastome of Degranvillea dermaptera, a rarely collected, leafless orchid species from South America about which little is known, including its phylogenetic affinities. RESULTS: The plastome is the most reduced of those sequenced among the orchid subfamily Orchidoideae. In Degranvillea, it has lost the majority of genes found in leafy autotrophic species, is structurally rearranged, and has similar gene content to the most reduced plastomes among the orchids. We found strong evidence for the placement of Degranvillea within the subtribe Spiranthinae using models that explicitly account for heterotachy, or lineage-specific evolutionary rate variation over time. We further found evidence of relaxed selection on several genes and of correlations among substitution rates and several other "traits" of the plastome among leafless members of orchid subfamily Orchidoideae. CONCLUSIONS: Our findings advance knowledge on the phylogenetic relationships and paths of plastid genome evolution among the orchids, which have experienced more independent transitions to heterotrophy than any other plant family. This study demonstrates the importance of herbarium collections in comparative genomics of poorly known species of conservation concern.


Asunto(s)
Evolución Molecular , Genoma de Plastidios , Orchidaceae , Filogenia , Orchidaceae/genética
18.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38976568

RESUMEN

Comparative analyses of gene birth-death dynamics have the potential to reveal gene families that played an important role in the evolution of morphological, behavioral, or physiological variation. Here, we used whole genomes of 30 species of butterflies and moths to identify gene birth-death dynamics among the Lepidoptera that are associated with specialist or generalist feeding strategies. Our work advances this field using a uniform set of annotated proteins for all genomes, investigating associations while correcting for phylogeny, and assessing all gene families rather than a priori subsets. We discovered that the sizes of several important gene families (e.g. those associated with pesticide resistance, xenobiotic detoxification, and/or protein digestion) are significantly correlated with diet breadth. We also found 22 gene families showing significant shifts in gene birth-death dynamics at the butterfly (Papilionoidea) crown node, the most notable of which was a family of pheromone receptors that underwent a contraction potentially linked with a shift to visual-based mate recognition. Our findings highlight the importance of uniform annotations, phylogenetic corrections, and unbiased gene family analyses in generating a list of candidate genes that warrant further exploration.


Asunto(s)
Mariposas Diurnas , Genoma de los Insectos , Filogenia , Animales , Mariposas Diurnas/genética , Dieta , Mariposas Nocturnas/genética , Lepidópteros/genética , Evolución Molecular
19.
Mol Phylogenet Evol ; 199: 108141, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964593

RESUMEN

Platyhelminthes, also known as flatworms, is a phylum of bilaterian invertebrates infamous for their parasitic representatives. The classes Cestoda, Monogenea, and Trematoda comprise parasitic helminths inhabiting multiple hosts, including fishes, humans, and livestock, and are responsible for considerable economic damage and burden on human health. As in other animals, the genomes of flatworms have a wide variety of paralogs, genes related via duplication, whose origins could be mapped throughout the evolution of the phylum. Through in-silico analysis, we studied inparalogs, i.e., species-specific duplications, focusing on their biological functions, expression changes, and evolutionary rate. These genes are thought to be key players in the adaptation process of species to each particular niche. Our results showed that genes related with specific functional terms, such as response to stress, transferase activity, oxidoreductase activity, and peptidases, are overrepresented among inparalogs. This trend is conserved among species from different classes, including free-living species. Available expression data from Schistosoma mansoni, a parasite from the trematode class, demonstrated high conservation of expression patterns between inparalogs, but with notable exceptions, which also display evidence of rapid evolution. We discuss how natural selection may operate to maintain these genes and the particular duplication models that fit better to the observations. Our work supports the critical role of gene duplication in the evolution of flatworms, representing the first study of inparalogs evolution at the genome-wide level in this group.

20.
Foods ; 13(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998611

RESUMEN

Pulses are considered superfoods for the future world due to their properties, but they require processing to reduce antinutritional factors (ANFs) and increase bioactivity. In this study, bean flour (Phaseolus vulgaris L.) was fermented under different conditions (addition of Lactiplantibacillus plantarum CRL 2211 and/or Weissella paramesenteroides CRL 2182, temperature, time and dough yield) to improve its nutri-functional quality. Fermentation for 24 h at 37 °C with the mixed starter increased the lactic acid bacteria (LAB) population, acidity, polyphenol content (TPC) and ANF removal more than spontaneous fermentation. Statistical and rep-PCR analysis showed that fermentation was mainly conducted by Lp. plantarum CRL 2211. Metabolic modeling revealed potential cross-feeding between Lp. plantarum and W. paramesenteroides, while the molecular docking and dynamic simulation of LAB tannases and proteinases involved in ANF removal revealed their chemical affinity to gallocatechin and trypsin inhibitors. Fermentation was better than soaking, germination and cooking for enhancing bean flour properties: it increased the free amino acids content by 50% by releasing glutamine, glutamic acid, arginine, leucine and lysine and modified TPC by increasing gallic acid and decreasing caffeic, ferulic and vanillic acids and quercetin-3-glucoside. The combination of experimental and simulation data may help us to understand fermentation processes and to design products with desirable features.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...