Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 149: 598-615, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181671

RESUMEN

Catalytic hydrogenation of CO2 to ethanol is a promising solution to address the greenhouse gas (GHG) emissions, but many current catalysts face efficiency and cost challenges. Cobalt based catalysts are frequently examined due to their abundance, cost-efficiency, and effectiveness in the reaction, where managing the Co0 to Coδ+ ratio is essential. In this study, we adjusted support nature (Al2O3, MgO-MgAl2O4, and MgO) and reduction conditions to optimize this balance of Co0 to Coδ+ sites on the catalyst surface, enhancing ethanol production. The selectivity of ethanol reached 17.9% in a continuous flow fixed bed micro-reactor over 20 mol% Co@MgO-MgAl2O4 (CoMgAl) catalyst at 270 °C and 3.0 MPa, when reduced at 400 °C for 8 h. Characterisation results coupled with activity analysis confirmed that mild reduction condition (400 °C, 10% H2 balance N2, 8 h) with intermediate metal support interaction favoured the generation of partially reduced Co sites (Coδ+ and Co0 sites in single atom) over MgO-MgAl2O4 surface, which promoted ethanol synthesis by coupling of dissociative (CHx*)/non-dissociative (CHxO*) intermediates, as confirmed by density functional theory analysis. Additionally, the CoMgAl, affordably prepared through the coprecipitation method, offers a potential alternative for CO2 hydrogenation to yield valuable chemicals.


Asunto(s)
Dióxido de Carbono , Cobalto , Etanol , Dióxido de Carbono/química , Etanol/química , Hidrogenación , Cobalto/química , Catálisis , Nanopartículas/química , Modelos Químicos
2.
Heliyon ; 10(15): e35281, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170370

RESUMEN

In the present study, ten new substituted 3-hydroxypyridine-4-one derivatives were synthesized in a four-step method, and their chemical structures were confirmed using various spectroscopic techniques. Subsequently, the inhibitory activities of these derivatives against tyrosinase enzyme and their antioxidant activities were evaluated. Amongest the synthesized compounds, 6b bearing a 4-OH-3-OCH3 substitution was found to be a promising tyrosinase inhibitor with an IC50 value of 25.82 µM, which is comparable to the activity of kojic acid as control drug. Kinetic study indicated that compound 6b is a competitive inhibitor of tyrosinase enzyme, which was confirmed by molecular docking results. The molecular docking study and MD simulation showed that compound 6b was properly placed within the tyrosinase binding pocket and interacted with key residues, which is consistent with its biological activity. The DFT analysis demonstrated that compound 6b is kinetically more stable than the other compounds. In addition, compounds 6a and 6b exhibited the best antioxidant activities. The findings indicate that compound 6b could be a promising lead for further studies.

3.
Bioorg Chem ; 151: 107702, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142196

RESUMEN

The mycobacterial F-ATP synthase is responsible for the optimal growth, metabolism and viability of Mycobacteria, establishing it as a validated target for the development of anti-TB therapeutics. Herein, we report the discovery of an N-acyl phenothiazine derivative, termed PT6, targeting the mycobacterial F-ATP synthase. PT6 is bactericidal and active against the drug sensitive, Rifampicin-resistant as well as Multidrug-resistant tuberculosis strains. Compound PT6 showed noteworthy inhibition of F-ATP synthesis, exhibiting an IC50 of 0.788 µM in M. smegmatis IMVs and was observed that it could deplete intracellular ATP levels, exhibiting an IC50 of 30 µM. PT6 displayed a high selectivity towards mycobacterial ATP synthase compared to mitochondrial ATP synthase. Compound PT6 showed a minor synergistic effect in combination with Rifampicin and Isoniazid. PT6 demonstrated null cytotoxicity as confirmed by assessing its toxicity against VERO cell lines. Further, the binding mechanism and the activity profile of PT6 were validated by employing in silico techniques such as molecular docking, Prime MM/GBSA, DFT and ADMET analysis. These results suggest that PT6 presents an attractive lead for the discovery of a novel class of mycobacterial F-ATP synthase inhibitors.


Asunto(s)
Antituberculosos , Diseño de Fármacos , Inhibidores Enzimáticos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Fenotiazinas , Fenotiazinas/farmacología , Fenotiazinas/química , Fenotiazinas/síntesis química , Antituberculosos/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Relación Estructura-Actividad , Estructura Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Relación Dosis-Respuesta a Droga , Animales , Chlorocebus aethiops , Células Vero , Simulación del Acoplamiento Molecular , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
4.
Nat Prod Res ; : 1-11, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049514

RESUMEN

Inflammation is an immune system response triggered by pathogens, damaged cells, or stimuli. Some regulatory enzymes, such as phosphodiesterase, hyaluronidase, collagenase, and lipoxygenase, play an essential role in the inflammatory process. Polyphenolic compounds, such as flavonoids, are active suppressors of inflammatory cytokines, modulators of transcription factors, and inflammation-related pathways. A set of flavonoid structures was screened and docked against inflammation pathway enzymes. Amentoflavone has been shown to cause interactions with phosphodiesterase enzymes, while Bilobetin and Silibinin demonstrated an increase in binding energy with collagenase enzymes. The retrieved compounds from the docking study were subjected to DFT theory. The results showed that the LUMO orbital is located on the flavonoid part. The thermochemical parameters indicated that Silibinin is more stable than other compounds. The ADMET profile predicted that Silibinin can be used orally among the compounds. Silibinin can be introduced as a promising anti-inflammatory agent demonstrating phosphodiesterase and collagenase inhibitory properties.

5.
J Mol Model ; 30(7): 235, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951276

RESUMEN

CONTEXT AND RESULTS: A nanocomposite photocatalyst consisting of polyaniline (PANI) and copper oxide (CuO) was successfully synthesized through an in-situ polymerization approach using aniline as the precursor. The synthesized nanocomposite was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-Vis), determination of the point of zero charge (pHPZC), and scanning electron microscopy (SEM). The photocatalytic efficiency of the PANI-CuO nanocomposite was evaluated in the context of photodegrading Malachite Green (MG) dye under visible light. Malachite Green, a synthetic dye commonly used in the textile and aquaculture industries, is a significant contaminant due to its toxic, mutagenic, and carcinogenic properties, making its removal from water resources crucial for environmental and human health. Distilled water artificially contaminated with MG dye was used as the medium for testing. The parameters influencing the photodegradation efficiency were comprehensively investigated. These parameters included catalyst dosage, reaction time, initial dye concentration, and pH. The results of this study indicate that the degradation efficiency of MG dye displayed an upward trend with time, catalyst dosage, and pH while exhibiting a converse relationship with the initial dye concentration. A degradation rate of 97% was achieved with an initial concentration of 20 mg L-1, employing a catalyst dose of 1.6 g L-1 at pH 6 for a reaction time of 180 min. Furthermore, the reusability of the catalyst was assessed, revealing consistent performance over five consecutive cycles. COMPUTATIONAL AND THEORETICAL TECHNIQUES: Density functional theory (DFT) was employed to optimize the structures of PANI, PANI-CuO, and their respective complexes formed through dye interaction, employing Gaussian software. These calculations employed the B3LYP/6-311G + + (d,p) basis set in an aqueous environment with water serving as the solvent. The kinetics of Malachite Green degradation were analyzed using both first and second-order kinetic models.

6.
Heliyon ; 10(10): e31217, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813177

RESUMEN

We developed a novel chromogenic reagent and sensor by selective approach, for the detection and identification of dichlorvos, which we tested with the thin layer chromatography method. For the first time, we reported in situ-generated glyoxal as a hydrolysis product, which then interacts with isoniazid to produce a yellow-colored cyclic compound. We used well-known spectroscopic techniques to confirm the chemical identity of the final product. We initially investigated the reaction using a variety of approaches, followed by attempts to establish the reaction mechanism using Density Functional Theory by Gaussian software.

7.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38344942

RESUMEN

In the current work, a new series of benzo[b][1, 4] diazepines (A-1 to C-4) was synthesized and screened against three different human cancer cell lines, HepG2 (hepatocellular carcinoma), HeLa (cervical cancer) and MCF-7 (breast cancer), by employing MTT (MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. The outcomes of in vitro screening revealed that all the compounds exhibited momentous anticancer activity, most notably against the MCF-7 cell line by B1-4 compounds. Further, network pharmacology, UALCAN analysis, molecular docking, molecular dynamics (MD) simulations and density functional theory calculations were conducted to explore expression analysis, pharmacokinetics, toxicity profiles and binding interactions of the B1-4 compounds. By UALCAN, we explored the expression analysis of CDK-2 in 19 cancers. Through UALCAN, Pan-cancer analysis revealed that the expression of CDK-2 in 19 cancers was statistically significant. Among the 19 cancers, the CDK-2 expression was significantly upregulated in breast cancer (BRCA), cervical cancer (CESC) and lung carcinoma (LUSC) than normal tissues. Enzyme-docking examination revealed that B1-4 compounds exhibited significant binding affinity against the CDK-2 (PDB ID: 5IEV) drug target protein. Furthermore, MD simulations supported the docking results, which confirmed that the ligand + protein complex was in a stable conformation throughout the simulation time of 100 nanoseconds. Therefore, the present study demonstrates the potential of these benzo [b][1,4] diazepines as promising drug candidates against cancer.Communicated by Ramaswamy H. Sarma.


A new series of benzodiazepine molecules were designed and synthesized as CDK-2 inhibitors.In vitro anticancer potential against HepG2, HeLa and MCF-7 cancer cells were assessed.Network pharmacology; expression analysis; in silico docking; molecular dynamics simulation; molecular mechanics­generalized Born and surface area; and absorption, distribution, metabolism, excretion and toxicity studies were carried out.This study overall revealed the anticancer activity of benzodiazepines by integrating network pharmacology, molecular modeling and in vitro experiments.

8.
Chem Biodivers ; 21(4): e202301861, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367267

RESUMEN

The paper is focused on biological activity and theoretical study of the structure and properties of a new azo derivative of ß-diketones and its complexes with some metals. The aim of our work was to study the structure and properties of the newly synthesized compound as well as to theoretically determine the possibility of complex formation with the Cu(II) or Co(II) ions. A compound with the same substituents R1=R2=CH3 was chosen for the study. A synthesized azo compound based on 4-amino antipyrine and its complexes with Cu(II), Co(II) in solution and solid phase is reported. The structures of these compounds have been testified by X-ray, IR and  NMR spectroscopy. The combined experimental and theoretical approach was used. To study the structure and properties of the synthesized compound, as well as its possible complex formation with the Cu(II), quantum-chemical calculations were carried out the 6-31G basis set and the electron density functional theory (DFT) method. These 3-(1-phenyl-2,3-dimethyl-pyrazolone-5) azopentadione-2,4 (PDPA) with Cu(II) and Co(II) complexes had effective inhibition against butyrylcholinesterase and acetylcholinesterase. IC50 values were found as 19.03, 3.64 µM for AChE and 28.47, 8.01 µM for BChE, respectively. Cholinesterase inhibitors work to slow down the acetylcholine's deterioration.


Asunto(s)
Butirilcolinesterasa , Complejos de Coordinación , Acetilcolinesterasa/química , Butirilcolinesterasa/química , Complejos de Coordinación/química , Metales/química , Modelos Teóricos , Simulación del Acoplamiento Molecular , Cobre/química , Cobalto/química
9.
Pest Manag Sci ; 80(2): 544-553, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37735842

RESUMEN

BACKGROUND: To discover and develop novel acaricidal compounds, a series of 2-fluoro-4-methyl/chlorine-5-((2,2,2-trifluoroethyl)thio)aniline/phenol compounds containing N/O-benzyl moieties were synthesized based on lead compound LZ-1. RESULTS: The activity of these compounds against carmine spider mites (Tetranychus cinnabarinus) was determined using the leaf-spray method. Bioassays indicated that most of the designed target compounds possessed moderate to excellent acaricidal activity against adult T. cinnabarinus. The median lethal concentrations of 25b and 26b were 0.683 and 2.448 mg L-1 against adult mites, respectively; exceeding those of bifenazate (7.519 mg L-1 ) and lead compound LZ-1(3.658 mg L-1 ). Compound 25b exhibited 100% mortality in T. cinnabarinus larvae at 10 mg L-1 . CONCLUSION: Continuing the study of these compounds in field trials, we compared the efficacy of mite killing by compound 25b with the commercial pesticide spirodiclofen and showed that mite control achieved 95.9% and 83.0% lethality at 10 and 22 days post-treatment. In comparison, spirodiclofen showed 92.7% lethality at 10 days and 77.2% lethality at 22 days post-treatment at a concentration of 100 mg L-1 . Results showed that 25b produced more facile and long-lasting control against T. cinnabarinus than the commercial acaricide spirodiclofen. Density functional theory analysis and electrostatic potential calculations of various molecular substitutions suggested some useful models to achieve other highly active miticidal compounds. © 2023 Society of Chemical Industry.


Asunto(s)
4-Butirolactona/análogos & derivados , Acaricidas , Compuestos de Espiro , Tetranychidae , Animales , Sulfuros/farmacología , Relación Estructura-Actividad
10.
Angew Chem Int Ed Engl ; 63(2): e202310112, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37997014

RESUMEN

The significance of stereoselective C-H bond functionalization thrives on its direct application potential to pharmaceuticals or complex chiral molecule synthesis. Complication arises when there are multiple stereogenic elements such as a center and an axis of chirality to control. Over the years cooperative assistance of multiple chiral ligands has been applied to control only chiral centers. In this work, we harness the essence of cooperative ligand approach to control two different stereogenic elements in the same molecule by atroposelective allylation to synthesize axially chiral biaryls from its racemic precursor. The crucial roles played by chiral phosphoric acid and chiral amino acid ligand in concert helped us to obtain one major stereoisomer out of four distinct possibilities.

11.
J Biomol Struct Dyn ; 42(2): 734-746, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37315995

RESUMEN

Hyperandrogenism, insulin resistance, and estrogen dominance are the prime defining traits of women with polycystic ovarian syndrome which disrupts hormonal, adrenal, or ovarian functions resulting in impaired folliculogenesis and excess androgen production. The purpose of this study is to identify an appropriate bioactive antagonistic ligand from isoquinoline alkaloids [palmatine (PAL), jatrorrhizine (JAT), magnoflorine (MAG) and berberine (BBR)] from stems of Tinospora cordifolia. Phytocomponents inhibit/prevent androgenic, estrogenic, and steroidogenic receptors, insulin binding, and resultant hyperandrogenism. Intending to develop new inhibitors for human androgen receptor (1E3G), insulin receptor (3EKK), estrogen receptor beta (1U3S), and human steroidogenic cytochromeP450 17A1 (6WR0), here we report the docking studies by employing a flexible ligand docking approach using AutodockVina 4.2.6. ADMET screened swissADME and toxicological predictions to identify novel and potent inhibitors against PCOS. Binding affinity was obtained using Schrodinger. Two ligands, mainly BER (-8.23) and PAL (-6.71) showed the best docking score against androgen receptors. A molecular docking study reveals that compounds BBR and PAL were found to be tight binder at the active site of IE3G. Molecular dynamics results suggest that BBR and PAL showed good binding stability of active site residues. The present study corroborates the molecular dynamics of the compound BBR and PAL, potent Inhibitors of IE3G, having therapeutic potential for PCOS. We project that this study's findings will be helpful in drug development efforts targeting PCOS. Hence isoquinoline alkaloids (BER& PAL) have potential roles against androgen receptors, and in specific PCOS, scientific evaluation has been put forth based on virtual screening.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Alcaloides , Hiperandrogenismo , Síndrome del Ovario Poliquístico , Femenino , Humanos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/diagnóstico , Receptores Androgénicos , Simulación del Acoplamiento Molecular , Ligandos , Alcaloides/farmacología
12.
J Biomol Struct Dyn ; 42(4): 1999-2012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37129206

RESUMEN

With the advent of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak, efforts are still in progress to find out a functional cure for the infection. Among the various protein targets, nsp16 capping protein is one of the vital targets for drug development as it protects the virus against the host cell nucleases and evading innate immunity. The nsp16 protein forms a heterodimer with a co-factor nsp10 and triggers 2'-O-methyltransferase activity which catalyzes the conversion of S-adenosyl methionine into S-adenosyl homocysteine. The free methyl group is transferred to the 2'-O position on ribose sugar at the 5' end of mRNA to form the cap-1 structure which is essential for replication of the virus and evading the innate immunity of the host. In this study, we identify a potential lead natural bioactive compound against nsp16 protein by systematic cheminformatic analysis of more than 144k natural compounds. Virtual screening, molecular docking interactions, ADMET profiling, molecular dynamics (MD) simulations, molecular mechanics-generalized born surface area (MM-GBSA), free energy analysis and density functional theory analysis were used to discover the potential lead compound. Our investigation revealed that ZINC8952607 (methyl-[(6-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-yl)aminomethyl]BLAHone) has the greatest binding affinity and best pharmacokinetic parameters due to presence of carbazol and BLAHone (biaryl moiety). Further, time-dependent MD simulation analysis substantiates the stability and rigidness of nsp16 protein even after interaction with the lead compound. We believe that the compound ZINC8952607 might establish as a novel natural drug candidate against CoVID-19 infection.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Metiltransferasas , Humanos , Metiltransferasas/química , SARS-CoV-2/metabolismo , Simulación del Acoplamiento Molecular , S-Adenosilmetionina/metabolismo , Simulación de Dinámica Molecular
13.
Chem Biodivers ; 21(2): e202301323, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38116925

RESUMEN

Regio- and stereoselective 1,3-dipolar cycloadditions of C-(3-pyridyl)-N-phenylnitrone (2) with variedly substituted dipolarophiles (3, 4) were carried out to obtain substituted pyridyl-isoxazolidines (5-8). Reductive cleavage of pyridyl-isoxazolidines (5-8) with ammonium formate, methanol-THF solvents, at ambient temperature, in the presence of Pd/C provided a facile route for the synthesis of ß3 -and ß2,3 -amino alcohols (9-12), with a substitution pattern having pronounced influence on torsional angles. The obtained compounds (9-12) are valuable scaffolds which can be utilized for peptidomimetics. Thus, the present methodology for reductive opening of isoxazolidine ring avoids the disadvantages of using expensive apparatus and hazards involved in the use of hydrogen gas. The preferential formation of amino-alcohols in case of bicyclic isoxazolidines (8a-c), which precludes any recyclization is rationalized by DFT calculations.


Asunto(s)
Amino Alcoholes , Peptidomiméticos , Reacción de Cicloadición , Ciclización
14.
Molecules ; 28(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37959751

RESUMEN

A raspberry-like SiO2@TiO2 new material supported on functionalized graphene oxide was prepared to reduce titania's band gap value. The material was characterized through different analytical methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). The band gap value was studied via UV-Vis absorption spectra and determined through the Kubelka-Munk equation. A theoretical study was also carried out to analyze the interaction between the species.

15.
Nanomaterials (Basel) ; 13(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37947678

RESUMEN

The highly distorted water-soluble 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (Br8TPPS44-) is readily protonated under acidic pH, forming the diacid H2Br8TPPS42- and subsequently the zwitterionic H4Br8TPPS4, which eventually evolves into J-aggregates. These latter species exhibit a relevant bathochromic shift with respect to the monomer with a quite sharp band due to motional narrowing. The depolarization ratio measured in resonant light scattering spectra allows estimating a tilt angle of ~20° of the porphyrins in the J-aggregate. The kinetic parameters are obtained by applying a model based on the initial slow nucleation step, leading to a nucleus containing m monomers, followed by fast autocatalytic growth. The kc values for this latter step increase on decreasing the acid concentration and on increasing the porphyrin concentration, with a strong power-law dependence. No spontaneous symmetry breaking or transfer of chirality from chiral inducers is observed. Both Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) point to the presence, in both the solid and solution phases, of globular-shaped aggregates with sizes close to 130 nm. Density functional theory (DFT) calculations performed on simplified models show that (i) upon protonation, the saddled conformation of the porphyrin ring is slightly altered, and a further rotation of the aryl rings occurs, and (ii) the diacid species is more stable than the parent unprotonated porphyrin. Time-dependent DFT analysis allows comparing the UV/Vis spectra for the two species, showing a consistent red shift upon protonation, even if larger than the experimental one. The simulated Raman spectrum agrees with the experimental spectrum acquired on solid samples.

16.
Molecules ; 28(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894607

RESUMEN

This investigation delves into the potential use of halogen bonding to enhance both the short-circuit current (JSC) and overall efficiency of dye-sensitized solar cells (DSSCs). Specifically, we synthesized two distinct dyes, SQI-F and SQI-Cl, and characterized them using FT-IR, 1HNMR, 13C NMR, and mass spectroscopy. These dyes are based on the concept of incorporating halogen atoms within unsymmetrical squaraine structures with a donor-acceptor-donor (D-A-D) configuration. This strategic design aims to achieve optimal performance within DSSCs. We conducted comprehensive assessments using DSSC devices and integrated these synthesized dyes with iodolyte electrolytes, denoted as Z-50 and Z-100. Further enhancements were achieved through the addition of CDCA. Remarkably, in the absence of CDCA, both SQI-F and SQI-Cl dyes displayed distinct photovoltaic characteristics. However, through sensitization with three equivalents of CDCA, a significant improvement in performance became evident. The peak of performance was reached with the SQI-F dye, sensitized with three equivalents of CDCA, and paired with iodolyte Z-100. This combination yielded an impressive DSSC device efficiency of 6.74%, an open-circuit voltage (VOC) of 0.694 V, and a current density (JSC) of 13.67 mA/cm2. This substantial improvement in performance can primarily be attributed to the presence of a σ-hole, which facilitates a robust interaction between the electrolyte and the dyes anchored on the TiO2 substrate. This interaction optimizes the critical dye regeneration process within the DSSCs, ultimately leading to the observed enhancement in efficiency.

17.
Artículo en Inglés | MEDLINE | ID: mdl-37779125

RESUMEN

Accelerated release of carbon dioxide (CO2) into the atmosphere has become a critical environmental issue, and therefore, efficient methods for capturing CO2 are in high demand. Graphene and graphene-based derivatives have demonstrated promising potential as adsorbents due to their unique properties. This review aims to provide an overview of the latest research on graphene and its derivatives fabricated from natural sources which have been utilized and may be explored for CO2 adsorption. The necessity of this review lies in the need to explore alternative, sustainable sources of graphene that can contribute to the development of viable environmentally benign CO2 capture technologies. The review will aim to highlight graphene as an excellent CO2 adsorbent and the possible avenues, advantages, and limitations of the processes involved in fabricating graphene and its derivatives sourced from both industrial resources and organic waste-based naturally occurring carbon precursors for CO2 adsorption. This review will also highlight the CO2 adsorption mechanisms focusing on density functional theory (DFT) and molecular dynamics (MD)-based studies over the last decade.

18.
Comput Biol Chem ; 106: 107933, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37536229

RESUMEN

This study aims to investigate the potential therapeutic application of Ixeridium dentatum (ID) in treating atopic dermatitis (AD) through network pharmacology, molecular docking, and molecular dynamic simulation. We employed GC-MS techniques and identified 40 bioactive compounds present in the ID and determined their targets by accessing public databases. The convergence of compounds and dermatitis related targets led to the identification of 32 common genes. Among them, IL1B, PTGS2, IL6, IL2, and RELA, were found to be significant targets which were analyzed using Cytoscape network topology. The KEGG pathway evaluation revealed that these targets were significantly enriched in the C-type lectin receptor signaling pathway. The therapeutic efficacy of Stigmasta-5,22-dien-3-ol, Urea, n-Heptyl-, and 3-Epimoretenol was demonstrated in molecular docking assay, as evidenced by their presence in the core compounds of the compound-target network. Furthermore, these compounds exhibited significant kinetic stability and chemical reactivity in DFT quantum analysis when compared to their co-crystallized ligands and reference drug, indicating their potential as key targets for future research. Among the top three docking complexes, namely IL6-3-Epimoretenol, and IL2- Stigmasta-5,22-dien-3-ol, both demonstrated exceptional dynamic characteristics in molecular dynamics simulations at 100 ns. The feasibility of these compounds could be attributed to the prior traditional interrelationship between ID and AD. Overall, this research elucidates the interplay between AD-associated signaling pathways and target receptors with the bioactive ID. The proposal posits the utilization of antecedent compounds as a substitute for the customary pharmaceutical intervention that obstructs the discharge of cytokines, which incite dermal inflammation in the C-type lectin receptor signaling pathway of atopic dermatitis.


Asunto(s)
Dermatitis Atópica , Medicamentos Herbarios Chinos , Humanos , Dermatitis Atópica/tratamiento farmacológico , Interleucina-2 , Interleucina-6 , Simulación del Acoplamiento Molecular , Lectinas Tipo C
19.
Carbohydr Res ; 532: 108877, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37473676

RESUMEN

Series of novel 1,2,3-triazole, and 1,2,3- triazoline glycosides (a-e) were efficiently synthesized starting from d-arabinose in an effort to synthesize a new type of hybrid molecules containing sugar azide. The key step involved is the introduction of a new group, ethylene glycol, to the anomeric site and protection of the hydroxyl groups with acetic anhydride. Following that, the acetyl group is converted into ethylene glycol to tosylate. Compound Azido ethyl-O-ß-d-arabinofuranoside 4 was synthesized with good yield by treating the derivative 3 with sodium azide, which displaced the tosylate 3 and replaced it with the azide group. The new glycosides were synthesized via a 1,3-dipolar cycloaddition reaction between the intermediate compound 4 and several alkenes and alkynes. The triazole and triazoline compounds were characterized by FT-IR, 1H NMR, 13C NMR, LC/MS-IT-TOF spectral, and C·H.N. analysis. The antimicrobial screening was assayed using the disc diffusion technique revealed moderate to high potential inhibitory values against three test microorganisms compared to standard drugs. Their pharmacokinetics evaluation also showed promising drug-likeness and ADME properties. Furthermore, density functional theory (DFT) was utilized to obtain the molecular geometry of the title compounds utilizing B3LYP/6-311G++ (d, p), molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs) through the investigation of HOMO and LUMO orbitals, and energy gap value. A lower energy gap value denotes that electrons can be transported more easily, indicating that molecule (b) is more reactive than other compounds. Molecular docking analysis revealed that all the designed triazole and triazoline glycosides interacted strongly inside the active site of the enzyme (PDB ID: 2Q85). and exhibits high docking scores, higher than the standard drug. The range of docking scores is -7.99 kcal/mol compound (a) to -7.42 kcal/mol compound (e).


Asunto(s)
Glicósidos , Triazoles , Triazoles/farmacología , Triazoles/química , Simulación del Acoplamiento Molecular , Glicósidos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Azidas , Glicoles de Etileno
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123071, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37390714

RESUMEN

Hydrazones derived from essential oil components have attracted considerable interest because of their antimicrobial, antioxidant, and nonlinear optical applications. In the present work, a new essential oil component derivative (EOCD), cuminaldehyde-3-hydroxy-2-napthoichydrazone (CHNH), was synthesized. EOCD was characterized by Fourier transform infrared spectroscopy, mass spectrometry, nuclear magnetic resonance (1H and 13C) spectroscopy, elemental analysis, ultraviolet-visible absorption spectroscopy, and field-emission scanning electron microscopy. Thermogravimetric analysis and X-ray diffraction showed a higher stability, phase-pure, and non-existent isomorphic phase transition in EOCD. Solvent studies indicated that the normal emission band was caused by the locally excited state and the large Stokes shifted emission originated because of the twisted intramolecular charge transfer. The EOCD possessed higher direct and indirect band gap energies of 3.05 eV and 2.90 eV respectively, as determined by the Kubelka-Munk algorithm. The outcomes of frontier molecular orbitals, global reactivity descriptors, Mulliken, and molecular electrostatic potential surface by density functional theory calculations revealed high intramolecular charge transfer, good realistic stability, and high reactiveness of EOCD. The hydrazone EOCD exhibited higher hyperpolarizability (18.248 × 10-30 esu) in comparison to urea. Antioxidant test results indicated that EOCD showed significant antioxidant activity (p < 0.05), as determined by the DPPH radical scavenging assay. The newly synthesized EOCD showed no antifungal activity against Aspergillus flavus. Additionally, the EOCD showed good antibacterial activity against Escherichia coli and Bacillus subtilis.


Asunto(s)
Antiinfecciosos , Antioxidantes , Conformación Molecular , Solventes , Espectroscopía Infrarroja por Transformada de Fourier , Hidrazonas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA