Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Prod Res ; 35(17): 2958-2962, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31650848

RESUMEN

Membrane alanyl and glutamyl aminopeptidases (APN and APA, respectively) are established targets for the development of biomedical tools in human pathologies. APN overexpression correlates with the progression of tumours, including melanoma. Bacitracin, widely used as a topical antibiotic, inhibits subtilisin-like serine peptidases and disulphide isomerases. In the present contribution, we demonstrate that bacitracin is a non-competitive α = 1 and α < 1 inhibitor of porcine kidney APN and APA, respectively, with Ki values in the micromolar range. To test a potential application of this result, we assayed the effect of bacitracin on murine melanoma MB16F10 cell line viability. We demonstrated the cell line expresses an APN-like activity inhibited by bacitracin and bestatin. Additionally, we identified a cytotoxic effect of bacitracin. Further experiments are required to understand in depth the mechanisms of action of bacitracin on melanoma cells. They will clarify the therapeutic potential of bacitracin for melanoma treatment.


Asunto(s)
Bacitracina , Antígenos CD13 , Glutamil Aminopeptidasa/antagonistas & inhibidores , Animales , Bacitracina/farmacología , Antígenos CD13/antagonistas & inhibidores , Línea Celular Tumoral , Riñón , Ratones , Porcinos
2.
Bioorg Chem ; 100: 103927, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32422389

RESUMEN

Protein tyrosine phosphatase 1B (PTP1B) is considered a potential therapeutic target for the treatment of type 2 diabetes mellitus (T2DM), since this enzyme plays a significant role to down-regulate insulin and leptin signalling and its over expression has been implicated in the development of insulin resistance, T2DM and obesity. Some thiazolidinediones (TZD) derivatives have been reported as promising PTP1B inhibitors with anti hyperglycemic effects. Recently, lobeglitazone, a new TZD, was described as an antidiabetic drug that targets the PPAR-γ (peroxisome γ proliferator-activated receptor) pathway, but no information on its effects on PTP1B have been reported to date. We investigated the effects of lobeglitazone on PTP1B activity in vitro. Surprisingly, lobeglitazone led to moderate inhibition on PTP1B (IC50 42.8 ± 3.8 µM) activity and to a non-competitive reversible mechanism of action. As lobeglitazone inhibits PTP1B activity in vitro, we speculate that it could also target PTP1B signalling pathway in vivo and thus contribute to potentiate its antidiabetic effects.


Asunto(s)
Hipoglucemiantes/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Pirimidinas/química , Tiazolidinedionas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Concentración 50 Inhibidora , Cinética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Pirimidinas/metabolismo , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacología
3.
J Mol Graph Model ; 80: 251-263, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29414044

RESUMEN

The PI3K/Akt/mTOR pathway is an important intracellular signaling pathway in cell cycle regulation and its dysregulation is associated with various types of diseases. mTOR (mechanistic or mammalian target of rapamycin) is the main enzyme that performs intermediate control of the signaling pathway through a phosphotransfer process. The classical inhibition of the mTOR pathway is effected by rapamycin and its analogous blocking allosterically the catalytic phosphorylation site, avoiding the deleterious side effects induced by ATP-competitive inhibitors. We employed ligand-based drug design strategies such as pharmacophore searching and analysis, molecular docking, absorption, distribution, metabolism, excretion and toxicity (ADMETox) properties filtering, and molecular dynamics to select potential molecules to become non-ATP competitive inhibitors of the mTOR complex. According to our findings, we propose eight novel potential mTOR inhibitors with similar or better properties than the classic inhibitor complex, rapamycin.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/química , Serina-Treonina Quinasas TOR/química , Sitios de Unión , Diseño de Fármacos , Humanos , Ligandos , Conformación Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad Cuantitativa , Reproducibilidad de los Resultados , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
4.
J Biomol Struct Dyn ; 35(16): 3555-3568, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27860549

RESUMEN

The mTOR (mammalian or mechanistic Target Of Rapamycin), a complex metabolic pathway that involves multiple steps and regulators, is a major human metabolic pathway responsible for cell growth control in response to multiple factors and that is dysregulated in various types of cancer. The classical inhibition of the mTOR pathway is performed by rapamycin and its analogs (rapalogs). Considering that rapamycin binds to an allosteric site and performs a crucial role in the inhibition of the mTOR complex without causing the deleterious side effects common to ATP-competitive inhibitors, we employ ligand-based drug design strategies, such as virtual screening methodology, computational determination of ADME/Tox properties of selected molecules, and molecular dynamics in order to select molecules with the potential to become non-ATP-competitive inhibitors of the mTOR enzymatic complex. Our findings suggest five novel potential mTOR inhibitors, with similar or better properties than the classic inhibitor complex, rapamycin.


Asunto(s)
Adenosina Trifosfato/química , Antibióticos Antineoplásicos/química , Inhibidores de Proteínas Quinasas/química , Sirolimus/química , Serina-Treonina Quinasas TOR/química , Sitio Alostérico , Diseño de Fármacos , Humanos , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Especificidad por Sustrato , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Termodinámica , Interfaz Usuario-Computador
5.
Toxicol In Vitro ; 33: 16-22, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26911729

RESUMEN

Casiopeína III-Ea (Cas III-Ea(1)) is a copper complex with antiproliferative and antitumor activities, designed to act via alternative mechanisms of action different from Cisplatin. This compound has also been well characterized in preclinical test and pharmacokinetic analysis, being a good candidate for clinical phases. Since very little is known about the processes of biotransformation of therapeutic metal based drugs, this paper report the first approach to the study of the interaction between metal complex Cas III-Ea and cytochromes P450 with the aim to find out possible biotransformation pathways for this complexes and feasible drug-drug interactions. Results showed that Cas III-Ea is a strong irreversible competitive inhibitor of CYP1A1 (IC50 = 7.5 ± 1.0 µM; Ki = 240 nM). The magnitude of values indicate that it is necessary to be taken into account such effect when analyzing possible drug interactions with these new drugs in order to prevent adverse reactions derived from this inhibition.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Fenantrolinas/farmacología , Animales , Cinética , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Ratas Wistar
6.
Braz. j. pharm. sci ; 48(3): 353-367, July-Sept. 2012. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-653449

RESUMEN

P-glycoprotein (P-gp), a transmembrane permeability glycoprotein, is a member of ATP binding cassette (ABC) super family that functions specifically as a carrier mediated primary active efflux transporter. It is widely distributed throughout the body and has a diverse range of substrates. Several vital therapeutic agents are substrates to P-gp and their bioavailability is lowered or a resistance is induced because of the protein efflux. Hence P-gp inhibitors were explored for overcoming multidrug resistance and poor bioavailability problems of the therapeutic P-gp substrates. The sensitivity of drug moieties to P-gp and vice versa can be established by various experimental models in silico, in vitro and in vivo. Ever since the discovery of P-gp, the research plethora identified several chemical structures as P-gp inhibitors. The aim of this review was to emphasize on the discovery and development of newer, inert, non-toxic, and more efficient, specifically targeting P-gp inhibitors, like those among the natural herb extracts, pharmaceutical excipients and formulations, and other rational drug moieties. The applications of cellular and molecular biology knowledge, in silico designed structural databases, molecular modeling studies and quantitative structure-activity relationship (QSAR) analyses in the development of novel rational P-gp inhibitors have also been mentioned.


Glicoproteína-p (P-gp), uma glicoproteína de transmembrana permeável, é um membro da superfamília (ABC) de cassete de gene de ligação de ATP que funciona especificamente como um carreador mediado pelo transportador de efluxo ativo primário. É amplamente distribuído por todo o corpo e apresenta uma gama diversificada de substratos. Diversos agentes terapêuticos vitais são substratos para P-gp e sua biodisponibilidade é reduzida ou a resistência é induzida devido ao efluxo de proteínas. Portanto, os inibidores da P-gp foram explorados para a superação da resistência a múltiplas drogas e problemas de biodisponibilidade deficiente dos substratos terapêuticos da P-gp. A sensibilidade das moléculas da droga à P-gp e vice-versa, pode ser estabelecida por vários modelos experimentais in silico, in vitro e in vivo. Desde a descoberta da P-gp, diversas pesquisas identificaram várias estruturas químicas como inibidores da P-gp. O objetivo deste presente estudo foi o de enfatizar a descoberta e desenvolvimento de inibidores mais novos, inertes, atóxicos e mais eficazes, visando especificamente os da P-gp, como aqueles entre os extratos vegetais, excipientes e formulações farmacêuticas, e outras moléculas racionais de droga. As aplicações do conhecimento de biologia celular e molecular, bancos de dados estruturais in silico, estudos de modelagem molecular e análises da relação quantitativa estrutura-atividade (QSAR) no desenvolvimento de novos inibidores racionais da P-gp também foram mencionados.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/análisis , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos adversos , Esfingolípidos/análisis , Resistencia a Múltiples Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA