Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.880
Filtrar
1.
Child Abuse Negl ; 155: 106962, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068738

RESUMEN

INTRODUCTION: Recent studies suggest that parental overcontrol could be considered a specific form of childhood trauma (CT). Although previous research has shown that CT alters the functional and structural architecture of large-scale networks in the brain, the neural basis associated with parental overcontrol has not been sufficiently explored. Therefore, the main aim of the current study was to investigate the relationship between parental overcontrol and electroencephalography (EEG) triple network (TN) functional connectivity during the resting state (RS) condition in a non-clinical sample (N = 71; 39 females, mean age 23.94 ± 5.89 SD). METHODS: EEG was recorded during 5 min of RS with eyes closed. All participants were asked to self-report maternal and paternal overcontrol, CT and general psychopathology. All EEG analyses were performed using the exact low-resolution electromagnetic tomography software (eLORETA). RESULTS: Our results showed a significant positive correlation between maternal overcontrol and theta connectivity between the salience network and the central executive network. This connectivity pattern was independently associated with maternal overcontrol even when controlling for relevant confounding variables, including the severity of CT and the general level of psychopathology. This neurophysiological pattern may reflect a predisposition to detect and respond to potentially threatening stimuli in the environment, which is typically associated with excessive overcontrol. CONCLUSIONS: Our findings support the hypothesis that parental overcontrol should be considered a form of CT in all respects independent of the forms traditionally studied in the literature (i.e., emotional abuse, physical abuse, sexual abuse, and physical and emotional neglect).

2.
J Psychiatr Res ; 177: 338-345, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39068778

RESUMEN

The putamen has been proposed to play a critical role in the development of obsessive-compulsive disorder (OCD). The primary objective of this study was to examine the resting-state regional activity and functional connectivity patterns of the putamen in individuals diagnosed with OCD. To achieve this, we employed resting-state functional magnetic resonance imaging (rs-fMRI) to collect data from a sample of 45 OCD patients and 53 healthy control participants. We aimed to use the regional amplitude of low-frequency fluctuation (ALFF) analysis to generate the ROI masks of the putamen and then conduct the whole brain functional connectivity of the putamen in individuals with OCD. Compared to controls, the OCD group demonstrated decreased ALFF in bilateral putamen. The right putamen also displayed decreased FC with the left putamen extending to the inferior frontal gyrus (IFG), bilateral precuneus extending to calcarine, the right middle occipital cortex extending to the right middle temporal cortex, and the left middle occipital gyrus. The decreased connectivity between the right putamen and the left IFG was negatively correlated with Yale-Brown Obsessive Compulsive scale (Y-BOCS) Obsession Scores. This study aimed to reveal the putamen changes in resting-state activity and connectivity in OCD patients, highlighting the significance of aberrant ALFF/FC of the putamen is a key characteristic of OCD.

3.
Comput Biol Med ; 180: 108862, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068901

RESUMEN

Abnormal electrophysiological (EEG) activity has been largely reported in schizophrenia (SCZ). In the last decade, research has focused to the automatic diagnosis of SCZ via the investigation of an EEG aberrant activity and connectivity linked to this mental disorder. These studies followed various preprocessing steps of EEG activity focusing on frequency-dependent functional connectivity brain network (FCBN) construction disregarding the topological dependency among edges. FCBN belongs to a family of symmetric positive definite (SPD) matrices forming the Riemannian manifold. Due to its unique geometric properties, the whole analysis of FCBN can be performed on the Riemannian geometry of the SPD space. The advantage of the analysis of FCBN on the SPD space is that it takes into account all the pairwise interdependencies as a whole. However, only a few studies have adopted a FCBN analysis on the SPD manifold, while no study exists on the analysis of dynamic FCBN (dFCBN) tailored to SCZ. In the present study, I analyzed two open EEG-SCZ datasets under a Riemannian geometry of SPD matrices for the dFCBN analysis proposing also a multiplexity index that quantifies the associations of multi-frequency brainwave patterns. I adopted a machine learning procedure employing a leave-one-subject-out cross-validation (LOSO-CV) using snapshots of dFCBN from (N-1) subjects to train a battery of classifiers. Each classifier operated in the inter-subject dFCBN distances of sample covariance matrices (SCMs) following a rhythm-dependent decision and a multiplex-dependent one. The proposed ℛSCZ decoder supported both the Riemannian geometry of SPD and the multiplexity index DC reaching an absolute accuracy (100 %) in both datasets in the virtual default mode network (DMN) source space.

4.
Biol Psychiatry ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069164

RESUMEN

BACKGROUND: Disruptions of axonal connectivity are thought to be a core pathophysiological feature of psychotic illness, but whether they are present early in the illness, prior to antipsychotic exposure, and whether they can predict clinical outcome remains unknown. METHODS: We acquired diffusion-weighted MRI to map structural connectivity between each pair of 319 parcellated brain regions in 61 antipsychotic-naive individuals with First Episode Psychosis (FEP; 15-25 years, 46% female) and a demographically matched sample of 27 control participants, along with clinical follow-up data in patients three months and 12 months after the scan. We used connectome-wide analyses to map disruptions of inter-regional pairwise connectivity and connectome-based predictive modelling to predict longitudinal change in symptoms and functioning. RESULTS: Individuals with FEP showed disrupted connectivity in a brain-wide network linking all brain regions when compared with controls (pFWE=.03). Baseline structural connectivity significantly predicted change in functioning over 12 months (r=.44;pFWE=.041), such that lower connectivity within fronto-striato-thalamic systems predicted worse functional outcomes. CONCLUSIONS: Brain-wide reductions of structural connectivity exist during the early stages of psychotic illness and cannot be attributed to antipsychotic medication. Moreover, baseline measures of structural connectivity can predict change in patient functional outcomes up to one year after engagement with treatment services.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39069247

RESUMEN

BACKGROUND: Benign childhood epilepsy with centrotemporal spikes (BECTS), a common pediatric epilepsy, may lead to cognitive decline when compounded by Electrical Status Epilepticus during Sleep (ESES). Emerging evidence suggests that disruptions in the Salience Network (SN) contribute significantly to the cognitive deficits observed in BECTS-ESES. Our study rigorously investigates the dynamic functional connectivity (dFC) within the SN and its correlation with cognitive impairments in BECTS-ESES, employing advanced neuroimaging and neuropsychological assessments. METHODS: In this research, 45 patients diagnosed with BECTS-ESES and 55 age-matched healthy controls (HCs) participated. We utilized resting-state functional magnetic resonance imaging (fMRI) and Independent Component Analysis (ICA) to identify three fundamental SN nodes: the right Anterior Insula (rAI), left Anterior Insula (lAI), and the Anterior Cingulate Cortex (ACC). A two-sample t-test facilitated the comparison of dFC between these pivotal regions and other brain areas. RESULTS: Significantly, the BECTS-ESES group demonstrated increased dFC, particularly between the ACC and the right Middle Occipital Gyrus, and from the rAI to the right Superior Parietal Gyrus and Cerebellum, and from the lAI to the left Postcentral Gyrus. Such dFC augmentations provide neural insights potentially explaining the neuropsychological deficits in BECTS-ESES children. Employing comprehensive neuropsychological evaluations, we mapped these dFC disruptions to specific cognitive impairments encompassing memory, executive functioning, language, and attention. Through multiple regression analysis and path analysis, a preliminary but compelling association was discovered linking dFC disturbances directly to cognitive impairments. These findings underscore the critical role of SN disruptions in BECTS-ESES cognitive dysfunctions. LIMITATION: Our cross-sectional design and analytic methods preclude definitive mediation models and causal inferences, leaving the precise nature of dFC's mediating role and its direct impact by BECTS-ESES partially unresolved. Future longitudinal and confirmatory studies are needed to comprehensively delineate these associations. CONCLUSION: Our study heralds dFC within the SN as a vital biomarker for cognitive impairment in pediatric epilepsy, advocating for targeted cognitive-specific interventions in managing BECTS-ESES. The preliminary nature of our findings invites further studies to substantiate these associations, offering profound implications for the prognosis and therapeutic strategies in BECTS-ESES, thereby underlining the importance of this research in the field of pediatric neurology and epilepsy management.

6.
Clin Psychopharmacol Neurosci ; 22(3): 451-457, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39069684

RESUMEN

Objective: : Nonsuicidal self-injury (NSSI), which involves deliberate harm to body tissues without suicidal intent, represents an escalating clinical concern. We used electroencephalography (EEG) to investigate the differences in functional connectivity (FC) patterns in patients with depression with and without a history of NSSI. Methods: : Seventy-seven patients with mood disorders experiencing major depressive episodes were categorized into NSSI (Group A; n = 31) and non-NSSI (Group B; n = 46) groups on the basis of their NSSI history. EEG data were collected and FC was analyzed using coherence (Coh), imaginary coherence (iCoh), and phase-locking value (PLV) metrics. Network indices based on graph theory were calculated. Demographic and clinical characteristics and scale scores were compared between groups A and B. Results: : While the two groups showed no significant differences in demographic characteristics such as age and diagnosis, the Beck Depression Inventory and Suicidal Ideation Questionnaire (SIQ) scores were higher in Group A. Binary logistic regression analyses revealed associations of NSSI with sex and the SIQ score. We examined the connectivity of 1,326 pairs of signals across six frequency bands, yielding 7,956 signal pairs. The two groups showed no significant differences in the Coh, iCoh, corrected PLV, or network indices but showed significant differences in all the frequency bands when an uncorrected t test was used. Conclusion: : In this study, FC differences in depression with and without NSSI were not observed. Further well-controlled research is expected to clarify neurobiological underpinnings and guide future interventions.

7.
Clin Psychopharmacol Neurosci ; 22(3): 537-540, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39069694

RESUMEN

Catatonia, a severe neuropsychiatric condition, is distinguished by a range of prominent motor features such as immobility, mutism, negativism, rigidity, posturing, staring, stereotypy, automatic obedience, echolalia, and mannerism. A female patient of middle age was admitted to the open psychiatric ward of a hospital after exhibiting suicidal ideation, delusions, depression, insomnia, refusal to eat, difficulty in swallowing, and decreased motivation for four months prior to admission. Following 14 electroconvulsive therapy (ECT) sessions, her symptoms improved in the order of appetite, immobility, speech volume, mood, and delusions. The post-ECT functional connectivity was found to be improved compared to pre-ECT. The patient was discharged to outpatient clinics with medications that included aripiprazole, mirtazapine, quetiapine, and trazodone. This case reveals that ECT is an efficacious treatment in a depressive patient with catatonia, with movement symptoms responding to ECT more rapidly than affective symptoms. In addition to the improvement of movement and affective symptoms, functional connectivity much improved after ECT.

8.
Brain Sci ; 14(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39061454

RESUMEN

Speech-language therapy (SLT) is the most effective technique to improve language performance in persons with aphasia. However, residual language impairments remain even after intensive SLT. Recent studies suggest that combining transcranial direct current stimulation (tDCS) with SLT may improve language performance in persons with aphasia. However, our understanding of how tDCS and SLT impact brain and behavioral relation in aphasia is poorly understood. We investigated the impact of tDCS and SLT on a behavioral measure of scripted conversation and on functional connectivity assessed with multiple methods, both resting-state functional magnetic resonance imaging (rs-fMRI) and resting-state electroencephalography (rs-EEG). An individual with aphasia received 15 sessions of 20-min cathodal tDCS to the right angular gyrus concurrent with 40 min of SLT. Performance during scripted conversation was measured three times at baseline, twice immediately post-treatment, and at 4- and 8-weeks post-treatment. rs-fMRI was measured pre-and post-3-weeks of treatment. rs-EEG was measured on treatment days 1, 5, 10, and 15. Results show that both communication performance and left hemisphere functional connectivity may improve after concurrent tDCS and SLT. Results are in line with aphasia models of language recovery that posit a beneficial role of left hemisphere perilesional areas in language recovery.

9.
Brain Sci ; 14(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39061463

RESUMEN

Major depressive disorder (MDD) is prevalent with a high subjective and socio-economic burden. Despite the effectiveness of classical treatment methods, 20-30% of patients stay treatment-resistant. Deep Brain Stimulation of the superolateral branch of the medial forebrain bundle is emerging as a clinical treatment. The stimulation region (ventral tegmental area, VTA), supported by experimental data, points to the role of dopaminergic (DA) transmission in disease pathology. This work sets out to develop a workflow that will allow the performance of analyses on midbrain DA-ergic neurons and projections in subjects who have committed suicide. Human midbrains were retrieved during autopsy, formalin-fixed, and scanned in a Bruker MRI scanner (7T). Sections were sliced, stained for tyrosine hydroxylase (TH), digitized, and integrated into the Montreal Neurological Institute (MNI) brain space together with a high-resolution fiber tract atlas. Subnuclei of the VTA region were identified. TH-positive neurons and fibers were semi-quantitatively evaluated. The study established a rigorous protocol allowing for parallel histological assessments and fiber tractographic analysis in a common space. Semi-quantitative readings are feasible and allow the detection of cell loss in VTA subnuclei. This work describes the intricate workflow and first results of an investigation of DA anatomy in VTA subnuclei in a growing naturalistic database.

10.
Acta Neurol Belg ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066885

RESUMEN

Parkinson's disease (PD) patients with postural gait abnormalities exhibit poorer motor function scores, more severe non-motor symptoms, faster cognitive function deterioration, and a less favorable response to drugs and surgery compared to PD patients with tremor. This discrepancy is believed to be associated with more pronounced gray matter atrophy and abnormal functional connectivity. To investigate the distinctive pathological mechanisms between PD subtypes, we examined gray matter volume (GMV) and functional connectivity in patients with Parkinson's disease presenting with postural instability/gait difficulty (PD-PIGD), patients with tremor-dominant Parkinson's disease (PD-TD), and healthy controls. Voxel-based morphometry (VBM) of T1-weighted images was conducted to compare GMV among 64 PD-PIGD patients, 44 PD-TD patients, and 32 controls. Subsequently, functional connectivity within regions showing reduced GMV was compared across the groups. We analyzed whether differences among the groups were associated with clinical characteristics and neuroimaging biomarkers using partial correlation and binary logistic regression. Our comparison between PD-PIGD and PD-TD patients revealed a link between PD-PIGD and more extensive frontotemporal atrophy, potentially indicating increased basal ganglia activity accompanied by decreased cerebellum activity. Furthermore, in addition to the smaller GMV in the left middle temporal gyrus, the increased functional connectivity between this brain region and the right caudate was also the independent risk factor for PD-PIGD. In addition, we compared brain network connectivity between the PIGD and TD subtypes, using an independent component analysis (ICA). We found that Compared to PD-TD, PD-PIGD patients showed an enhanced sensorimotor network (SMN) around the left supplementary motor area. These findings suggest that severe gray matter atrophy and abnormal functional connectivity and brain networks may serve as pathophysiological mechanisms distinguishing PD-PIGD patients from other subtypes.

11.
Neuroimage Clin ; 43: 103648, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39067302

RESUMEN

BACKGROUND: Endovascular thrombectomy has been confirmed to be an effective therapy for acute ischemic stroke (AIS). However, how functional brain networks reorganize after restoration of blood supply in AIS patients, and whether the degree of reperfusion associates with functional network changes remains unclear. METHODS: Resting-state fMRI data were collected from 43 AIS patients with anterior circulation occlusion after thrombectomy and 37 healthy controls (HCs). Both static and dynamic functional connectivity (FC) within four advanced functional networks including dorsal attention network (DAN), ventral attention network (VAN), executive control network (ECN) and default mode network (DMN), were calculated and compared between post-thrombectomy patients and HCs, and between two subgroups of post-thrombectomy patients with different reperfusion conditions. RESULTS: As compared to HCs, patients showed significant differences in static FC of four functional networks, and in dynamic FC of DAN, ECN and DMN. Furthermore, patients with better reperfusion conditions exhibited increased static FC with precuneus, and altered dynamic FC within precuneus. Moreover, these alterations were associated with clinical assessments of stroke severity and functional recovery in post-thrombectomy patients. CONCLUSIONS: Collectively, these findings may provide the potential imaging markers for assessment of thrombectomy efficacy and help establish the specific rehabilitation treatments for post-thrombectomy patients.

12.
Neuroimage ; : 120743, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067554

RESUMEN

Mechanisms underlying cognitive impairment after perinatal stroke could be explained through brain network alterations. With aim to explore this connection, we conducted a matched test-control study to find a correlation between functional brain network properties and cognitive functions in children after perinatal stroke. First, we analyzed resting-state functional connectomes in the alpha frequency band from a 64-channel resting state EEG in 24 children with a history of perinatal stroke (12 with neonatal arterial ischemic stroke and 12 with neonatal hemorrhagic stroke) and compared them to the functional connectomes of 24 healthy controls. Next, all participants underwent cognitive evaluation. We analyzed the differences in functional brain network properties and cognitive abilities between groups and studied the correlation between network characteristics and specific cognitive functions. Functional brain networks after perinatal stroke had lower modularity, higher clustering coefficient, higher interhemispheric strength, higher characteristic path length and higher small world index. Modularity correlated positively with the IQ and processing speed, while clustering coefficient correlated negatively with IQ. Graph metrics, reflecting network segregation (clustering coefficient and small world index) correlated positively with a tendency to impulsive decision making, which also correlated positively with graph metrics, reflecting stronger functional connectivity (characteristic path length and interhemispheric strength). Our study suggests that specific cognitive functions correlate with different brain network properties and that functional network characteristics after perinatal stroke reflect poorer cognitive functioning.

13.
Methods Mol Biol ; 2812: 169-191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39068362

RESUMEN

Single-cell transcriptomics allows unbiased characterization of cell heterogeneity in a sample by profiling gene expression at single-cell level. These profiles capture snapshots of transient or steady states in dynamic processes, such as cell cycle, activation, or differentiation, which can be computationally ordered into a "flip-book" of cell development using trajectory inference methods. However, prediction of more complex topology structures, such as multifurcations or trees, remains challenging. In this chapter, we present two user-friendly protocols for inferring tree-shaped single-cell trajectories and pseudotime from single-cell transcriptomics data with Totem. Totem is a trajectory inference method that offers flexibility in inferring both nonlinear and linear trajectories and usability by avoiding the cumbersome fine-tuning of parameters. The QuickStart protocol provides a simple and practical example, whereas the GuidedStart protocol details the analysis step-by-step. Both protocols are demonstrated using a case study of human bone marrow CD34+ cells, allowing the study of the branching of three lineages: erythroid, lymphoid, and myeloid. All the analyses can be fully reproduced in Linux, macOS, and Windows operating systems (amd64 architecture) with >8 Gb of RAM using the provided docker image distributed with notebooks, scripts, and data in Docker Hub (elolab/repro-totem-ti). These materials are shared online under open-source license at https://elolab.github.io/Totem-protocol .


Asunto(s)
Análisis de la Célula Individual , Programas Informáticos , Análisis de la Célula Individual/métodos , Humanos , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Transcriptoma , Linaje de la Célula/genética , Algoritmos , Diferenciación Celular
14.
Artículo en Inglés | MEDLINE | ID: mdl-39073445

RESUMEN

BACKGROUND: Childhood trauma experiences and inflammation are pivotal factors in the onset and perpetuation of major depressive disorder (MDD). However, research on brain mechanisms linking childhood trauma experiences and inflammation to depression remains insufficient and inconclusive. METHODS: Resting-state fMRI scans were performed on fifty-six first-episode, drug-naive MDD patients and sixty healthy controls (HCs). A whole-brain functional network was constructed by thresholding 246 brain regions, and connectivity and network properties were calculated. Plasma interleukin-6 (IL-6) levels were assessed using enzyme-linked immunosorbent assays in MDD patients, and childhood trauma experiences were evaluated through the Childhood Trauma Questionnaire (CTQ). RESULTS: Negative correlations were observed between CTQ total (r = -0.28, p = 0.047), emotional neglect (r = -0.286, p = 0.042) scores, as well as plasma IL-6 levels (r = -0.294, p = 0.036), with mean decreased functional connectivity (FC) in MDD patients. Additionally, physical abuse exhibited a positive correlation with the nodal clustering coefficient of the left thalamus in patients (r = 0.306, p = 0.029). Exploratory analysis indicated negative correlations between CTQ total and emotional neglect scores and mean decreased FC in MDD patients with lower plasma IL-6 levels (n = 28), while these correlations were nonsignificant in MDD patients with higher plasma IL-6 levels (n = 28). CONCLUSIONS: This finding enhances our understanding of the correlation between childhood trauma experiences, inflammation, and brain activity in MDD, suggesting potential variations in their underlying pathophysiological mechanisms.

15.
CNS Neurosci Ther ; 30(7): e14874, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39056398

RESUMEN

OBJECTIVE: This study explores the correlation between asymmetrical brain functional activity, gray matter asymmetry, and the severity of early-stage Parkinson's disease (PD). METHODS: Ninety-three early-stage PD patients (ePD, H-Y stages 1-2.5) were recruited, divided into 47 mild (ePD-mild, H-Y stages 1-1.5) and 46 moderate (ePD-moderate, H-Y stages 2-2.5) cases, alongside 43 matched healthy controls (HCs). The study employed the Hoehn and Yahr (H-Y) staging system for disease severity assessment and utilized voxel-mirrored homotopic connectivity (VMHC) for analyzing brain functional activity asymmetry. Asymmetry voxel-based morphometry analysis (VBM) was applied to evaluate gray matter asymmetry. RESULTS: The study found that, relative to HCs, both PD subgroups demonstrated reduced VMHC values in regions including the amygdala, putamen, inferior and middle temporal gyrus, and cerebellum Crus I. The ePD-moderate group also showed decreased VMHC in additional regions such as the postcentral gyrus, lingual gyrus, and superior frontal gyrus, with notably lower VMHC in the superior frontal gyrus compared to the ePD-mild group. A negative correlation was observed between the mean VMHC values in the superior frontal gyrus and H-Y stages, UPDRS, and UPDRS-III scores. No significant asymmetry in gray matter was detected. CONCLUSIONS: Asymmetrical brain functional activity is a significant characteristic of PD, which exacerbates as the disease severity increases, resembling the dissemination of Lewy bodies across the PD neurological framework. VMHC emerges as a potent tool for characterizing disease severity in early-stage PD.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Índice de Severidad de la Enfermedad , Lateralidad Funcional/fisiología
16.
Entropy (Basel) ; 26(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056908

RESUMEN

Over the past decade and a half, dynamic functional imaging has revealed low-dimensional brain connectivity measures, identified potential common human spatial connectivity states, tracked the transition patterns of these states, and demonstrated meaningful transition alterations in disorders and over the course of development. Recently, researchers have begun to analyze these data from the perspective of dynamic systems and information theory in the hopes of understanding how these dynamics support less easily quantified processes, such as information processing, cortical hierarchy, and consciousness. Little attention has been paid to the effects of psychiatric disease on these measures, however. We begin to rectify this by examining the complexity of subject trajectories in state space through the lens of information theory. Specifically, we identify a basis for the dynamic functional connectivity state space and track subject trajectories through this space over the course of the scan. The dynamic complexity of these trajectories is assessed along each dimension of the proposed basis space. Using these estimates, we demonstrate that schizophrenia patients display substantially simpler trajectories than demographically matched healthy controls and that this drop in complexity concentrates along specific dimensions. We also demonstrate that entropy generation in at least one of these dimensions is linked to cognitive performance. Overall, the results suggest great value in applying dynamic systems theory to problems of neuroimaging and reveal a substantial drop in the complexity of schizophrenia patients' brain function.

17.
Tomography ; 10(7): 1089-1098, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39058054

RESUMEN

Cross-species research has advanced human understanding of brain regions, with cross-species comparisons using magnetic resonance imaging technology becoming increasingly common. Currently, cross-species research on human language regions has primarily focused on traditional brain areas such as the Broca region. While some studies have indicated that human language function also involves other language regions, the corresponding relationships between these brain regions in humans and macaques remain unclear. This study calculated the strength of the connections between the high-level language processing regions in human and macaque brains, identified homologous target areas based on the structural connections of white-matter fiber bundles, and compared the connectivity profiles of both species. The results of the experiment demonstrated that macaques possess brain regions which exhibit connectivity patterns resembling those found in human high-level language processing regions. This discovery suggests that while the function of a human brain region is specialized, it still maintains a structural connectivity similar to that seen in macaques.


Asunto(s)
Encéfalo , Lenguaje , Macaca , Imagen por Resonancia Magnética , Animales , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Mapeo Encefálico/métodos , Femenino , Adulto , Sustancia Blanca/diagnóstico por imagen , Adulto Joven , Especificidad de la Especie
18.
Exp Neurol ; : 114900, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059736

RESUMEN

AIMS: Adipose-derived stem cell (ADSC)-derived exosomes have been recognized for their neuroprotective effects in various neurological diseases. This study investigates the potential neuroprotective effects of ADSC-derived exosomes in sepsis-associated encephalopathy (SAE). METHODS: Behavioral cognitive functions were evaluated using the open field test, Y-maze test, and novel object recognition test. Brain activity was assessed through functional magnetic resonance imaging (fMRI). Pyroptosis was measured using immunofluorescence staining and western blotting. RESULTS: Our findings indicate that ADSC-derived exosomes mitigate cognitive impairment, improve survival rates, and prevent weight loss in SAE mice. Additionally, exosomes protect hippocampal function in SAE mice, as demonstrated by fMRI evaluations. Furthermore, SAE mice exhibit neuronal damage and infiltration of inflammatory cells in the hippocampus, conditions which are reversed by exosome treatment. Moreover, our study highlights the downstream regulatory role of the NLRP3/caspase-1/GSDMD signaling pathway as a crucial mechanism in alleviating hippocampal inflammation. CONCLUSION: ADSC-derived exosomes confer neuroprotection in SAE models by mediating the NLRP3/caspase-1/GSDMD pathway, thereby ameliorating cognitive impairment.

19.
Sci Rep ; 14(1): 15645, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977806

RESUMEN

Understanding the response of the injured brain to different transcranial direct current stimulation (tDCS) montages may help explain the variable tDCS treatment results on poststroke motor gains. Cortical connectivity has been found to reflect poststroke motor gains and cortical plasticity, but the changes in connectivity following tDCS remain unknown. We aimed to investigate the relationship between tDCS-induced changes in cortical connectivity and poststroke motor gains. In this study, participants were assigned to receive four tDCS montages (anodal, cathodal, bilateral, and sham) over the primary motor cortex (M1) according to a single-blind, randomized, crossover design. Electroencephalography (EEG) and Jebsen-Taylor hand function test (JTT) were performed before and after the intervention. Motor cortical connectivity was measured using beta-band coherence with the ipsilesional and contralesional M1 as seed regions. Motor gain was evaluated based on the JTT completion time. We examined the relationship between baseline connectivity and clinical characteristics and that between changes in connectivity and motor gains after different tDCS montages. Baseline functional connectivity, motor impairment, and poststroke duration were correlated. High ipsilesional M1-frontal-temporal connectivity was correlated with a good baseline motor status, and increased connectivity was accompanied by good functional improvement following anodal tDCS treatment. Low contralesional M1-frontal-central connectivity was correlated with a good baseline motor status, and decreased connectivity was accompanied by good functional improvement following cathodal tDCS treatment. In conclusion, EEG-based motor cortical connectivity was correlated with stroke characteristics, including motor impairment and poststroke duration, and motor gains induced by anodal and cathodal tDCS.


Asunto(s)
Estudios Cruzados , Electroencefalografía , Accidente Cerebrovascular Isquémico , Corteza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Corteza Motora/fisiopatología , Estimulación Transcraneal de Corriente Directa/métodos , Masculino , Femenino , Persona de Mediana Edad , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/terapia , Método Simple Ciego , Anciano , Rehabilitación de Accidente Cerebrovascular/métodos , Adulto , Plasticidad Neuronal/fisiología
20.
bioRxiv ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38979355

RESUMEN

Aging involves complex biological changes that affect disease susceptibility and aging trajectories. Although females typically live longer than males, they have a higher susceptibility to diseases like Alzheimer's, speculated to be influenced by menopause, and reduced ovarian hormone production. Understanding sex-specific differences is crucial for personalized medical interventions and gender equality in health. Our study aims to elucidate sex differences in regional cerebellar structure and connectivity during normal aging by investigating both structural and functional connectivity variations, with a focus on investigating these differences in the context of sex-steroid hormones. The study included 138 participants (mean age = 57(13.3) years, age range = 35-86 years, 54% women). The cohort was divided into three groups: 38 early middle-aged individuals (EMA) (mean age = 41(4.7) years), 48 late middle-aged individuals (LMA) (mean age = 58(4) years), and 42 older adults (OA) (mean age = 72(6.3) years). All participants underwent MRI scans, and saliva samples were collected for sex-steroid hormone quantification (17ß-estradiol (E), progesterone (P), and testosterone (T)). We found less connectivity in females between Lobule I-IV and the cuneus, and greater connectivity in females between Crus I, Crus II, and the precuneus with increased age. Higher 17ß-estradiol levels were linked to greater connectivity in Crus I and Crus II cerebellar subregions. Analyzing all participants together, testosterone was associated with both higher and lower connectivity in Lobule I-IV and Crus I, respectively, while higher progesterone levels were linked to lower connectivity in females. Structural differences were observed, with EMA males having larger volumes compared to LMA and OA groups, particularly in the right I-IV, right Crus I, right V, and right VI. EMA females showed higher volumes in the right lobules V and VI. These results highlight the significant role of sex hormones in modulating cerebellar connectivity and structure across adulthood, emphasizing the need to consider sex and hormonal status in neuroimaging studies to better understand age-related cognitive decline and neurological disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...