Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.569
Filtrar
1.
Arh Hig Rada Toksikol ; 75(2): 102-109, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963144

RESUMEN

COVID-19 can cause a range of complications, including cardiovascular, renal, and/or respiratory insufficiencies, yet little is known of its potential effects in persons exposed to toxic metals. The aim of this study was to answer this question with in silico toxicogenomic methods that can provide molecular insights into COVID-19 complications owed to exposure to arsenic, cadmium, lead, mercury, nickel, and chromium. For this purpose we relied on the Comparative Toxicogenomic Database (CTD), GeneMANIA, and ToppGene Suite portal and identified a set of five common genes (IL1B, CXCL8, IL6, IL10, TNF) for the six metals and COVID-19, all of which code for pro-inflammatory and anti-inflammatory cytokines. The list was expanded with additional 20 related genes. Physical interactions are the most common between the genes affected by the six metals (77.64 %), while the dominant interaction between the genes affected by each metal separately is co-expression (As 56.35 %, Cd 64.07 %, Pb 71.5 %, Hg 81.91 %, Ni 64.28 %, Cr 88.51 %). Biological processes, molecular functions, and pathways in which these 25 genes participate are closely related to cytokines and cytokine storm implicated in the development of COVID-19 complications. In other words, our findings confirm that exposure to toxic metals, alone or in combinations, might escalate COVID-19 severity.


Asunto(s)
COVID-19 , Cadmio , Mercurio , Humanos , Cadmio/toxicidad , Mercurio/toxicidad , Plomo/toxicidad , Simulación por Computador , SARS-CoV-2 , Arsénico/toxicidad , Níquel/toxicidad , Metales Pesados/toxicidad , Cromo/toxicidad , Citocinas , Interleucina-1beta/genética , Interleucina-8/genética , Toxicogenética , Interleucina-6/genética , Interleucina-10/genética , Factor de Necrosis Tumoral alfa/genética
2.
Toxicon ; 247: 107843, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964621

RESUMEN

BACKGROUND: Taiwan habu (Protobothrops mucrosquamatus), green bamboo viper (Viridovipera stejnegeri), and Taiwan cobra (Naja atra) are the most venomous snakebites in Taiwan. Patients commonly present with limb swelling but misdiagnosis rates are high, and currently available diagnostic tools are limited. This study explores the immune responses in snakebite patients to aid in differential diagnosis. METHODS: This prospective observational study investigated the changes in cytokines in snakebite patients and their potential for diagnosis. RESULTS: Elevated pro-inflammatory cytokines IL-6 and TNF-α were observed in all snakebite patients compared to the healthy control group. While no significant disparities were observed in humoral immune response cytokines, there were significant differences in IFN-γ levels, with significantly higher IL-10 levels in patients bitten by cobras. Patients with TNF-α levels exceeding 3.02 pg/mL were more likely to have been bitten by a cobra. CONCLUSION: This study sheds light on the immune responses triggered by various venomous snakebites, emphasizing the potential of cytokine patterns for snakebite-type differentiation. Larger studies are needed to validate these findings for clinical use, ultimately improving snakebite diagnosis and treatment.

3.
Food Chem Toxicol ; 191: 114847, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964650

RESUMEN

Prevention of anticancer drugs-induced cardiotoxicity remains an imperative area of oncology research as it continues to be a major challenge in cancer chemotherapy. This study was undertaken to investigate the protective effect of methanol extract of Morchella esculenta (ME) against cyclophosphamide (CP)-induced cardiotoxicity. Myocardial damage was assessed by biochemical and histopathological methods. Proinflammatory cytokines gene expression was determined by RT-PCR analysis. To assess the mitochondrial dysfunction, TCA cycle and electron transport chain complexes enzymes activities were determined. Chemical finger print of ME was accomplished by HPTLC. CP (200 mg/kg) treated animals showed elevation in cardiac injury markers which was attenuated by ME (p < 0.05). CP-induced decline of antioxidant status and expression of nuclear factor erythroid 2-related factor 2 were restored by ME. CP-induced expression of NF-ĸB, IL1-ß, IL-6, TNF-α, COX-2 and iNOS (p < 0.05) was attenuated by ME (500 mg/kg). Bioactive compounds namely, 5-eicosapentaenoicacid (C20H30O2), 8-hydroxyoctadecadienoic acid (C18H32O3), 4,4-dipo-zetacarotene (C30H44), CynarosideA (C21H32O10) present in the extract might be responsible for cardioprotection. The findings reveal the protective effect of ME against CP-induced cardiomyopathy.

4.
Photodermatol Photoimmunol Photomed ; 40(4): e12987, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38968385

RESUMEN

BACKGROUND: Skin microbiota is essential for health maintenance. Photoaging is the primary environmental factor that affects skin homeostasis, but whether it influences the skin microbiota remains unclear. OBJECTIVE: The objective of this study is to investigate the relationship between photoaging and skin microbiome. METHODS: A cohort of senior bus drivers was considered as a long-term unilateral ultraviolet (UV) irradiated population. 16S rRNA amplicon sequencing was conducted to assess skin microbial composition variations on different sides of their faces. The microbiome characteristics of the photoaged population were further examined by photoaging guinea pig models, and the correlations between microbial metabolites and aging-related cytokines were analyzed by high-throughput sequencing and reverse transcription polymerase chain reaction. RESULTS: Photoaging decreased the relative abundance of microorganisms including Georgenia and Thermobifida in human skin and downregulated the generation of skin microbe-derived antioxidative metabolites such as ectoin. In animal models, Lactobacillus and Streptobacillus abundance in both the epidermis and dermis dropped after UV irradiation, resulting in low levels of skin antioxidative molecules and leading to elevated expressions of the collagen degradation factors matrix metalloproteinase (MMP)-1 and MMP-2 and inflammatory factors such as interleukin (IL)-1ß and IL-6. CONCLUSIONS: Skin microbial characteristics have an impact in photoaging and the loss of microbe-derived antioxidative metabolites impairs skin cells and accelerates the aging process. Therefore, microbiome-based therapeutics may have potential in delaying skin aging.


Asunto(s)
Microbiota , Envejecimiento de la Piel , Piel , Rayos Ultravioleta , Humanos , Animales , Cobayas , Piel/microbiología , Piel/metabolismo , Masculino , Femenino , Persona de Mediana Edad , ARN Ribosómico 16S
5.
Biomed Pharmacother ; 177: 117058, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38968797

RESUMEN

The NF-κB pathway plays a pivotal role in impeding the diabetic wound healing process, contributing to prolonged inflammation, diminished angiogenesis, and reduced proliferation. In contrast to modern synthetic therapies, naturally occurring phytoconstituents are well-studied inhibitors of the NF-κB pathway that are now attracting increased attention in the context of diabetic wound healing because of lower toxicity, better safety and efficacy, and cost-effectiveness. This study explores recent research on phytoconstituent-based therapies and delve into their action mechanisms targeting the NF-κB pathway and potential for assisting effective healing of diabetic wounds. For this purpose, we have carried out surveys of recent literature and analyzed studies from prominent databases such as Science Direct, Scopus, PubMed, Google Scholar, EMBASE, and Web of Science. The classification of phytoconstituents into various categorie such as: alkaloids, triterpenoids, phenolics, polyphenols, flavonoids, monoterpene glycosides, naphthoquinones and tocopherols. Noteworthy phytoconstituents, including Neferine, Plumbagin, Boswellic acid, Genistein, Luteolin, Kirenol, Rutin, Vicenin-2, Gamma-tocopherol, Icariin, Resveratrol, Mangiferin, Betulinic acid, Berberine, Syringic acid, Gallocatechin, Curcumin, Loureirin-A, Loureirin-B, Lupeol, Paeoniflorin, and Puerarin emerge from these studies as promising agents for diabetic wound healing through the inhibition of the NF-κB pathway. Extensive research on various phytoconstituents has revealed how they modulate signalling pathways, including NF-κB, studies that demonstrate the potential for development of therapeutic phytoconstituents to assist healing of chronic diabetic wounds.

6.
Clin Neurol Neurosurg ; 244: 108406, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38968812

RESUMEN

OBJECTIVE: To explore the prognostic value of interleukin-6 (IL-6) combined with serum neuron specific enolase (NSE) in arterial atherosclerotic ischemic stroke. METHODS: 116 patients with arterial atherosclerotic ischemic stroke admitted to the emergency ward of our Hospital were retrospectively analyzed. According to the score of modified Rankin scale (mRS) at 90 days after discharge, the patients were divided into the poor prognosis group (mRS > 2, n = 32) and the good prognosis group (mRS ≤ 2, n = 84). Activities of Daily Living (ADL) was used to evaluate the level of independence in activities of daily living after treatment. RESULTS: The NIHSS score (14.91 ± 5.20 vs. 9.43 ± 4.30, P < 0.001), IL-6 (11.30 ± 3.11 vs. 6.75±1.28, P < 0.001) and NSE levels (12.47 ± 4.69 vs. 6.42 ± 1.32, P<0.001) in poor prognosis group were higher than those in the good prognosis group. At 90 days post-discharge, 100 % of the good prognosis group had ADL scores over 60, while in the poor prognosis group, 46.88 % scored 40-60, 40.63 % scored 20-40, 9.38 % scored under 20, and 3.13 % died. The AUC of NSE was 0.906 (95 % CI: 0.847-0.965, P < 0.001), the best cut-off value was 7.445 ng/mL, and the sensitivity and specificity were 75.0 % and 82.1 %, respectively. The AUC for IL-6 combined with NSE increased to 0.965 (95 %CI: 0.934-0.997, P < 0.001), and the sensitivity and specificity increased to 80.2 % and 92.9 %, respectively. CONCLUSION: IL-6 ≥ 6.805 pg/mL and NSE ≥ 7.445 ng/mL were independently associated with poor prognosis in patients with AIS, and the combined testing of the two indicators had a higher predictive value. These results suggested that the combined assay of IL-6 and NSE could be a novel marker for predicting poor prognosis in AIS.

7.
J Psychiatr Res ; 176: 430-441, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38968876

RESUMEN

Growth factors, T helper (Th)1 polarization, and the microbiome are involved in the pathophysiology of major depression (MDD). It remains unclear whether the combination of these three pathways could enhance the accuracy of predicting the features of MDD, including recurrence of illness (ROI), suicidal behaviors and the phenome. We measured serum stem cell factor (SCF), stem cell growth factor (SCGF), stromal cell-derived factor-1 (SDF-1), platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF), macrophage-colony stimulating factor (M-CSF) and vascular endothelial growth factor (VEGF), the ratio of serum Th1/Th2 cytokines (zTh1-zTh2), and the abundances of gut microbiome taxa by analyzing stool samples using 16S rDNA sequencing from 32 MDD patients and 37 healthy controls. The results show that serum SCF is significantly lower and VEGF increased in MDD. Adverse childhood experiences (ACE) and ROI are significantly associated with lowered SCF and increasing VEGF. Lifetime and current suicidal behaviors are strongly predicted (63.5%) by an increased VEGF/SCF ratio, Th1 polarization, a gut microbiome enterotype indicating gut dysbiosis, and lowered abundance of Dorea and Faecalobacterium. Around 80.5% of the variance in the phenome's severity is explained by ROI, ACEs, and lowered Parabacteroides distasonis and Clostridium IV abundances. A large part of the variance in health-related quality of life (54.1%) is explained by the VEGF/SCF ratio, Th1 polarization, ACE, and male sex. In conclusion, key features of MDD are largely predicted by the cumulative effects of ACE, Th1 polarization, aberrations in growth factors and the gut microbiome with increased pathobionts but lowered beneficial symbionts.

8.
Am J Med Sci ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969288

RESUMEN

BACKGROUND: MicroRNA (miRNA)-processing machinery may modify the risk of primary Sjögren's syndrome (pSS) by altering miRNA expression profiles. Inflammatory cytokines and reactive oxygen species (ROS) are also involved in pSS; however, the role of altered miRNAs expression in its pathogenesis is still unclear. We aimed to evaluate the relationship between single-nucleotide polymorphisms (SNPs) in miRNA processing machinery genes, including XPO5 (rs11077), RAN (rs14035), Dicer (rs3742330), TNRC6B (rs9623117), GEMIN3 (rs197412), and GEMIN4 (rs2740348), and the risk of pSS in female patients. The potential associations of cytokines and ROS with pSS-susceptible SNPs were also evaluated. METHODS: The SNPs confirmed by polymerase chain reaction ligase detection reaction were genotyped in 74 female patients with pSS and 77 controls. The relationship was analyzed by Student's t-test, Wilcoxon rank-sum test, chi-square test, Pearson's correlation test, and binary logistic regression analysis. RESULTS: For rs197412 of the GEMIN3 gene, the genotype TT carrier was associated with a 2.172-fold increased risk for pSS when compared with that of CT+CC carrier (odds ratio: 2.172, 95% CI, 1.133-4.166, p=0.019). Simultaneously, the pSS-susceptible TT carriers were associated with increased interferon-γ (IFN-γ) (P<0.001) and tumor necrosis factor-α (TNF-α) (P=0.003) levels when compared with that of CT+CC genotype carriers in female patients with pSS. The subsequent analysis also showed a weak positive correlation between IFN-γ and TNF-α levels (r=0.271, P=0.019). CONCLUSION: The predictors of GEMIN3 SNPs might modify pSS development in females by mediating the expression of miRNAs and therefore regulate the levels of IFN-γ and TNF-α.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38969588

RESUMEN

Castleman disease (CD) is characterized by the proliferation of lymphoid tissue and encompasses a range of disorders that vary in clinical presentation, histopathological features, and therapeutic approaches. This article presents a comprehensive review of the current state of CD research, emphasizing the etiology, pathogenesis, clinical manifestations, diagnostic criteria, treatment options, and prognostic factors. CD is a relatively rare condition infrequently encountered in clinical practice. Certain subtypes of CD progress rapidly and pose a significant threat to patient health. Consequently, a timely and accurate diagnosis is crucial. This article aimed to equip clinicians and researchers with an updated and detailed understanding of CD, thereby enhancing the management of this complex condition.

11.
Eur J Immunol ; : e2451018, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980256

RESUMEN

CD8+ T cells kill target cells by releasing cytotoxic molecules and proinflammatory cytokines, such as TNF and IFN-γ. The magnitude and duration of cytokine production are defined by posttranscriptional regulation, and critical regulator herein are RNA-binding proteins (RBPs). Although the functional importance of RBPs in regulating cytokine production is established, the kinetics and mode of action through which RBPs control cytokine production are not well understood. Previously, we showed that the RBP ZFP36L2 blocks the translation of preformed cytokine encoding mRNA in quiescent memory T cells. Here, we uncover that ZFP36L2 regulates cytokine production in a time-dependent manner. T cell-specific deletion of ZFP36L2 (CD4-cre) had no effect on T-cell development or cytokine production during early time points (2-6 h) of T-cell activation. In contrast, ZFP36L2 specifically dampened the production of IFN-γ during prolonged T-cell activation (20-48 h). ZFP36L2 deficiency also resulted in increased production of IFN-γ production in tumor-infiltrating T cells that are chronically exposed to antigens. Mechanistically, ZFP36L2 regulates IFN-γ production at late time points of activation by destabilizing Ifng mRNA in an AU-rich element-dependent manner. Together, our results reveal that ZFP36L2 employs different regulatory nodules in effector and memory T cells to regulate cytokine production.

12.
Front Mol Neurosci ; 17: 1391189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962804

RESUMEN

This investigation aims to elucidate the novel role of Stromal Interaction Molecule 1 (STIM1) in modulating store-operated calcium entry (SOCE) and its subsequent impact on inflammatory cytokine release in T lymphocytes, thereby advancing our understanding of trigeminal neuralgia (TN) pathogenesis. Employing the Gene Expression Omnibus (GEO) database, we extracted microarray data pertinent to TN to identify differentially expressed genes (DEGs). A subsequent comparison with SOCE-related genes from the Genecards database helped pinpoint potential target genes. The STRING database facilitated protein-protein interaction (PPI) analysis to spotlight STIM1 as a gene of interest in TN. Through histological staining, transmission electron microscopy (TEM), and behavioral assessments, we probed STIM1's pathological effects on TN in rat models. Additionally, we examined STIM1's influence on the SOCE pathway in trigeminal ganglion cells using techniques like calcium content measurement, patch clamp electrophysiology, and STIM1- ORAI1 co-localization studies. Changes in the expression of inflammatory markers (TNF-α, IL-1ß, IL-6) in T cells were quantified using Western blot (WB) and enzyme-linked immunosorbent assay (ELISA) in vitro, while immunohistochemistry and flow cytometry were applied in vivo to assess these cytokines and T cell count alterations. Our bioinformatic approach highlighted STIM1's significant overexpression in TN patients, underscoring its pivotal role in TN's etiology and progression. Experimental findings from both in vitro and in vivo studies corroborated STIM1's regulatory influence on the SOCE pathway. Furthermore, STIM1 was shown to mediate SOCE-induced inflammatory cytokine release in T lymphocytes, a critical factor in TN development. Supportive evidence from histological, ultrastructural, and behavioral analyses reinforced the link between STIM1-mediated SOCE and T lymphocyte-driven inflammation in TN pathogenesis. This study presents novel evidence that STIM1 is a key regulator of SOCE and inflammatory cytokine release in T lymphocytes, contributing significantly to the pathogenesis of trigeminal neuralgia. Our findings not only deepen the understanding of TN's molecular underpinnings but also potentially open new avenues for targeted therapeutic strategies.

13.
Osteoporos Int ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965121

RESUMEN

Our study examined associations of the CXC motif chemokine ligand 9 (CXCL9), a pro-inflammatory protein implicated in age-related inflammation, with musculoskeletal function in elderly men. We found in certain outcomes both cross-sectional and longitudinal significant associations of CXCL9 with poorer musculoskeletal function and increased mortality in older men. This requires further investigation. PURPOSE: We aim to determine the relationship of (CXCL9), a pro-inflammatory protein implicated in age-related inflammation, with both cross-sectional and longitudinal musculoskeletal outcomes and mortality in older men. METHODS: A random sample from the Osteoporotic Fractures in Men (MrOS) Study cohort (N = 300) was chosen for study subjects that had attended the third and fourth clinic visits, and data was available for major musculoskeletal outcomes (6 m walking speed, chair stands), hip bone mineral density (BMD), major osteoporotic fracture, mortality, and serum inflammatory markers. Serum levels of CXCL9 were measured by ELISA, and the associations with musculoskeletal outcomes were assessed by linear regression and fractures and mortality with Cox proportional hazards models. RESULTS: The mean CXCL9 level of study participants (79.1 ± 5.3 years) was 196.9 ± 135.2 pg/ml. There were significant differences for 6 m walking speed, chair stands, physical activity scores, and history of falls in the past year across the quartiles of CXCL9. However, higher CXCL9 was only significantly associated with changes in chair stands (ß = - 1.098, p < 0.001) even after adjustment for multiple covariates. No significant associations were observed between CXCL9 and major osteoporotic fracture or hip BMD changes. The risk of mortality increased with increasing CXCL9 (hazard ratio quartile (Q)4 vs Q1 1.98, 95% confidence interval 1.25-3.14; p for trend < 0.001). CONCLUSIONS: Greater serum levels of CXCL9 were significantly associated with a decline in chair stands and increased mortality. Additional studies with a larger sample size are needed to confirm our findings.

14.
Curr Med Chem ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38967082

RESUMEN

BACKGROUND: Neglected parasitic diseases constitute a broad spectrum of clinical conditions that, in the chronic phase, lack effective therapies for the target population. The utilization of vaccines based on liposomal nanocarrier systems is emerging, thereby enhancing clinical outcomes in various comorbidities. Consequently, this study aims to assess the immunological activity induced by liposomal nanocarriers against neglected parasitic diseases. METHODS: For the review, the Pubmed, Embase, and Lilacs databases were used using the descriptors vaccine, parasite, and liposome. The following inclusion criteria were adopted: in vivo and in vitro experimental articles. As exclusion criteria: book chapters, editorials, literature reviews and duplicate articles found during the database search. RESULTS: A total of 226 articles were identified, from which 34 were selected for review. The primary diseases identified included Babesia bovis, Entamoeba histolytica, Leishmania braziliensis, Leishmania donovani, Leishmania major, Leishmania infantum, Plasmodium falciparum, Plasmodium chabaudi, Plasmodium chabaudi, Plasmodium yoelii, Toxoplasma gondii and Trypanosoma cruzi. An elevation in cytokines such as GM-CSF, MCP-1, INF-γ, TNF-α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, and IL-17 was observed in the studies evaluated regarding the parasitic diseases. Furthermore, cytokines such as IL-4, IL-10, and TGF-ß were diminished with the administration of the vaccine systems in those studies. CONCLUSION: Therefore, the administration of liposomal nanovaccine systems can effectively ameliorate the clinical condition of patients by modulating their immunological profile.

15.
Alzheimers Dement ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982798

RESUMEN

INTRODUCTION: Evidence has emerged that cardiometabolic multimorbidity (CMM) is associated with dementia, but the underlying mechanisms are poorly understood. METHODS: This population-based study included 5704 older adults. Of these, data were available in 1439 persons for plasma amyloid-ß (Aß), total tau, and neurofilament light chain (NfL) and in 1809 persons for serum cytokines. We defined CMM following two common definitions used in previous studies. Data were analyzed using general linear, logistic, and mediation models. RESULTS: The presence of CMM was significantly associated with an increased likelihood of dementia, Alzheimer's disease (AD), and vascular dementia (VaD) (p < 0.05). CMM was significantly associated with increased plasma Aß40, Aß42, and NfL, whereas CMM that included visceral obesity was associated with increased serum cytokines. The mediation analysis suggested that plasma NfL significantly mediated the association of CMM with AD. DISCUSSION: CMM is associated with dementia, AD, and VaD in older adults. The neurodegenerative pathway is involved in the association of CMM with AD. HIGHLIGHTS: The presence of CMM was associated with increased likelihoods of dementia, AD, and VaD in older adults. CMM was associated with increased AD-related plasma biomarkers and serum inflammatory cytokines. Neurodegenerative pathway was partly involved in the association of CMM with AD.

16.
J Neurol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985290

RESUMEN

Parkinson's disease displays clinical heterogeneity, presenting with motor and non-motor symptoms. Heterogeneous phenotypes, named brain-first and body-first, may reflect distinct α-synuclein pathology starting either in the central nervous system or in the periphery. The immune system plays a prominent role in the central and peripheral pathology, with misfolded α-synuclein being placed at the intersection between neurodegeneration and inflammation. Here, we characterized the inflammatory profile and immune-phenotype of peripheral blood mononuclear cells (PBMCs) from Parkinson's disease patients upon stimulation with α-synuclein monomer or oligomer, and investigated relationships of immune parameters with clinical scores of motor and non-motor symptoms. Freshly isolated PBMCs from 21 Parkinson's disease patients and 18 healthy subjects were exposed in vitro to α-synuclein species. Cytokine/chemokine release was measured in the culture supernatant by Multiplex Elisa. The immune-phenotype was studied by FACS-flow cytometry. Correlation analysis was computed between immune parameters and parkinsonian motor and non-motor scales. We found that Parkinson's disease patients exhibited a dysregulated PBMC-cytokine profile, which remained unaltered after exposure to α-synuclein species and correlated with both motor and non-motor severity, with a strong correlation observed with olfactory impairment. Exposure of PBMCs from healthy controls to α-synuclein monomer/oligomer increased the cytokine/chemokine release up to patient's values. Moreover, the PBMCs immune phenotype differed between patients and controls and revealed a prominent association of the Mos profile with olfactory impairment, and of NK profile with constipation. Results suggest that a deranged PBMC-immune profile may reflect distinct clinical subtypes and would fit with the recent classification of Parkinson's disease into peripheral-first versus brain-first phenotype.

17.
Ren Fail ; 46(2): 2374013, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38967153

RESUMEN

OBJECTIVE: To evaluate the clinical efficacy and safety of fractionated plasma separation and adsorption combined with continuous veno-venous hemofiltration (FPSA-CVVH) treatment in patients with acute bipyridine herbicide poisoning. METHODS: A retrospective analysis of 18 patients with acute bipyridine herbicide poisoning was conducted, of which 9 patients were poisoned by diquat and 9 patients by paraquat. All patients underwent FPSA-CVVH treatment. The serum cytokine levels in pesticide-poisoned patients were assessed. The efficacy of FPSA-CVVH in eliminating cytokines, the 90-d survival rate of poisoned patients, and adverse reactions to the treatment were observed. RESULTS: Fourteen patients (77.8%) had acute kidney injuries and 10 (55.6%) had acute liver injuries. The serum cytokine levels of high mobility group protein B-1 (HMGB-1), interleukin-6 (IL-6), IL-8, interferon-inducible protein-10 (IP-10), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1ß (MIP-1ß) were significantly elevated. A total of 41 FPSA-CVVH treatment sessions were administered. After a single 8-h FPSA-CVVH treatment, the decreases in HMGB-1, IL-6, IL-8, IP-10, MCP-1, and MIP-1ß were 66.0%, 63.5%, 73.3%, 63.7%, 53.9%, and 54.1%, respectively. During FPSA-CVVH treatment, one patient required a filter change due to coagulation in the plasma component separator, and one experienced a bleeding adverse reaction. The 90-d patient survival rate was 50%, with 4 patients with diquat poisoning and 5 patients with paraquat poisoning, and both liver and kidney functions were restored to normal. CONCLUSION: Cytokine storms may play a significant role in the progression of multiorgan dysfunction in patients with acute bipyridine herbicide poisoning. FPSA-CVVH can effectively reduce cytokine levels, increase the survival rate of patients with acute bipyridine herbicide poisoning, and decrease the incidence of adverse events.


Asunto(s)
Lesión Renal Aguda , Terapia de Reemplazo Renal Continuo , Herbicidas , Humanos , Masculino , Femenino , Herbicidas/envenenamiento , Estudios Retrospectivos , Adulto , Persona de Mediana Edad , Lesión Renal Aguda/terapia , Lesión Renal Aguda/inducido químicamente , Citocinas/sangre , Paraquat/envenenamiento , Diquat/envenenamiento , Adulto Joven , Anciano , Hemofiltración/métodos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia
18.
Cureus ; 16(6): e61534, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38957253

RESUMEN

In experimental allergic encephalomyelitis, the severity of the deficiency is associated with the loss of axons, and it is likely that cytotoxic T-cells 8 (CD8 T) play an important role. In relapsing-remitting multiple sclerosis, there is a correlation between the inflammatory activity in the lesion and the transection of axons. To understand the pathological mechanisms, it is important to evaluate the changes in serum concentrations of pro- and anti-inflammatory cytokines during the disease course. A total of 46 patients and 40 healthy individuals participated in an open-label, prospective, case-control study from 2012 to 2014. The serum concentrations of cytokines were measured using enzyme-linked immunosorbent assay (ELISA). An immune imbalance was observed during relapse and remission phases compared to the control group. During relapse, the levels of interferon-gamma (IFN-γ) were significantly higher compared to those in remission (p=0.017). During remission, there was an improvement in the deficiency (p<0.001), and the anti-inflammatory cytokines transforming growth factor-beta (TGF-ß) and interleukin 4 (IL4) increased compared to those in relapse (p=0.006; p=0.009). A correlation was found between the serum concentrations of tumor necrosis factor-alpha (TNF-α) and Expanded Disability Status Scale (EDSS) during relapse (correlation coefficient: 0.301; significance (Sig.) (2-tailed 0.042). During the exacerbation, there was a moderate relationship between interleukin 17 (IL17) and 25-hydroxyvitamin D (25(OH)D) (P (p-value (probability value) = 0.02)). TNF-α, IFN-γ, IL17, and TGF-ß serum levels are criteria for evaluating immune inflammatory activity during relapse and remission periods.

19.
Front Oncol ; 14: 1373380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957317

RESUMEN

Background: Lung cancer is the deadliest and most prevalent malignancy worldwide. While smoking is an established cause, evidence to identify other causal factors remains lacking. Current research indicates chronic inflammation is involved in tumorigenesis and cancer development, though the specific mechanisms underlying the role of inflammatory cytokines in lung cancer pathogenesis remain unclear. This study implemented Mendelian randomization (MR) analysis to investigate the causal effects of circulating cytokines on lung cancer development. Methods: We performed a two-sample MR analysis in Europeans utilizing publicly available genome-wide association study summary statistics. Single nucleotide polymorphisms significantly associated with cytokine were selected as genetic instrumental variables. Results: Genetically predicted levels of the chemokine interleukin-18 (IL-18) (OR = 0.942, 95% CI: 0.897-0.990, P = 0.018) exerted significant negative causal effects on overall lung cancer risk in this analysis. Examining specific histologic subtypes revealed further evidence of genetic associations. Stem cell factor (SCF) (OR = 1.150, 95% CI: 1.021-1.296, P = 0.021) and interleukin-1beta (IL-1ß) (OR = 1.152, 95% CI: 1.003-1.325, P = 0.046) were positively associated with lung adenocarcinoma risk, though no inflammatory factors showed causal links to squamous cell lung cancer risk. Stratified by smoking status, interferon gamma-induced protein 10 (IP-10) (OR = 0.861, 95% CI: 0.781-0.950, P = 0.003) was inversely associated while IL-1ß (OR = 1.190, 95% CI: 1.023-1.384, P = 0.024) was positively associated with lung cancer risk in ever smokers. Among never smokers, a positive association was observed between lung cancer risk and SCF (OR = 1.474, 95% CI: 1.105-1.964, P = 0.008). Importantly, these causal inferences remained robust across multiple complementary MR approaches, including MR-Egger, weighted median, weighted mode and simple mode regressions. Sensitivity analyses also excluded potential bias stemming from pleiotropy. Conclusion: This MR study found preliminary evidence that genetically predicted levels of four inflammatory cytokines-SCF, IL-1ß, IL-18, and IP-10-may causally influence lung cancer risk in an overall and subtype-specific manner, as well as stratified by smoking status. Identifying these cytokine pathways that may promote lung carcinogenesis represents potential new targets for the prevention, early detection, and treatment of this deadly malignancy.

20.
Front Microbiol ; 15: 1419615, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952452

RESUMEN

African swine fever (ASF) is an infectious disease characterized by hemorrhagic fever, which is highly pathogenic and causes severe mortality in domestic pigs. It is caused by the African swine fever virus (ASFV). ASFV is a large DNA virus and primarily infects porcine monocyte macrophages. The interaction between ASFV and host macrophages is the major reason for gross pathological lesions caused by ASFV. Necroptosis is an inflammatory programmed cell death and plays an important immune role during virus infection. However, whether and how ASFV induces macrophage necroptosis and the effect of necroptosis signaling on host immunity and ASFV infection remains unknown. This study uncovered that ASFV infection activates the necroptosis signaling in vivo and macrophage necroptosis in vitro. Further evidence showed that ASFV infection upregulates the expression of ZBP1 and RIPK3 to consist of the ZBP1-RIPK3-MLKL necrosome and further activates macrophage necroptosis. Subsequently, multiple Z-DNA sequences were predicted to be present in the ASFV genome. The Z-DNA signals were further confirmed to be present and colocalized with ZBP1 in the cytoplasm and nucleus of ASFV-infected cells. Moreover, ZBP1-mediated macrophage necroptosis provoked the extracellular release of proinflammatory cytokines, including TNF-α and IL-1ß induced by ASFV infection. Finally, we demonstrated that ZBP1-mediated necroptosis signaling inhibits ASFV replication in host macrophages. Our findings uncovered a novel mechanism by which ASFV induces macrophage necroptosis by facilitating Z-DNA accumulation and ZBP1 necrosome assembly, providing significant insights into the pathogenesis of ASFV infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...