Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.021
Filtrar
1.
Animal ; 18(10): 101325, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39357491

RESUMEN

Rooting is a strongly motivated, species-specific behaviour of pigs. Most housing systems do not provide appropriate materials that enable the full expression of this behaviour, and it remains unclear whether straw is suitable to entirely fulfil the rooting motivation of pigs. We therefore investigated the suitability of small (minimal) and large (deep) amounts of straw as well as large amounts of compost to satisfy rooting motivation in pigs. Fifty-seven growing-finishing pigs were housed in three pens, each providing permanent access to one of the three treatment substrates. Eight pigs per group were tested individually in a classical preference test (PT) and another eight pigs in a conditioned place preference test (CPPT). In the tests, pigs could show their preference to consume freely available feed ("feed") or feed hidden in sawdust ("root"). In the CPPT, feed was only present during training but not during testing. Pigs were exposed to the test situation twice, with approximately 72 kg and 115 kg BW. In both tests, the following variables were measured and used as outcome variables in linear mixed effect models: first decision to choose one of the two stimuli ("feed" or "root"), duration of time spent in proximity to "root", number of changes between stimuli, and latency to the first decision. Overall, the pigs' first decision (by tendency; P = 0.076) and the duration in proximity to "root" (P = 0.034) varied among treatments: Pigs housed with minimal straw tended to be more likely to choose "root" first (posthoc comparison; P = 0.090) and spent more time in proximity to "root" (P = 0.030) than pigs housed with compost, whereas pigs housed with deep straw were intermediate. Interestingly, the patterns of response to the treatment differed depending on the behavioural tests for both, first decision (interaction; P = 0.032) and duration in proximity to "root" (interaction; by tendency; P = 0.006). In addition, pigs in the PT changed more often between stimuli than pigs in the CPPT (P < 0.001). There was a tendency for an interactive effect between test and treatment for latency to first decision (interaction; P = 0.082), though pairwise comparisons did not reveal any differences. We concluded that in this study housing with permanent access to compost satisfied rooting motivation in pigs more than housing with minimal amounts of straw.

2.
Neuropharmacology ; 261: 110160, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293506

RESUMEN

Dopamine signaling in the amygdala is known to play a role in associative learning and memory, including the process of learning to associate environmental cues with the reinforcing properties of drugs like cocaine. Evidence suggests that the ventral tegmental area (VTA) dopamine (DA) projection specifically to the basolateral amygdala (BLA) participates in establishing cocaine-cue associations that can promote later craving- and relapse-like responses to the cue alone. In order to further investigate the specific role of VTA-BLA projections in cocaine-reinforced learning, we used chemogenetics to manipulate VTA DA inputs to the BLA during cocaine self-administration, cue- and cocaine-primed reinstatement, and conditioned place preference. We found inhibiting DA input to the BLA during cocaine self-administration inhibited acquisition and weakened the ability of the previously cocaine-paired cue to elicit cocaine-seeking, while acutely inhibiting the pathway on the day of cue-induced reinstatement testing had no effect. Conversely, exciting the projection during self-administration boosted the salience of the cocaine-paired cue as indicated by enhanced responding during cue-induced reinstatement. Importantly, interfering with DA input to the BLA had no impact on the ability of cocaine to elicit a place preference or induce reinstatement in response to a priming cocaine injection. Overall, we show that manipulation of projections underlying DA signaling in the BLA may be useful for developing therapeutic interventions for substance use disorders.

3.
J Vet Sci ; 25(5): e63, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39231788

RESUMEN

IMPORTANCE: Glutamic acid decarboxylase 67 (GAD67) is a gamma-aminobutyric acid (GABA) synthesis enzyme associated with the function of other neurotransmitter receptors, such as the N-methyl-D-aspartate (NMDA) receptor and cannabinoid receptor 1. However, the role of GAD67 in the development of different abused drug-induced reward behaviors remains unknown. In order to elucidate the mechanisms of substance use disorder, it is crucial to study changes in biomarkers within the brain's reward circuit induced by drug use. OBJECTIVE: The study was designed to examine the effects of the downregulation of GAD67 expression in the dorsal striatum on reward behavior development. METHODS: We evaluated the effects of GAD67 knockdown on depression-like behavior and anxiety using the forced swim test and elevated plus maze test in a mouse model. We further determined the effects of GAD67 knockdown on ketamine- and JWH-018-induced conditioned place preference (CPP). RESULTS: Knockdown of GAD67 in the dorsal striatum of mice increased depression-like behavior, but it decreased anxiety. Moreover, the CPP score on the NMDA receptor antagonist ketamine was increased by GAD67 knockdown, whereas the administration of JWH-018, a cannabinoid receptor agonist, did not affect the CPP score in the GAD67 knockdown mice group compared with the control group. CONCLUSIONS AND RELEVANCE: These results suggest that striatal GAD67 reduces GABAergic neuronal activity and may cause ketamine-induced NMDA receptor inhibition. Consequently, GAD67 downregulation induces vulnerability to the drug reward behavior of ketamine.


Asunto(s)
Glutamato Descarboxilasa , Ketamina , Recompensa , Animales , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Ratones , Ketamina/farmacología , Masculino , Indoles/farmacología , Naftalenos/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Técnicas de Silenciamiento del Gen , Ansiedad , Depresión/inducido químicamente , Ratones Endogámicos C57BL
4.
bioRxiv ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39314405

RESUMEN

Addictive drugs hijack the neuronal mechanisms of learning and memory in motivation and emotion processing circuits to reinforce their own use. Regulator of G-protein Signaling 14 (RGS14) is a natural suppressor of post-synaptic plasticity underlying learning and memory in the hippocampus. The present study used immunofluorescence and RGS14 knockout mice to assess the role of RGS14 in behavioral plasticity and reward learning induced by chronic cocaine in emotional-motivational circuits. We report that RGS14 is strongly expressed in discrete regions of the ventral striatum and extended amygdala in wild-type mice, and is co-expressed with D1 and D2 dopamine receptors in neurons of the nucleus accumbens (NAc). Of note, we found that RGS14 is upregulated in the NAc in mice with chronic cocaine history following acute cocaine treatment. We found significantly increased cocaine-induced locomotor sensitization, as well as enhanced conditioned place preference and conditioned locomotor activity in RGS14-deficient mice compared to wild-type littermates. Together, these findings suggest that endogenous RGS14 suppresses cocaine-induced plasticity in emotional-motivational circuits, implicating RGS14 as a protective agent against the maladaptive neuroplastic changes that occur during addiction.

5.
Brain Commun ; 6(5): fcae281, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229487

RESUMEN

Addiction to psychoactive substances is a maladaptive learned behaviour. Contexts surrounding drug use integrate this aberrant mnemonic process and hold strong relapse-triggering ability. Here, we asked where context and salience might be concurrently represented in the brain during retrieval of drug-context paired associations. For this, we developed a morphine-conditioned place preference protocol that allows contextual stimuli presentation inside a magnetic resonance imaging scanner and investigated differences in activity and connectivity at context recall. We found context-specific responses to stimulus onset in multiple brain regions, namely, limbic, sensory and striatal. Differences in functional interconnectivity were found among amygdala, lateral habenula, and lateral septum. We also investigated alterations to resting-state functional connectivity and found increased centrality of the lateral septum in a proposed limbic network, as well as increased functional connectivity of the lateral habenula and hippocampal 'cornu ammonis' 1 region, after a protocol of associative drug-context. Finally, we found that pre- conditioned place preference resting-state connectivity of the lateral habenula and amygdala was predictive of inter-individual conditioned place preference score differences. Overall, our findings show that drug and saline-paired contexts establish distinct memory traces in overlapping functional brain microcircuits and that intrinsic connectivity of the habenula, septum, and amygdala likely underlies the individual maladaptive contextual learning to opioid exposure. We have identified functional maps of acquisition and retrieval of drug-related memory that may support the relapse-triggering ability of opioid-associated sensory and contextual cues. These findings may clarify the inter-individual sensitivity and vulnerability seen in addiction to opioids found in humans.

6.
FEBS Open Bio ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267158

RESUMEN

Morphine is an opioid commonly used to treat pain in clinic, but it also has the potential to be highly addictive, which can lead to abuse. Despite these known risks, the cellular and molecular mechanism of morphine conditioned place preference (CPP) is still unclear. In this study, using a rat model of chronic morphine administration, we found that compared with the control group, the mRNA and protein expression of HCN2 channel in the ventral tegmental area (VTA) were upregulated. Further immunofluorescence analysis showed that the fluorescence intensity of HCN2 channel of VTA dopaminergic neurons in morphine group was significantly enhanced, while the patch clamp recording of brain slices showed that both the magnitude and the density of Ih (HCN channel current) of VTA neurons were significantly increased. Moreover, intra-VTA infusion of ZD7288, a selective inhibitor of HCN channel, into rats of the morphine group decreased morphine CPP. Taken together, our results show that chronic morphine administration induces an upregulation of HCN2 in VTA dopamine neurons, while HCN inhibition reduces morphine CPP, suggesting that HCN channel may be a potential target for the treatment of morphine addiction.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39302438

RESUMEN

RATIONALE: positive social interactions are essential for mental health, by offering emotional support, reducing stress levels, and promoting resilience against drugs of abuse effects. However, not all individuals perceive social interaction as rewarding. OBJECTIVES: the goal of this study was to investigate whether the modulation of the orexin system can shift passive coping and non-social behavior (vulnerable) to active coping and social behavior (resilient). This knowledge is primordial for stress- and addiction-related disorders, and for other psychiatric disorders involving impairment in social interaction. METHODS: male C57/BL6N mice categorized into social and non-social groups, received injections of SB334867, a selective orexin 1 receptor (OX1R) antagonist, before the conditioning sessions with a male conspecific of the same weight and age. RESULTS: our results from the conditioned place preference test (CPP) show that SB334867 has no effect on social preference in non-social mice, but it reduces their stress levels and depression-like behavior. These effects appear to be due to a higher OX1R expression in the basolateral amygdala (BLA), a stress-related brain area, of non-social mice compared to their social counterparts. CONCLUSIONS: these data suggest that the orexin system may be a target to alleviate stress and depression-like behavior in non-social individuals rather than to promote social reward.

8.
Sci Rep ; 14(1): 21706, 2024 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289503

RESUMEN

Can signs of intentional behavior be traced in an insect larva, traditionally thought to be driven only by mere reflexes? We trained Tenebrio molitor coleoptera larvae in a uniform Y-maze to prefer one target branch to get access to food, observing their ability to learn and retain access to the reward-associated side for up to 24 h. During reward devaluation, the reward food (experimental group) and a different food (control group) were paired with an aversive stimulus in a new environment. When tested again in the Y-maze, mealworms of the experimental group significantly reduced their visits to the target branch, whereas mealworms of the control group did not. Importantly, we found that the larvae did not have to experience the unpleasant consequences directly in the target branch to halt their behavior, as the exposure to the aversive taste occurred in a separate unfamiliar context. This is evidence that the mealworms formed a mental representation of action-consequence relationships, demonstrating flexible control of their actions to achieve desired outcomes at an early stage of their development.


Asunto(s)
Conducta Animal , Larva , Tenebrio , Animales , Tenebrio/fisiología , Larva/fisiología , Conducta Animal/fisiología , Objetivos , Recompensa , Aprendizaje por Laberinto
9.
Artículo en Inglés | MEDLINE | ID: mdl-39284561

RESUMEN

Cocaine-related contextual cues are a recurrent source of craving and relapse. Extinction of cue-driven cocaine seeking remains a clinical challenge, and the search for adjuvants is ongoing. In this regard, combining physical and cognitive training is emerging as a promising strategy that has shown synergistic benefits on brain structure and function, including enhancement of adult hippocampal neurogenesis (AHN), which has been recently linked to reduced maintenance of maladaptive drug seeking. Here, we examined whether this behavioral approach disrupts cocaine-context associations via improved AHN. To this aim, C57BL/6J mice (N = 37) developed a cocaine-induced conditioned place preference (CPP) and underwent interventions consisting of exercise and/or spatial working memory training. Bromodeoxyuridine (BrdU) was administered during early running sessions to tag a subset of new dentate granule cells (DGCs) reaching a critical window of survival during spatial learning. Once these DGCs became functionally mature (∼ 6 weeks-old), mice received extinction training before testing CPP extinction and reinstatement. We found that single and combined treatments accelerated CPP extinction and prevented reinstatement induced by a low cocaine priming (2 mg/kg). Remarkably, the dual-intervention mice showed a significant decrease of CPP after extinction relative to untreated animals. Moreover, combining the two strategies led to increased number and functional integration of BrdU+ DGCs, which in turn maximized the effect of spatial training (but not exercise) to reduce CPP persistence. Together, our findings suggests that sequencing physical and cognitive training may redound to decreased maintenance of cocaine-context associations, with multi-level stimulation of AHN as a potential underlying mechanism.

10.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39338365

RESUMEN

We have previously observed that mice exposed to social defeat stress are more sensitive to cocaine in the conditioned place preference (CPP) paradigm. In this context, it has been suggested that the nitric oxide (NO) pathway plays a role in the effects of stress. The present study evaluates the role of a neuronal NO synthase (nNOS) inhibitor (7-nitroindazole, 7-NI) in the short- and long-term behavioural effects of intermittent social defeat (ISD). Four groups of mice were employed for the study: a control group and three stressed groups, one treated with vehicle and two treated with 7-NI (7.25 or 12.5 mg/kg). After the last episode of defeat, mice were tested in the elevated plus maze (EPM), social interaction, object recognition and tail suspension tests. Three weeks later, mice were conditioned with cocaine (1 mg/kg). Stressed mice, irrespective of the treatment received, showed anxiety in the EPM, presented a deficit of social interaction and spent less time immobile in the tail suspension test. However, only stressed mice treated with vehicle developed CPP. Thus, although 7-NI did not modify the short-term behavioural effects of ISD, it prevented ISD-induced potentiation of the rewarding properties of cocaine in adulthood. These results support a specific role of nNOS in the effects of social stress on drug reward.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39110217

RESUMEN

RATIONALE: Isobutyryl-carfentanyl is the most recently discovered fentanyl analogue with a chemical structure that is similar to that of carfentanyl. Its analogue, carfentanyl, is regarded as one of the most lethal drugs in the world, with a potency of 10,000 times that of morphine. Therefore, isobutyryl-carfentanyl may possess a comparably high potency and its harmful effects cannot be ignored. OBJECTIVES: This study was designed to assess the analgesic effect of isobutyryl-carfentanyl and the potential risks associated with its misuse. METHODS: In this study, we assessed the acute toxicity of isobutyryl-carfentanyl by up-and-down-procedure, the analgesic efficacy by hot-plate test, the abuse potential by conditioned place preference (CPP), drug self-administration, and drug discrimination tests, and compared it with fentanyl and carfentanyl. RESULTS: The estimated median lethal dose (LD50) of isobutyryl-carfentanyl administered were 175 mg/kg (intragastric administration, IG), 15.84 mg/kg (intraperitoneal injection, IP), 15.84 mg/kg (subcutaneous injection, SC), and 1.6 mg/kg (intravenous injection, IV), respectively. The 50% maximal analgesic effect (ED50) of isobutyryl-carfentanyl was determined to be 0.00319 mg/kg, with an analgesic potency 14 times that of fentanyl and 0.82 times that of carfentanyl. Isobutyryl-carfentanyl exhibited a significant positional preference at a minimum dose of 0.1 mg/kg, while fentanyl exhibited a significant positional preference at a minimum dose of 0.3 mg/kg. In the heroin (0.05 mg/kg/infusion) self-administration substitution experiment, isobutyryl-carfentanyl showed significant self-administration behaviour at doses of 0.0005-0.001 mg/kg/infusion, with the maximum number of infusions observed at a dose of 0.001 mg/kg. In the heroin (1 mg/kg) drug discrimination experiment, fentanyl (0.005-0.02 mg/kg), carfentanyl (0.0005-0.002 mg/kg), and isobutyryl-carfentanyl (0.001-0.005 mg/kg) were tested in the dose-effect curves. The results showed that all three drugs exhibit dose-dependent increase in the number of drug-associated nose pokes responses and reduction in the rate of nose pokes. The subjective effect potency of isobutyryl-carfentanyl was found to be 4.4 times that of fentanyl and 0.5 times that of carfentanyl. CONCLUSIONS: In summary, isobutyryl-carfentanyl has high acute toxicity and analgesic effect, with strong psychological dependence approximately 5 times that of fentanyl and 0.5 times that of carfentanyl, and has extremely high abuse potency.

12.
Eur J Pharmacol ; 981: 176866, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39089461

RESUMEN

RATIONALE: The rewarding effect of Methamphetamine (METH) is commonly believed to play an important role in METH use disorder. The altered expression of dopamine D1 receptor (D1R) has been suggested to be essential to the rewarding effect of METH. Notably, D1R could interact with histamine H3 receptors (H3R) by forming a H3R-D1R heteromer (H3R-D1R). OBJECTIVES: This study was designed to specifically investigate the involvement of H3R-D1R in the rewarding effect of METH. METHODS: C57BL/6 mice were treated with intraperitoneal injections of a selective H3R antagonist (Thioperamide, THIO; 20 mg/kg), an H1R antagonist (Pyrilamine, PYRI; 10 mg/kg), or microinjections of cytomegalovirus (CMV)-transmembrane domain 5 (TM5) into the nucleus accumbens (NAc). The animal model of Conditioned Place Preference (CPP) was applied to determine the impact of H3R-D1R on the rewarding effect of METH. RESULTS: METH resulted in a significant preference for the drug-associated chamber, in conjunction with increased H3R and decreased D1R expression in both NAc and the ventral tegmental area (VTA). THIO significantly attenuated the rewarding effect of METH, accompanied by decreased H3R and increased D1R expression. In contrast, pyrilamine failed to produce the similar effects. Moreover, the inhibitory effect of THIO on METH-induced CPP was reversed by SKF38393, a D1R agonist. Furthermore, SCH23390, a D1R antagonist, counteracted the ameliorative effect of SKF38393 on THIO. Co-immunoprecipitation (CO-IP) experiments further demonstrated the specific interaction between H3R and D1R in METH CPP mice. The rewarding effect of METH was also significantly blocked by the interruption of CMV-transmembrane domain 5 (TM5), but not CMV-transmembrane domain 7 (TM7) in NAc. CONCLUSION: These results suggest that modulating the activity of H3R-D1R complex holds promise for regulating METH use disorder and serves as a potential drug target for its treatment.


Asunto(s)
Metanfetamina , Ratones Endogámicos C57BL , Receptores de Dopamina D1 , Receptores Histamínicos H3 , Animales , Metanfetamina/farmacología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inhibidores , Masculino , Ratones , Receptores Histamínicos H3/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Recompensa , Multimerización de Proteína/efectos de los fármacos , Condicionamiento Psicológico/efectos de los fármacos
13.
Pain Rep ; 9(5): e1168, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39139364

RESUMEN

Introduction: We explored in mice, the analgesic, tolerance, dependency, and rewarding effects of systemic acetaminophen (APAP). Methods: Studies employed adult mice (C57Bl6). (1) Intraplantar formalin flinching + post formalin allodynia. Mice were given intraperitoneal APAP in a DMSO (5%)/Tween 80 (5%) or a water-based formulation before formalin flinching on day 1 and tactile thresholds assessed before and after APAP at day 12. (2) Paw incision. At 24 hours and 8 days after hind paw incision in male mice, effects of intraperitoneal APAP on tactile allodynia were assessed. (3) Repeated delivery. Mice received daily (4 days) analgesic doses of APAP or vehicle and tested upon formalin flinching on day 5. (4) Conditioned place preference. For 3 consecutive days, vehicle was given in the morning in either of 2 chambers and in each afternoon, an analgesic dose of morphine or APAP in the other chamber. On days 5 and 10, animals were allowed to select a "preferred" chamber. Results: Formalin in male mice resulted in biphasic flinching and an enduring postformalin tactile allodynia. Acetaminophen dose dependently decreased phase 2 flinching, and reversed allodynia was observed postflinching. At a comparable APAP dose, female mice showed similarly reduced phase 2 flinching. Incision allodynia was transiently reversed by APAP. Repeated APAP delivery showed no loss of effect after sequential injections or signs of withdrawal. Morphine, but not APAP or vehicle, resulted in robust place preference. Conclusions: APAP decreased flinching and allodynia observed following formalin and paw incision and an absence of tolerance, dependence, or rewarding properties.

14.
Genes Brain Behav ; 23(4): e12910, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39164860

RESUMEN

Repeated cocaine use produces adaptations in brain function that contribute to long-lasting behaviors associated with cocaine use disorder (CUD). In rodents, the activity-regulated cytoskeleton-associated protein (Arc) can regulate glutamatergic synaptic transmission, and cocaine regulates Arc expression and subcellular localization in multiple brain regions, including the nucleus accumbens (NAc)-a brain region linked to CUD-related behavior. We show here that repeated, non-contingent cocaine administration in global Arc KO male mice produced a dramatic hypersensitization of cocaine locomotor responses and drug experience-dependent sensitization of conditioned place preference (CPP). In contrast to the global Arc KO mice, viral-mediated reduction of Arc in the adult male, but not female, NAc (shArcNAc) reduced both CPP and cocaine-induced locomotor activity, but without altering basal miniature or evoked glutamatergic synaptic transmission. Interestingly, cell type-specific knockdown of Arc in D1 dopamine receptor-expressing NAc neurons reduced cocaine-induced locomotor sensitization, but not cocaine CPP; whereas, Arc knockdown in D2 dopamine receptor-expressing NAc neurons reduced cocaine CPP, but not cocaine-induced locomotion. Taken together, our findings reveal that global, developmental loss of Arc produces hypersensitized cocaine responses; however, these effects cannot be explained by Arc's function in the adult mouse NAc since Arc is required in a cell type- and sex-specific manner to support cocaine-context associations and locomotor responses.


Asunto(s)
Cocaína , Proteínas del Citoesqueleto , Proteínas del Tejido Nervioso , Núcleo Accumbens , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Masculino , Ratones , Femenino , Cocaína/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Locomoción/efectos de los fármacos , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/fisiopatología , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Transmisión Sináptica
15.
Behav Brain Res ; 472: 115152, 2024 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-39032868

RESUMEN

The high rate of relapse to compulsive methamphetamine (MA)-taking and seeking behaviors after abstinence constitutes a major obstacle to the treatment of MA addiction. Perineuronal nets (PNNs), essential components of the extracellular matrix, play a critical role in synaptic function, learning, and memory. Abnormalities in PNNs have been closely linked to a series of neurological diseases, such as addiction. However, the exact role of PNNs in MA-induced related behaviors remains elusive. Here, we established a MA-induced conditioned place preference (CPP) paradigm in female mice and found that the number and average optical density of PNNs increased significantly in the medial prefrontal cortex (mPFC) of mice during the acquisition, extinction, and reinstatement stages of CPP. Notably, the removal of PNNs in the mPFC via chondroitinase ABC (ChABC) before extinction training not only facilitated the extinction of MA-induced CPP and attenuated the relapse of extinguished MA preference but also significantly reduced the activation of c-Fos in the mPFC. Similarly, the ablation of PNNs in the mPFC before reinstatement markedly lessened the reinstatement of MA-induced CPP, which was accompanied by the decreased expression of c-Fos in the mPFC. Collectively, our results provide more evidence for the implication of degradation of PNNs in facilitating extinction and preventing relapse of MA-induced CPP, which indicate that targeting PNNs may be an effective therapeutic option for MA-induced CPP memories.


Asunto(s)
Extinción Psicológica , Metanfetamina , Ratones Endogámicos C57BL , Corteza Prefrontal , Animales , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Metanfetamina/farmacología , Femenino , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Ratones , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Condroitina ABC Liasa/farmacología
16.
Eur J Pharmacol ; 979: 176768, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002637

RESUMEN

Previous studies from our laboratory have shown sex differences in the behavioral, molecular, and neurochemical manifestations of morphine withdrawal and they were related to an increased sensitivity to morphine effects in males. In addition, we observed an interaction between the GABAergic and opioid systems that could also be sex-dependent. Baclofen, a GABAB receptor agonist, prevented the somatic expression and the molecular and neurochemical changes induced by morphine withdrawal syndrome in mice. On the contrary, little is known about baclofen effects in the rewarding properties of morphine in male and female mice. The present study aimed to explore the effect of baclofen (1, 2 and 3 mg/kg, i.p.) pretreatment in the rewarding effects induced by morphine (7 mg/kg, s.c.) and its effect on c-Fos and brain-derived neurotrophic factor (BDNF) expression induced by the rewarding properties of morphine in prepubertal male and female mice. Baclofen (2 mg/kg) pretreatment prevented the rewarding effects of morphine only in male mice, while baclofen (3 mg/kg) reduced these effects in both sexes. Moreover, the rewarding effects of morphine were associated with a decrease of BDNF and c-Fos expression cingulate cortex, nucleus accumbens shell, cornu ammonis 1 (CA1), and cornu ammonis 3 (CA3) areas of the hippocampus only in male mice. In addition, baclofen pretreatment prevented these changes in BDNF, but not in c-Fos expression. In conclusion, our results show that GABAB receptors have a regulatory role in the rewarding effects of morphine that could be of interest for a potential future therapeutic application in opioid use disorders.


Asunto(s)
Baclofeno , Factor Neurotrófico Derivado del Encéfalo , Morfina , Proteínas Proto-Oncogénicas c-fos , Recompensa , Animales , Baclofeno/farmacología , Masculino , Femenino , Morfina/farmacología , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Agonistas de Receptores GABA-B/farmacología , Caracteres Sexuales , Conducta Animal/efectos de los fármacos , Factores Sexuales
17.
Clinics (Sao Paulo) ; 79: 100435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38996724

RESUMEN

OBJECTIVE: This study mainly explores (2R,6R; 2S,6S)-HNK and its compounds whether there are antidepressant effects. METHODS: Four HNK compounds were obtained from 2-(Chlorophenyl) Cyclopentylmethanone. Forced swimming test, locomotor sensitization test, and conditioned location preference test were used to screen the antidepressant activity of the synthesized target compounds. RESULTS: In the case of 10 mg HNK treatment, compared with saline, the immobile time of mice in the HNK group, I5 group and I6 group at 1 h and 7 days had statistical significance. In the case of 10 mg HNK treatment, compared with saline, the immobile time of compound C and D groups in the glass cylinder area was significantly different. In the locomotor sensitization test, the movement distance of compound C and D groups on day 15 and day 7 mice increased significantly compared with the first day. In the conditioned place preference experiment, compound C and compound D induced conditioned place preference in mice compared with the Veh group. CONCLUSION: The results of the forced swimming test, locomotor sensitization test, and conditioned location preference test showed that compounds C and D may have certain anti-depressant activity. However, HNK exerts a rapid and significant antidepressant effect within 1 week, but the duration is short.


Asunto(s)
Antidepresivos , Ketamina , Actividad Motora , Natación , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ratones , Masculino , Ketamina/farmacología , Ketamina/análogos & derivados , Actividad Motora/efectos de los fármacos , Factores de Tiempo , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Reproducibilidad de los Resultados
18.
Artículo en Inglés | MEDLINE | ID: mdl-39029651

RESUMEN

Substance use disorder is conceptualized as a form of maladaptive learning, whereby drug-associated memories, elicited by the presence of stimuli related to drug contexts or cues, contribute to the persistent recurrence of craving and the reinstatement of drug-seeking behavior. Hence, use of pharmacology or non-pharmacology way to disrupt drug-related memory holds promise to prevent relapse. Several studies have shown that memories can be unstable and susceptible to modification during the retrieval reactivation phase, termed the "reconsolidation time window". In this study, we use the classical conditioned place preference (CPP) model to investigate the role of aversive counterconditioning on drug-related memories during reconsolidation. Specifically, we uncovered that reconditioning drug cues through counterconditioning with LiCl-induced aversive outcomes following drug memory retrieval reduces subsequent drug-seeking behavior. Notably, the recall of cocaine- or morphine-CPP was eliminated when LiCl-induced aversive counterconditioning was performed 10 min, but not 6 h (outside the reconsolidation time window) after cocaine or morphine memory retrieval. In addition, the effect of LiCl-induced aversive counterconditioning could last for about 14 days. These results suggest that aversive counterconditioning during the reconsolidation of cocaine or morphine memory can prevent the re-seeking of cocaine or morphine, presumably by updating or replacing cocaine or morphine memories with aversive information.


Asunto(s)
Cocaína , Condicionamiento Clásico , Comportamiento de Búsqueda de Drogas , Cloruro de Litio , Morfina , Animales , Cloruro de Litio/farmacología , Masculino , Morfina/farmacología , Cocaína/farmacología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Recuerdo Mental/efectos de los fármacos , Recuerdo Mental/fisiología , Recurrencia , Señales (Psicología) , Ratas
19.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928357

RESUMEN

Cannabidiol (CBD), a phytocannabinoid, appeared to satisfy several criteria for a safe approach to preventing drug-taking behavior, including opioids. However, most successful preclinical and clinical results come from studies in adult males. We examined whether systemic injections of CBD (10 mg/kg, i.p.) during extinction of oxycodone (OXY, 3 mg/kg, i.p.) induced conditioned place preference (CPP) could attenuate the reinstatement of CPP brought about by OXY (1.5 mg/kg, i.p.) priming in adolescent rats of both sexes, and whether this effect is sex dependent. Accordingly, a priming dose of OXY produced reinstatement of the previously extinguished CPP in males and females. In both sexes, this effect was linked to locomotor sensitization that was blunted by CBD pretreatments. However, CBD was able to prevent the reinstatement of OXY-induced CPP only in adolescent males and this outcome was associated with an increased cannabinoid 1 receptor (CB1R) and a decreased mu opioid receptor (MOR) expression in the prefrontal cortex (PFC). The reinstatement of CCP in females was associated with a decreased MOR expression, but no changes were detected in CB1R in the hippocampus (HIP). Moreover, CBD administration during extinction significantly potentialized the reduced MOR expression in the PFC of males and showed a tendency to potentiate the reduced MOR in the HIP of females. Additionally, CBD reversed OXY-induced deficits of recognition memory only in males. These results suggest that CBD could reduce reinstatement to OXY seeking after a period of abstinence in adolescent male but not female rats. However, more investigation is required.


Asunto(s)
Cannabidiol , Oxicodona , Receptor Cannabinoide CB1 , Receptores Opioides mu , Animales , Cannabidiol/farmacología , Masculino , Femenino , Oxicodona/farmacología , Ratas , Receptor Cannabinoide CB1/metabolismo , Receptores Opioides mu/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Analgésicos Opioides/farmacología , Condicionamiento Psicológico/efectos de los fármacos
20.
Biomed Pharmacother ; 176: 116931, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870630

RESUMEN

The lysine-specific demethylase 1 (KDM1A) is reported to be a regulator in learning and memory. However, the effect of KDM1A in oxycodone rewarding memory has yet to be studied. In our study, rewarding memory was assessed by using conditioned place preference (CPP) in male mice. Next generation sequencing and chromatin immunoprecipitation-PCR were used to explore the molecular mechanisms. Oxycodone significantly decreased PP1α mRNA and protein levels in hippocampal neurons. Oxycodone significantly increased KDM1A and H3K4me1 levels, while significantly decreased H3K4me2 levels in a time- and dose-dependent manner. Behavioral data demonstrated that intraperitoneal injection of ORY-1001 (KDM1A inhibitor) or intra-hippocampal injection of KDM1A siRNA/shRNA blocked the acquisition and expression of oxycodone CPP and facilitated the extinction of oxycodone CPP. The decrease of PP1α was markedly blocked by the injection of ORY-1001 or KDM1A siRNA/shRNA. Oxycodone-induced enhanced binding of CoRest with KDM1A and binding of CoRest with the PP1α promoter was blocked by ORY-1001. The level of H3K4me2 demethylation was also decreased by the treatment. The results suggest that oxycodone-induced upregulation of KDM1A via demethylation of H3K4me2 promotes the binding of CoRest with the PP1α promoter, and the subsequent decrease in PP1α expression in hippocampal neurons may contribute to oxycodone reward.


Asunto(s)
Epigénesis Genética , Histona Demetilasas , Oxicodona , Animales , Masculino , Epigénesis Genética/efectos de los fármacos , Ratones , Oxicodona/farmacología , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Recompensa , Condicionamiento Psicológico/efectos de los fármacos , Ratones Endogámicos C57BL , Histonas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Memoria/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA