Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
FASEB J ; 38(13): e23795, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38984928

RESUMEN

Cystathionine beta-synthase-deficient homocystinuria (HCU) is a life-threatening disorder of sulfur metabolism. HCU can be treated by using betaine to lower tissue and plasma levels of homocysteine (Hcy). Here, we show that mice with severely elevated Hcy and potentially deficient in the folate species tetrahydrofolate (THF) exhibit a very limited response to betaine indicating that THF plays a critical role in treatment efficacy. Analysis of a mouse model of HCU revealed a 10-fold increase in hepatic levels of 5-methyl -THF and a 30-fold accumulation of formiminoglutamic acid, consistent with a paucity of THF. Neither of these metabolite accumulations were reversed or ameliorated by betaine treatment. Hepatic expression of the THF-generating enzyme dihydrofolate reductase (DHFR) was significantly repressed in HCU mice and expression was not increased by betaine treatment but appears to be sensitive to cellular redox status. Expression of the DHFR reaction partner thymidylate synthase was also repressed and metabolomic analysis detected widespread alteration of hepatic histidine and glutamine metabolism. Many individuals with HCU exhibit endothelial dysfunction. DHFR plays a key role in nitric oxide (NO) generation due to its role in regenerating oxidized tetrahydrobiopterin, and we observed a significant decrease in plasma NOx (NO2 + NO3) levels in HCU mice. Additional impairment of NO generation may also come from the HCU-mediated induction of the 20-hydroxyeicosatetraenoic acid generating cytochrome CYP4A. Collectively, our data shows that HCU induces dysfunctional one-carbon metabolism with the potential to both impair betaine treatment and contribute to multiple aspects of pathogenesis in this disease.


Asunto(s)
Homocistinuria , Hígado , Oxidación-Reducción , Tetrahidrofolato Deshidrogenasa , Tetrahidrofolatos , Animales , Homocistinuria/metabolismo , Homocistinuria/tratamiento farmacológico , Homocistinuria/genética , Ratones , Tetrahidrofolatos/metabolismo , Hígado/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Betaína/metabolismo , Betaína/farmacología , Homocisteína/metabolismo , Ratones Endogámicos C57BL , Cistationina betasintasa/metabolismo , Cistationina betasintasa/genética , Carbono/metabolismo , Masculino , Ácido Fólico/metabolismo , Femenino
2.
Biomolecules ; 14(7)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39062461

RESUMEN

Leukemias are cancers of the blood-forming system, representing a significant challenge in medical science. The development of leukemia cells involves substantial disturbances within the cellular machinery, offering hope in the search for effective selective treatments that could improve the 5-year survival rate. Consequently, the pathophysiological processes within leukemia cells are the focus of critical research. Enzymes such as cystathionine beta-synthase and sulfurtransferases like thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine gamma-lyase play a vital role in cellular sulfur metabolism. These enzymes are essential to maintaining cellular homeostasis, providing robust antioxidant defenses, and supporting cell division. Numerous studies have demonstrated that cancerous processes can alter the expression and activity of these enzymes, uncovering potential vulnerabilities or molecular targets for cancer therapy. Recent laboratory research has indicated that certain leukemia cell lines may exhibit significant changes in the expression patterns of these enzymes. Analysis of the scientific literature and online datasets has confirmed variations in sulfur enzyme function in specific leukemic cell lines compared to normal leukocytes. This comprehensive review collects and analyzes available information on sulfur enzymes in normal and leukemic cell lines, providing valuable insights and identifying new research pathways in this field.


Asunto(s)
Cisteína , Sulfuro de Hidrógeno , Leucemia , Azufre , Sulfurtransferasas , Humanos , Sulfuro de Hidrógeno/metabolismo , Leucemia/metabolismo , Leucemia/patología , Cisteína/metabolismo , Azufre/metabolismo , Sulfurtransferasas/metabolismo , Animales
3.
Redox Biol ; 73: 103222, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843767

RESUMEN

BACKGROUND: Cystathionine ß-synthase (CBS)-deficient homocystinuria (HCU) is an inherited disorder of sulfur amino acid metabolism with varying severity and organ complications, and a limited knowledge about underlying pathophysiological processes. Here we aimed at getting an in-depth insight into disease mechanisms using a transgenic mouse model of HCU (I278T). METHODS: We assessed metabolic, proteomic and sphingolipidomic changes, and mitochondrial function in tissues and body fluids of I278T mice and WT controls. Furthermore, we evaluated the efficacy of methionine-restricted diet (MRD) in I278T mice. RESULTS: In WT mice, we observed a distinct tissue/body fluid compartmentalization of metabolites with up to six-orders of magnitude differences in concentrations among various organs. The I278T mice exhibited the anticipated metabolic imbalance with signs of an increased production of hydrogen sulfide and disturbed persulfidation of free aminothiols. HCU resulted in a significant dysregulation of liver proteome affecting biological oxidations, conjugation of compounds, and metabolism of amino acids, vitamins, cofactors and lipids. Liver sphingolipidomics indicated upregulation of the pro-proliferative sphingosine-1-phosphate signaling pathway. Liver mitochondrial function of HCU mice did not seem to be impaired compared to controls. MRD in I278T mice improved metabolic balance in all tissues and substantially reduced dysregulation of liver proteome. CONCLUSION: The study highlights distinct tissue compartmentalization of sulfur-related metabolites in normal mice, extensive metabolome, proteome and sphingolipidome disruptions in I278T mice, and the efficacy of MRD to alleviate some of the HCU-related biochemical abnormalities.


Asunto(s)
Cistationina betasintasa , Modelos Animales de Enfermedad , Homocistinuria , Hígado , Metabolómica , Ratones Transgénicos , Proteómica , Esfingolípidos , Animales , Ratones , Homocistinuria/metabolismo , Homocistinuria/genética , Proteómica/métodos , Cistationina betasintasa/metabolismo , Cistationina betasintasa/deficiencia , Cistationina betasintasa/genética , Hígado/metabolismo , Metabolómica/métodos , Esfingolípidos/metabolismo , Mitocondrias/metabolismo , Lipidómica/métodos , Proteoma/metabolismo
4.
Front Vet Sci ; 11: 1378435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933705

RESUMEN

Hydrogen sulfide (H2S) is a gaseous signaling molecule produced in the body by three enzymes: cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). H2S is crucial in various physiological processes associated with female mammalian reproduction. These include estrus cycle, oocyte maturation, oocyte aging, ovulation, embryo transport and early embryo development, the development of the placenta and fetal membranes, pregnancy, and the initiation of labor. Despite the confirmed presence of H2S-producing enzymes in all female reproductive tissues, as described in this review, the exact mechanisms of H2S action in these tissues remain in most cases unclear. Therefore, this review aims to summarize the knowledge about the presence and effects of H2S in these tissues and outline possible signaling pathways that mediate these effects. Understanding these pathways may lead to the development of new therapeutic strategies in the field of women's health and perinatal medicine.

5.
Biomedicines ; 12(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38790892

RESUMEN

BACKGROUND: Cystathione beta-synthase (CBS) T236N is a novel mutation associated with pyridoxine non-responsiveness, which presents a significant difficulty in the medical treatment of homocystinuria. Reported severe phenotypes in homocystinuria patients highlight the urgent requirement to comprehend the molecular mechanisms underlying mutation pathogenicity for the advancement of the disease. METHODOLOGY: In this study, we used a multidisciplinary approach to investigate the molecular properties of bacterially expressed and purified recombinant CBST236N protein, which we directly compared to those of the wild-type (CBSWT) protein. RESULTS: Our data revealed a profound impact of the p.T236N mutation on CBS enzymatic activity, with a dramatic reduction of ~96% compared to the CBSWT protein. Circular dichroism (CD) experiments indicated that the p.T236N mutation did not significantly alter the secondary structure of the protein. However, CD spectra unveiled distinct differences in the thermal stability of CBSWT and CBST236N mutant protein species. In addition, chemical denaturation experiments further highlighted that the CBSWT protein exhibited greater thermodynamic stability than the CBST236N mutant, suggesting a destabilizing effect of this mutation. CONCLUSIONS: Our findings provide an explanation of the pathogenicity of the p.T236N mutation, shedding light on its role in severe homocystinuria phenotypes. This study contributes to a deeper understanding of CBS deficiency and may improve the development of targeted therapeutic strategies for affected individuals.

6.
Biomed Pharmacother ; 174: 116547, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599059

RESUMEN

Several studies have found that sleep deprivation (SD) can lead to neuronal ferroptosis and affect hippocampal function. However, there are currently no effective interventions. Vitamin B6 is a co-factor for key enzymes in the transsulfuration pathway which is critical for maintaining cell growth in the presence of cysteine deprivation. The results showed that SD inhibited cystine-glutamate antiporter light chain subunit xCT protein expression and caused cysteine deficiency, which reduced the synthesis of the glutathione (GSH) to trigger neuronal ferroptosis. Nissl staining further revealed significant neuronal loss and shrinkage in the CA1 and CA3 regions of the hippocampus in SD mice. Typical ferroptotic indicators characterized by lipid peroxidation and iron accumulation were showed in the hippocampus after sleep deprivation. As expected, vitamin B6 could alleviate hippocampal ferroptosis by upregulating the expression of cystathionine beta-synthase (CBS) in the transsulfuration pathway, thereby replenishing the intracellular deficient GSH and restoring the expression of GPX4. Similar anti-ferroptotic effects of vitamin B6 were demonstrated in HT-22 cells treated with ferroptosis activator erastin. Furthermore, vitamin B6 had no inhibitory effect on erastin-induced ferroptosis in CBS-knockout HT22 cells. Our findings suggested chronic sleep deprivation caused hippocampal ferroptosis by disrupting the cyst(e)ine/GSH/GPX4 axis. Vitamin B6 alleviated sleep deprivation-induced ferroptosis by enhancing CBS expression in the transsulfuration pathway.


Asunto(s)
Ferroptosis , Glutatión , Hipocampo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Privación de Sueño , Vitamina B 6 , Animales , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/metabolismo , Ferroptosis/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Masculino , Ratones , Glutatión/metabolismo , Vitamina B 6/farmacología , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Línea Celular , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología
7.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542274

RESUMEN

In adult fish, neurogenesis occurs in many areas of the brain, including the cerebellum, with the ratio of newly formed cells relative to the total number of brain cells being several orders of magnitude greater than in mammals. Our study aimed to compare the expressions of aromatase B (AroB), glutamine synthetase (GS), and cystathionine-beta-synthase (CBS) in the cerebellum of intact juvenile chum salmon, Oncorhynchus keta. To identify the dynamics that determine the involvement of AroB, GS, and CBS in the cellular mechanisms of regeneration, we performed a comprehensive assessment of the expressions of these molecular markers during a long-term primary traumatic brain injury (TBI) and after a repeated acute TBI to the cerebellum of O. keta juveniles. As a result, in intact juveniles, weak or moderate expressions of AroB, GS, and CBS were detected in four cell types, including cells of the neuroepithelial type, migrating, and differentiated cells (graphic abstract, A). At 90 days post injury, local hypercellular areas were found in the molecular layer containing moderately labeled AroB+, GS+, and CBS+ cells of the neuroepithelial type and larger AroB+, GS+, and CBS+ cells (possibly analogous to the reactive glia of mammals); patterns of cells migration and neovascularization were also observed. A repeated TBI caused the number of AroB+, GS+, and CBS+ cells to further increase; an increased intensity of immunolabeling was recorded from all cell types (graphic abstract, C). Thus, the results of this study provide a better understanding of adult neurogenesis in teleost fishes, which is expected to clarify the issue of the reactivation of adult neurogenesis in mammalian species.


Asunto(s)
Oncorhynchus keta , Animales , Glutamato-Amoníaco Ligasa , Cistationina , Aromatasa , Cistationina betasintasa , Cerebelo , Mamíferos
8.
Am J Ophthalmol Case Rep ; 34: 102042, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38544915

RESUMEN

Purpose: To report the application of a refined total capsular bag suspension technique for lens subluxation from Cystathionine beta-synthase (CBS) deficiency. Observations: A 15-year-old CBS deficiency male patient with a history of intracranial venous thrombosis presented to our clinic due to bilateral vision loss. The patient was treated with lens aspiration, intraocular lens (IOL) implantation, and total capsular bag suspension in both eyes respectively. During the six months postoperative follow-up, the patient exhibited improved visual acuity and minor refractive error. Conclusions and importance: The refined total capsular bag suspension technique is recommended for CBS deficiency patients with lens subluxation as a safe and effective surgical approach.

9.
Exp Anim ; 73(1): 109-123, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37766548

RESUMEN

Postoperative complications, such as perioperative neurocognitive disorders (PND), have become a major issue affecting surgical outcomes. However, the mechanism of PND remains unclear, and stable animal models of middle-aged PND are lacking. S-adenosylmethionine (SAM), a cystathionine beta-synthase (CBS) allosteric activator, can reduce the level of plasma homocysteine and prevent the occurrence of PND. However, the time and resource-intensive process of constructing models of PND in elderly animals have limited progress in PND research and innovative therapy development. The present study aimed to construct a stable PND model in middle-aged CAMKII-Cre:Cbsfl/fl mice whose Cbs was specifically knocked out in CAMKII positive neurons. Behavioral tests showed that these middle-aged mice displayed cognitive deficits which were aggravated by exploratory laparotomy under isoflurane anesthesia. Compared with typical PND mice which were 18-month-old, these middle-aged mice showed similar cognitive deficits after undergoing exploratory laparotomy under isoflurane anesthesia. Though there was no significant difference in the number of neurons in either the hippocampus or the cortex, a significant increase in numbers of microglia and astrocytes in the hippocampus was observed. These indicate that middle-aged CAMKII-Cre:Cbsfl/fl mice can be used as a new PND model for mechanistic studies and therapy development for PND.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Isoflurano , Humanos , Anciano , Animales , Ratones , Persona de Mediana Edad , Lactante , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Trastornos Neurocognitivos , Disfunción Cognitiva/etiología
10.
Anal Biochem ; 687: 115434, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38141799

RESUMEN

Recent studies have revealed the role of endogenous hydrogen sulfide (H2S) in the development of breast cancer. The capacity of cells to generate H2S and the activity and expression of the main enzymes (cystathionine beta synthase; CBS, cystathionase γ-lyase; CGL, 3-mercaptopyruvate sulfurtransferase; MPST and thiosulfate sulfurtransferase; TST) involved in H2S metabolism were analyzed using an in vitro model of a non-tumourigenic breast cell line (MCF-12A) and a human breast adenocarcinoma cell line (MCF-7). In both cell lines, MPST, CGL, and TST expression was confirmed at the mRNA (RT-PCR) and the protein (Western Blot) level, while CBS expression was detected only in MCF-7 cells. Elevated levels of GSH, sulfane sulfur and increased CBS and TST activity were presented in the MCF-7 compared to the MCF-12A cells. It appears that cysteine might be mainly a substrate for GSH synthesis in breast adenocarcinoma. Increased capacity of the cells to generate H2S was shown for MCF-12A compared to MCF-7 cell line. Results suggest an important function of CBS in H2S metabolism in breast adenocarcinoma. The presented work may contribute to further research on new therapeutic possibilities for breast cancer - one of the most frequently diagnosed types of cancer among women.


Asunto(s)
Adenocarcinoma , Neoplasias de la Mama , Sulfuro de Hidrógeno , Humanos , Femenino , Células MCF-7 , Sulfuro de Hidrógeno/metabolismo , Cistationina betasintasa/metabolismo
11.
Mol Cell Biol ; 43(12): 664-674, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38051092

RESUMEN

Homocystinuria (HCU), an inherited metabolic disorder caused by lack of cystathionine beta-synthase (CBS) activity, is chiefly caused by misfolding of single amino acid residue missense pathogenic variants. Previous studies showed that chemical, pharmacological chaperones or proteasome inhibitors could rescue function of multiple pathogenic CBS variants; however, the underlying mechanisms remain poorly understood. Using Chinese hamster DON fibroblasts devoid of CBS and stably overexpressing human WT or mutant CBS, we showed that expression of pathogenic CBS variant mostly dysregulates gene expression of small heat shock proteins HSPB3 and HSPB8 and members of HSP40 family. Endoplasmic reticulum stress sensor BiP was found upregulated with CBS I278T variant associated with proteasomes suggesting proteotoxic stress and degradation of misfolded CBS. Co-expression of the main effector HSP70 or master regulator HSF1 rescued steady-state levels of CBS I278T and R125Q variants with partial functional rescue of the latter. Pharmacological proteostasis modulators partially rescued expression and activity of CBS R125Q likely due to reduced proteotoxic stress as indicated by decreased BiP levels and promotion of refolding as indicated by induction of HSP70. In conclusion, targeted manipulation of cellular proteostasis may represent a viable therapeutic approach for the permissive pathogenic CBS variants causing HCU.


Asunto(s)
Cistationina betasintasa , Homocistinuria , Humanos , Cistationina betasintasa/genética , Cistationina betasintasa/química , Cistationina betasintasa/metabolismo , Homocistinuria/tratamiento farmacológico , Homocistinuria/genética , Homocistinuria/metabolismo , Cistationina/metabolismo , Cistationina/uso terapéutico , Proteostasis , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo
12.
Biosystems ; 234: 105066, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898397

RESUMEN

Trypanosoma cruzi is the causal agent of American Trypanosomiasis or Chagas Disease in humans. The current drugs for its treatment benznidazole and nifurtimox have inconveniences of toxicity and efficacy; therefore, the search for new therapies continues. Validation through genetic strategies of new drug targets against the parasite metabolism have identified numerous essential genes. Target validation can be further narrowed by applying Metabolic Control Analysis (MCA) to determine the flux control coefficients of the pathway enzymes. That coefficient is a quantitative value that represents the degree in which an enzyme/transporter determines the flux of a metabolic pathway; those with the highest coefficients can be promising drug targets. Previous studies have demonstrated that cysteine (Cys) is a key precursor for the synthesis of trypanothione, the main antioxidant metabolite in the parasite. In this research, MCA was applied in an ex vivo system to the enzymes of the reverse transsulfuration pathway (RTP) for Cys synthesis composed by cystathionine beta synthase (CBS) and cystathionine gamma lyase (CGL). The results indicated that CGL has 90% of the control of the pathway flux. Inhibition of CGL with propargylglycine (PAG) decreased the levels of Cys and trypanothione and depleted those of glutathione in epimastigotes (proliferative stage in the insect vector); these metabolite changes were prevented by supplementing with Cys, suggesting a compensatory role of the Cys transport (CysT). Indeed, Cys supplementation (but not PAG treatment) increased the activity of the CysT in epimastigotes whereas in trypomastigotes (infective stage in mammals) CysT was increased when they were incubated with PAG. Our results suggested that CGL could be a potential drug target given its high control on the RTP flux and its effects on the parasite antioxidant defense. However, the redundant Cys supply pathways in the parasite may require inhibition of the CysT as well. Our findings also suggest differential responses of the Cys supply pathways in different parasite stages.


Asunto(s)
Quistes , Trypanosoma cruzi , Humanos , Animales , Antioxidantes/metabolismo , Cisteína/metabolismo , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Mamíferos
13.
Mol Genet Metab Rep ; 36: 100999, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37637152

RESUMEN

Background: Cystathionine beta synthase deficiency (causing classical homocystinuria) has been associated with high-arched palates and crowded teeth, but little has been said about other oral health complications. Other homocystinurias (e.g., the remethylation defects) also have had little reported in terms of oral health. Individuals with the homocystinurias have been described as having bone density issues which can correlate with oral health. Moreover, elevations in homocysteine have a theoretical impact on tooth health and the paucity of clinical reports of oral health issues in homocystinuria may be the consequence of lack of attention by the medical community. Significance: Oral health is essential to overall health. If inadequate attention is paid to the oral health complications which can be seen in homocystinurias, then appropriate referrals and attention in therapeutic guidelines will not reflect the importance of oral health. Specific aims/research question: What oral health complications are reported by individuals with homocystinurias? Do these differ according to diagnosis? Methods: Data were collected from patients with homocystinurias by a series of questionnaires using the RARE-X platform. All subjects were consented prior to the collection of their data. All research was performed in accordance with the Declaration of Helsinki. Demographic data were collected as the initial questionnaire and other data were collected via the oral health questionnaire. Analysis: Questionnaires were opened to the community in mid-2022 and collection of data for this study ended with data submitted up to November 2022. Descriptive statistics were done. Due to the small size of the cohort, additional statistical analyses were not attempted. Results: Patients with homocystinuria, not related to cystathionine beta synthase deficiency, are reporting some tooth structure differences. The cohort taken as a whole does not have increased risk for gingivitis, but there appears to be a risk for long-term gum disease possibly due to the rate of osteoporosis/osteopenia in this population. A large number of individuals have malalignment and malocclusion of the teeth. These data highlight oral health as an important component of care in individuals with the homocystinurias as is true of the general population at large.

14.
Mol Genet Metab ; 139(4): 107653, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37463544

RESUMEN

Classical homocystinuria (HCU) is a rare inborn error of amino acid metabolism characterized by accumulation of homocysteine, an intermediate product of methionine metabolism, leading to significant systemic toxicities, particularly within the vascular, skeletal, and ocular systems. Most patients require lifelong dietary therapy with severe restriction of natural protein to minimize methionine intake, and many patients still struggle to maintain healthy homocysteine levels. Since eliminating methionine from the diet reduces homocysteine levels, we hypothesized that an enzyme that can degrade methionine within the gastrointestinal (GI) tract could help HCU patients maintain healthy levels while easing natural protein restrictions. We describe the preclinical development of CDX-6512, a methionine gamma lyase (MGL) enzyme that was engineered for stability and activity within the GI tract for oral administration to locally degrade methionine. CDX-6512 is stable to low pH and intestinal proteases, enabling it to survive the harsh GI environment without enteric coating and to degrade methionine freed from dietary protein within the small intestine. Administering CDX-6512 to healthy non-human primates following a high protein meal led to a dose-dependent suppression of plasma methionine. In Tg-I278T Cbs-/- mice, an animal model that recapitulates aspects of HCU disease including highly elevated serum homocysteine levels, oral dosing of CDX-6512 after a high protein meal led to suppression in serum levels of both methionine and homocysteine. When animals received a daily dose of CDX-6512 with a high protein meal for two weeks, the Tg-I278T Cbs-/- mice maintained baseline homocysteine levels, whereas homocysteine levels in untreated animals increased by 39%. These preclinical data demonstrate the potential of CDX-6512 as an oral enzyme therapy for HCU.


Asunto(s)
Homocistinuria , Humanos , Ratones , Animales , Homocistinuria/tratamiento farmacológico , Homocistinuria/genética , Metionina/metabolismo , Homocisteína , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Racemetionina , Tracto Gastrointestinal/metabolismo
15.
Front Oncol ; 13: 1178021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483514

RESUMEN

Background: Cystathionine ß-synthase (CBS), one of three enzymes that endogenously produce hydrogen sulfide, is extensively studied for its relevance in the cells of various tumors. In our previous work, we observed that the immunofluorescence pattern of CBS is very similar to that of tubulin and actin. Therefore, we focused on the potential interaction of CBS with cytoskeletal proteins ß-actin and ß-tubulin and the functional relevance of the potential interaction of these proteins in colorectal carcinoma cell lines. Methods: To study the potential interaction of CBS with cytoskeletal proteins and its functional consequences, a CBS-knockout DLD1 (DLDx) cell line was established by using the CRISPR/Cas9 gene editing method. The interaction of the selected cytoskeletal protein with CBS was studied by immunoprecipitation, Western blot analysis, immunofluorescence, and proximity ligation assay. The functional consequences were studied by proliferation and migration assays and by generation of xenografts in SCID/bg mice. Results: We have found that CBS, an enzyme that endogenously produces H2S, binds to cytoskeletal ß-tubulin and, to a lesser extent, also to ß-actin in colorectal carcinoma-derived cells. When CBS was knocked out by the CRISPR/Cas9 technique (DLDx), we observed a de-arranged cytoskeleton compared to the unmodified DLD1 cell line. Treatment of these cells with a slow sulfide donor GYY4137 resulted in normal organization of the cytoskeleton, thus pointing to the role of CBS in microtubule dynamics. To evaluate the physiological importance of this observation, both DLD1 and DLDx cells were injected into SCID/bg mice, and the size and mass of the developed xenografts were evaluated. Significantly larger tumors developed from DLDx compared to the DLD1 cells, which correlated with the increased proliferation of these cells. Conclusions: Taken together, in colorectal cancer DLD1 cells, CBS binds to the cytoskeleton, modulates microtubule dynamics, and thus affects the proliferation and migration in the colorectal carcinoma stable cell line.

17.
Cureus ; 15(3): e36911, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37128514

RESUMEN

Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. Although commonly seen as a milder elevation of homocysteine levels in adult patients, on rare occasions, the internist may face extremely elevated homocysteine levels (>100 µmol/L). In such rare cases, the search for a monogenic disease is warranted. In this report, we present a patient with classical homocystinuria, where the diagnosis was delayed due to various factors. The patient experienced a constellation of symptoms over an extended period, including visual problems, recurrent thrombosis, and neurodevelopmental delay. Delayed diagnosis of genetic diseases is problematic, as patients may grow from pediatric care to adult internal medicine, where knowledge and exposure to such a rare genetic disorder are limited. A diagnosis was finally confirmed with amino acid profiling, revealing extremely elevated homocysteine levels, which were reduced with sequential treatment modalities, including folate, vitamin B12, vitamin B6, methionine restriction, and betaine. We also present derangements in other amino acids, namely, methionine, taurine, serine, and urea cycle products. With treatment, a progressive increase in body weight is noticed. Furthermore, we present a novel finding of increased levels of ß-aminoisobutyric acid with homocysteine-lowering treatment. ß-aminisobutyric acid is a myokine that potentiates some of the metabolic benefits of exercising muscle such as improved insulin resistance and browning of white adipose tissue.

18.
Geroscience ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37217633

RESUMEN

Dietary methionine restriction (MR) increases longevity by improving health. In experimental models, MR is accompanied by decreased cystathionine ß-synthase activity and increased cystathionine γ-lyase activity. These enzymes are parts of the transsulfuration pathway which produces cysteine and 2-oxobutanoate. Thus, the decrease in cystathionine ß-synthase activity is likely to account for the loss of tissue cysteine observed in MR animals. Despite this decrease in cysteine levels, these tissues exhibit increased H2S production which is thought to be generated by ß-elimination of the thiol moiety of cysteine, as catalyzed by cystathionine ß-synthase or cystathionine γ-lyase. Another possibility for this H2S production is the cystathionine γ-lyase-catalyzed ß-elimination of cysteine persulfide from cystine, which upon reduction yields H2S and cysteine. Here, we demonstrate that MR increases cystathionine γ-lyase production and activities in the liver and kidneys, and that cystine is a superior substrate for cystathionine γ-lyase catalyzed ß-elimination as compared to cysteine. Moreover, cystine and cystathionine exhibit comparable Kcat/Km values (6000 M-1 s-1) as substrates for cystathionine γ-lyase-catalyzed ß-elimination. By contrast, cysteine inhibits cystathionine γ-lyase in a non-competitive manner (Ki ~ 0.5 mM), which limits its ability to function as a substrate for ß-elimination by this enzyme. Cysteine inhibits the enzyme by reacting with its pyridoxal 5'-phosphate cofactor to form a thiazolidine and in so doing prevents further catalysis. These enzymological observations are consistent with the notion that during MR cystathionine γ-lyase is repurposed to catabolize cystine and thereby form cysteine persulfide, which upon reduction produces cysteine.

19.
Br J Pharmacol ; 180(3): 264-278, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36417581

RESUMEN

Cystathionine beta-synthase (CBS)-deficient homocystinuria (HCU) is the most common inborn error of sulfur amino acid metabolism. The pyridoxine non-responsive form of the disease manifests itself by massively increasing plasma and tissue concentrations of homocysteine, a toxic intermediate of methionine metabolism that is thought to be the major cause of clinical complications including skeletal deformities, connective tissue defects, thromboembolism and cognitive impairment. The current standard of care involves significant dietary interventions that, despite being effective, often adversely affect quality of life of HCU patients, leading to poor adherence to therapy and inadequate biochemical control with clinical complications. In recent years, the unmet need for better therapeutic options has resulted in development of novel enzyme and gene therapies and exploration of pharmacological approaches to rescue CBS folding defects caused by missense pathogenic mutations. Here, we review scientific evidence and current state of affairs in development of recent approaches to treat HCU.


Asunto(s)
Homocistinuria , Tromboembolia , Humanos , Homocistinuria/tratamiento farmacológico , Homocistinuria/genética , Homocistinuria/metabolismo , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Calidad de Vida , Mutación Missense
20.
Orphanet J Rare Dis ; 17(1): 417, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376887

RESUMEN

BACKGROUND: Betaine is an "alternate" methyl donor for homocysteine remethylation catalyzed by betaine homocysteine methyltransferase (BHMT), an enzyme mainly expressed in the liver and kidney. Betaine has been used for more than 30 years in pyridoxine non-responsive cystathionine beta-synthase (pnrCBS) and cobalamin C (cblC) deficiencies to lower the hyperhomocysteinemia, although little is known about the optimal therapeutic dosage and its pharmacokinetic in these patients. AIMS: We compared 2 betaine doses (100 mg/kg/day vs. 250 mg/kg/day) in children affected by pnrCBS or cblC deficiencies. We also measured the pharmacokinetics parameters after a single dose of betaine (100 or 250 mg/kg) in these patients. METHODS: We conducted a prospective, randomized, crossover clinical trial with blinded evaluation. The primary outcome was the equivalence of total plasma homocysteine (tHcy) concentrations upon one-month oral treatment with betaine at 100 versus 250 mg/kg/day. RESULTS: Eleven patients completed the study (5 pnrCBS and 6 cblC). tHcy concentrations were equivalent after a one-month treatment period for the two betaine dosages. Multivariate analysis showed a significant effect of betaine dose on methionine (Met) (p = 0.01) and S-adenosylmethionine (SAM) concentrations (p = 0.006). CONCLUSIONS: Our analysis shows that there is no overt benefit to increasing betaine dosage higher than 100 mg/kg/day to lower tHcy concentrations in pnrCBS and cblC deficiencies. However, increasing betaine up to 250 mg/kg/d could benefit cblC patients through the increase of methionine and SAM concentrations, as low Met and SAM concentrations are involved in the pathophysiology of this disease. In contrast, in pnrCBS deficiency, betaine doses higher than 100 mg/kg/day could be harmful to these patients with pre-existing hypermethioninemia. TRIAL REGISTRATION: Clinical Trials, NCT02404337. Registered 23 May 2015-prospectively registered, https://clinicaltrials.gov .


Asunto(s)
Homocistinuria , Deficiencia de Vitamina B 12 , Humanos , Niño , Betaína/uso terapéutico , Estudios Prospectivos , Homocistinuria/tratamiento farmacológico , Cistationina betasintasa/uso terapéutico , Metionina , S-Adenosilmetionina/uso terapéutico , Homocisteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...