Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Sci. Biol. Sci. ; 43: e56924, 2021. tab, graf, mapas
Artículo en Inglés | VETINDEX | ID: vti-31791

RESUMEN

We investigated changes in the species richness, abundance, and composition of the zooplankton community in response to the formation of a small reservoir in the Caveiras River, southern Brazil. Zooplankton were collected using a motor-pump and aplankton net (68 μm mesh), with 600 L of water filtered per sample. Sampling occurred during the pre-(April, August, and December 2011) and post-impoundment (July and October 2013, and January 2014) phases of the Caveiras River. We identified 86 taxa in this study, and rotifers were the predominant group. The species richness and abundance of the zooplankton increased after the filling of the reservoir. Furthermore, the zooplankton community showed a clear change in the species composition between the phases before and after the formation of the reservoir, with the emergence of typical planktonic species. Changes in the structure of the zooplankton community were related to changes in limnological characteristics due to the impoundment of the river, mainlyin the availability of food and in the concentration of nutrients.(AU)


Asunto(s)
Zooplancton/clasificación , Zooplancton/crecimiento & desarrollo , Reservorios de Agua
2.
Acta sci., Biol. sci ; Acta sci., Biol. sci;43: e56924, 2021. tab, graf, map
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1461019

RESUMEN

We investigated changes in the species richness, abundance, and composition of the zooplankton community in response to the formation of a small reservoir in the Caveiras River, southern Brazil. Zooplankton were collected using a motor-pump and aplankton net (68 μm mesh), with 600 L of water filtered per sample. Sampling occurred during the pre-(April, August, and December 2011) and post-impoundment (July and October 2013, and January 2014) phases of the Caveiras River. We identified 86 taxa in this study, and rotifers were the predominant group. The species richness and abundance of the zooplankton increased after the filling of the reservoir. Furthermore, the zooplankton community showed a clear change in the species composition between the phases before and after the formation of the reservoir, with the emergence of typical planktonic species. Changes in the structure of the zooplankton community were related to changes in limnological characteristics due to the impoundment of the river, mainlyin the availability of food and in the concentration of nutrients.


Asunto(s)
Reservorios de Agua , Zooplancton/clasificación , Zooplancton/crecimiento & desarrollo
3.
PeerJ ; 8: e8979, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411516

RESUMEN

BACKGROUND: In reservoirs, zooplankton strongly interact with the physical and chemical characteristics of water, and this interaction is mainly influenced by climate variation and the different methods used to manage the dam water level. Therefore, the aim of this study was to evaluate how the distinct operating modes of two cascade reservoirs affected the richness, abundance, and composition of zooplankton, both spatially (intra and inter-reservoirs) and temporally (annual and seasonal). In this study, the upstream reservoir (Salto Santiago) operates using the storage method, with a water retention time (WRT) of 51 days, whereas the downstream reservoir (Salto Osório) operates using the run-of-river method, with a WRT of 16 days. METHODS: Zooplankton samples were collected for 16 consecutive years from the two reservoirs located on the Iguaçu River, Brazil. A total of 720 samples were collected. Four-way ANOVAs were used to determine the differences in richness and abundance of the zooplankton among years, periods, reservoirs, and environments. Multidimensional non-metric scaling (NMDS) and an analysis of similarities (ANOSIM) were used to describe similarity patterns in species composition. Finally, a canonical correspondence analysis (CCA) was used to select the environmental predictors that best explained the variation in zooplankton abundance data. RESULTS: We identified a total of 115 taxa in this study, and rotifers were the richest group. In contrast, the copepods were the most abundant. The four-way ANOVA results showed significant differences in the species richness and abundance of the zooplankton among years, periods, reservoirs, and environments. The NMDS ordination and ANOSIM test indicated that the largest differences in zooplankton species composition were annual and seasonal differences. Finally, the CCA showed that these differences were mainly associated with changes in water transparency, temperature, and the chlorophyll a, phosphorus, and total dissolved solids concentrations. DISCUSSION: Inter-annual changes in zooplankton species composition showed that over time, large filters-feeders (e.g., large daphinids and calanoid copepods) were replaced by small cladocerans (e.g., bosminids) and generalist rotifers. The highest species richness was associated with the fluvial environment, whereas the highest abundance was associated with the transitional and lacustrine reservoir environments. Variations in water temperature, nutrients, and food availability explained the annual and seasonal changes in community structure, whereas variations in the water flow characteristics of the environments explained the longitudinal changes in the richness and abundance of zooplankton in reservoirs. The differences in zooplankton structure between the two reservoirs can be explained by the functional differences between the two systems, such as their WRTs and morphometrics.

4.
Environ Sci Pollut Res Int ; 26(35): 36007-36022, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31713132

RESUMEN

Climate change has affected rainfall patterns in tropical regions, where simultaneous demands for water and energy, habitat loss, declining biodiversity, and spread of invasive species have reflected a rapidly changing world underway. In Brazil, hydropower generation accounts for 64% of the electricity matrix, which presently includes 1007 small hydropower plants (SHPs) having many others under construction or planned. This paper aimed to evaluate changes in water quality, plankton communities, and benthic macroinvertebrates during dam construction, filling, and the first year of operation of a SHP. Suspended solids, turbidity, and silica were variables that highlighted the impact of this construction on the river. Fast changes in water quality (increases in calcium, chlorides, and nitrate) and on aquatic communities (i.e. euglenophyceans and testate amoebae increased in numbers) were detected during the filling phase. Following SHP construction, the concentrations of metals and total phosphorus tended to decrease. Two striking findings observed in the aquatic communities from the riverine conditions to the new lake were the increase in picocyanobacteria abundance, expanding population stocks throughout the river basin, and the constant presence of the invasive mollusc Corbicula fluminea in the macroinvertebrate assemblage, revealing once again its resistance to environmental variability. The lake soon became a natural trap for ions from the drainage basin, as revealed by the increase in electrical conductivity, ammonium, potassium, and magnesium concentrations and the abundance of cyanobacteria, highlighting the need for watershed management to improve ecological conditions in the lake.


Asunto(s)
Lagos , Centrales Eléctricas , Animales , Biodiversidad , Brasil , Cambio Climático , Corbicula , Cianobacterias , Ecosistema , Plancton , Ríos , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA