Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39337568

RESUMEN

The time dynamics of charge accumulation at the electrochemical interface between graphene and water is important for supercapacitors, batteries, and chemical and biological sensors. By using impedance spectroscopy, we have found that measured capacitance (Cm) at this interface with the gate voltage Vgate ≈ 0.1 V follows approximate laws Cm~T1.2 and Cm~T0.11 (T is Vgate period) in frequency ranges (1000-50,000) Hz and (0.02-300) Hz, respectively. In the first range, this dependence demonstrates that the interfacial capacitance (Cint) is only partially charged during the charging period. The observed weaker frequency dependence of the measured capacitance (Cm) at frequencies below 300 Hz is primarily determined by the molecular relaxation of the double-layer capacitance (Cdl) and by the graphene quantum capacitance (Cq), and it also implies that Cint is mostly charged. We have also found a voltage dependence of Cm below 10 Hz, which is likely related to the voltage dependence of Cq. The observation of this effect only at low frequencies indicates that Cq relaxation time is much longer than is typical for electron processes, probably due to Dirac cone reconstruction from graphene electrons with increased effective mass as a result of their quasichemical bonding with interfacial molecular charges.


Asunto(s)
Capacidad Eléctrica , Electrones , Grafito , Agua , Grafito/química , Agua/química , Espectroscopía Dieléctrica , Técnicas Electroquímicas
2.
Nanomaterials (Basel) ; 14(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38727405

RESUMEN

Herein, we investigate the effect of tilt mismatch on the quantum oscillations of spin transport properties in two-dimensional asymmetrically tilted Dirac cone systems. This study involves the examination of conductance oscillation in two distinct junction types: transverse- and longitudinal-tilted Dirac cones (TTDCs and LTDCs). Our findings reveal an unusual quantum oscillation of spin-polarized conductance within the TTDC system, characterized by two distinct anomaly patterns within a single period, labeled as the linear conductance phase and the oscillatory conductance phase. Interestingly, these phases emerge in association with tilt-induced orbital pseudo-magnetization and exchange interaction. Our study also demonstrates that the structure of the LTDC can modify the frequency of spin conductance oscillation, and the asymmetric effect within this structure results in a quantum beating pattern in oscillatory spin conductance. We note that an enhancement in the asymmetric longitudinal tilt velocity ratio within the structure correspondingly amplifies the beating frequency. Our research potentially contributes valuable insights for detecting the asymmetry of tilted Dirac fermions in type-I Dirac semimetal-based spintronics and quantum devices.

3.
ACS Nano ; 18(1): 849-857, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38147033

RESUMEN

Two-dimensional conjugated polymers (2DCPs) are an emerging class of materials that exhibit properties similar to graphene yet do not have the limitation of zero bandgap. On-surface synthesis provides exceptional control on the polymerization reaction, allowing tailoring properties by choosing suitable monomers. Heteroatom-substituted triangulene 2DCPs constitute a playing ground for such a design and are predicted to exhibit graphene-like band structures with high charge mobility and characteristic Dirac cones in conduction or valence states. However, measuring these properties experimentally is challenging and requires long-range-ordered polymers, preferably with an epitaxial relationship with the substrate. Here, we investigate the electronic properties of a mesoscale-ordered carbonyl-bridged triphenylamine 2DCP (P2TANGO) and demonstrate the presence of a Dirac cone by combining angle-resolved photoemission spectroscopy (ARPES) with density functional theory (DFT) calculations. Moreover, we measure the absolute energy position of the Dirac cone with respect to the vacuum level. We show that the bridging functionality of the triangulene (ether vs carbonyl) does not significantly perturb the band structure but strongly affects the positioning of the bands with respect to the Au(111) states and allows control of the ionization energy of the polymer. Our results provide proof of the controllable electronic properties of 2DCPs and bring us closer to their use in practical applications.

4.
Entropy (Basel) ; 24(12)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36554240

RESUMEN

Self-intersecting energy band structures in momentum space can be induced by nonlinearity at the mean-field level, with the so-called nonlinear Dirac cones as one intriguing consequence. Using the Qi-Wu-Zhang model plus power law nonlinearity, we systematically study in this paper the Aharonov-Bohm (AB) phase associated with an adiabatic process in the momentum space, with two adiabatic paths circling around one nonlinear Dirac cone. Interestingly, for and only for Kerr nonlinearity, the AB phase experiences a jump of π at the critical nonlinearity at which the Dirac cone appears and disappears (thus yielding π-quantization of the AB phase so long as the nonlinear Dirac cone exists), whereas for all other powers of nonlinearity, the AB phase always changes continuously with the nonlinear strength. Our results may be useful for experimental measurement of power-law nonlinearity and shall motivate further fundamental interest in aspects of geometric phase and adiabatic following in nonlinear systems.

5.
J Phys Condens Matter ; 34(45)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36063813

RESUMEN

When transition-metal dichalcogenide monolayers lack inversion symmetry, their low-energy single particle spectrum near some high-symmetry points can, in some cases, be described by tilted massive Dirac Hamiltonians. The so-called Janus materials fall into that category. Inversion symmetry can also be broken by the application of out-of-plane electric fields, or by the mere presence of a substrate. Here we explore the properties of excitons in TMDC monolayers lacking inversion symmetry. We find that exciton binding energies can be larger than the electronic band gap, making such materials promising candidates to host the elusive exciton insulator phase. We also investigate the excitonic contribution to their optical conductivity and discuss the associated optical selection rules.

6.
J Phys Condens Matter ; 34(32)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35605598

RESUMEN

We investigate the Dirac-cone-like (DCL) topological electronic properties of nematic-like antiferromagnetic (AFM) states of monolayer FeSe and FeTe designed artificially through first-principles calculations and Wannier-function-based tight-binding (WFTB) method. Our calculations reveal most of them have a pair of DCL bands on the Γ-Xline in the Brillouin zone (BZ) near the Fermi level and open a gap of about 20 meV in the absence and presence of spin-orbit coupling (SOC), respectively, similar to the lowest-energy pair-checkerboard AFM FeSe. We further confirm that they are weak topological insulators based on nonzeroZ2and fragile surface states, which are calculated by the WFTB method. For FeSe and FeTe in pair-checkerboard AFM states, we find that the in-plane compression strain in a certain range can give rise to another pair of DCL bands located on the Γ-X' line in the BZ. In addition, the magnetic moments, energies, and Fe-Se/Te distances for various nematic-like AFM configurations are presented. These calculations the combining effect of magnetism and topology in a single material and the understanding of the superconducting phenomena in iron-based FeSe and FeTe.

7.
Nano Lett ; 21(19): 8258-8265, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34570496

RESUMEN

The scattering process induced by impurities in graphene plays a key role in transport properties. Especially, the disorder impurities can drive the ordered state with a hexagonal superlattice on graphene by electron-mediated interaction at a transition temperature. Using angle-resolved photoemission spectroscopy (ARPES), we reveal that the epitaxial monolayer and bilayer graphene with various impurities display global elastic intervalley scattering and quantum interference below the critical temperature (34 K), which leads to a set of new folded Dirac cones at the Brillouin-zone center by mixing two inequivalent Dirac cones. The Dirac electrons generated from intervalley scattering without chirality can be due to the breaking of the sublattice symmetry. In addition, the temperature-dependent ARPES measurements indicate the thermal damping of quantum interference patterns from Dirac electron scattering on impurities. Our results demonstrate that the electron scattering and interference induced by impurities can completely modulate the Dirac bands of graphene.

8.
J Phys Condens Matter ; 33(47)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34428751

RESUMEN

Analytical results for the dielectric function in RPA are derived for three-, two-, and one-dimensional semiconductors in the weakly-degenerate limit. Based on this limit, quantum corrections are derived. Further attention is devoted to systems with linear carrier dispersion and the resulting Dirac-cone physics.

9.
ACS Appl Mater Interfaces ; 13(28): 33627-33634, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34232636

RESUMEN

The presence of inherently strong spin-orbit coupling in bismuth, its unique layer-dependent band topology and high carrier mobility make it an interesting system for both fundamental studies and applications. Theoretically, it has been suggested that strong quantum size effects should be present in the Bi(110) films, with the possibility of Dirac Fermion states in the odd-bilayer (BL) films, originating from dangling pz orbitals and quantum-spin hall (QSH) states in the even-bilayer films. However, the experimental verification of these claims has been lacking. Here, we study the electronic structure of Bi(110) films grown on a high-Tc superconductor, Bi2Sr2CaCu2O8+δ (Bi2212) using angle-resolved photoemission spectroscopy (ARPES). We observe an oscillatory behavior of electronic structure with the film thickness and identify the Dirac-states in the odd-bilayer films, consistent with the theoretical predictions. In the even-bilayer films, we find another Dirac state that was predicted to play a crucial role in the QSH effect. In the low thickness limit, we observe several extremely one-dimensional states, probably originating from the edge-states of Bi(110) islands. Our results provide a much needed experimental insight into the electronic and structural properties of Bi(110) films.

10.
Nanotechnology ; 32(41)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34233308

RESUMEN

A new two-dimensional carbon-based material consisting of pentagonal and hexagonal elements is identified by numerical experiments, which is called phgraphene and possesses not only a tunable semimetallic feature but also a direction-dependent even sign-changed Poisson's ratio. The structural stability of such a new material is first checked systematically. It is found that phgraphene has a similar energy as theγ-graphyne, a thermally stable structure from the room temperature to 1500 K, and elastic constants satisfying the Born-Huang criterion. Both the band structure and density of states are further verified with different techniques, which demonstrate a Dirac semimetallic characteristic of phgraphene. A more interesting finding is that the band structure can be easily tuned by an external loading, resulting in the transition from semimetal to semiconductor or from type I to type III. As a new material that may be applied in the future, the mechanical property of phgraphene is further evaluated. It shows that phgraphene is a typically anisotropic material, which has not only direction-dependent Young's moduli but also direction-dependent even sign-changed Poisson's ratios. The microscopic mechanisms of both the electrical and mechanical properties are revealed. Such a versatile material with tunable band structure and auxetic effect should have promising applications in the advanced nano-electronic field in the future.

11.
Nanotechnology ; 32(41)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34167107

RESUMEN

Anisotropic 2D Dirac cone materials are important for the fabrication of nanodevices having direction-dependent characteristics since the anisotropic Dirac cones lead to different values of Fermi velocities yielding variable carrier concentrations. In this work, the feasibility of the B-based hybrid monolayers BX (X = As, Sb, and Bi), as anisotropic Dirac cone materials is investigated. Calculations based on density functional theory and molecular dynamics method find the stability of these monolayers exhibiting unique electronic properties. For example, the BAs monolayer possesses a robust self-doping feature, whereas the BSb monolayer carries the intrinsic charge carrier concentration of the order of 1012cm-2which is comparable to that of graphene. Moreover, the direction-dependent optical response is predicted in these B-based monolayers; a high IR response in thex-direction is accompanied with that in the visible region along they-direction. The results are, therefore, expected to help in realizing the B-based devices for nanoscale applications.

12.
J Phys Condens Matter ; 33(36)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34161939

RESUMEN

The linear energy-momentum dispersion of Dirac cones offers a unique platform for mimicking the fantastical phenomena in high energy physics, such as Dirac fermions and black hole (BH) horizons. Three types of Dirac cones (I, III, and II) with different tilts have been proposed individually in specific materials but lack of integral lattice model. Here, we demonstrated the three types of Dirac cones inherited in aπ-conjugated Cairo lattice of double-degeneratedπandpzorbitals by means of tight-binding (TB) approach, which paves a way for the design of two-dimensional (2D) Dirac materials. From first-principles calculations, we predicted a candidate material,penta-NiSb2monolayer, to achieve these multiple Dirac cones and the Lifshitz transition between different Dirac cones driven by external biaxial strain. The coexistence of the three types of Dirac cones renderspenta-NiSb2monolayer a promising 2D fermionic analogue to simulate the event-horizon evaporation with a high Hawking temperature.

13.
Appl Spectrosc ; 75(3): 259-264, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32508118

RESUMEN

Fourier transform (FT) spectroscopy is a versatile technique for studying the infrared (IR) optical response of solid-, liquid-, and gas-phase samples. In standard Fourier transform infrared (FT-IR) spectrometers, a light beam passing through a Michelson interferometer is focused onto a sample with condenser optics. This design enables us to examine relatively small samples, but the large solid angle of the focused infrared beam makes it difficult to analyze angle-dependent characteristics. Here, we design and construct a high-precision angle-resolved reflection setup compatible with a commercial FT-IR spectrometer. Our setup converts the focused beam into an achromatically collimated beam with an angle dispersion as high as 0.25°. The setup also permits us to scan the incident angle over ∼8° across zero (normal incidence). The beam diameter can be reduced to ∼1 mm, which is limited by the sensitivity of an HgCdTe detector. The small-footprint apparatus is easily installed in an FT-IR sample compartment. As a demonstration of the capability of our reflection setup, we measure the angle-dependent mid-infrared reflectance of two-dimensional photonic crystal slabs and determine the in-plane dispersion relation in the vicinity of the Γ point in momentum space. We observe the formation of photonic Dirac cones, i.e., linear dispersions with an accidental degeneracy at Γ, in an ideally designed sample. Our apparatus is useful for characterizing various systems that have a strong in-plane anisotropy, including photonic crystal waveguides, plasmonic metasurfaces, and molecular crystalline films.

14.
Proc Natl Acad Sci U S A ; 117(48): 30186-30190, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33208536

RESUMEN

We study the propagation of in-plane elastic waves in a soft thin strip, a specific geometrical and mechanical hybrid framework which we expect to exhibit a Dirac-like cone. We separate the low frequencies guided modes (typically 100 Hz for a 1-cm-wide strip) and obtain experimentally the full dispersion diagram. Dirac cones are evidenced together with other remarkable wave phenomena such as negative wave velocity or pseudo-zero group velocity (ZGV). Our measurements are convincingly supported by a model (and numerical simulation) for both Neumann and Dirichlet boundary conditions. Finally, we perform one-way chiral selection by carefully setting the source position and polarization. Therefore, we show that soft materials support atypical wave-based phenomena, which is all of the more interesting as they make most of the biological tissues.

15.
ACS Nano ; 14(12): 16887-16896, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33238103

RESUMEN

Graphyne-based two-dimensional (2D) carbon allotropes feature extraordinary physical properties; however, their synthesis as crystalline single-layered materials has remained challenging. We report on the fabrication of large-area organometallic Ag-bis-acetylide networks and their structural and electronic properties on Ag(111) using low-temperature scanning tunneling microscopy combined with density functional theory (DFT) calculations. The metalated graphyne-based networks are robust at room temperature and assembled in a bottom-up approach via surface-assisted dehalogenative homocoupling of terminal alkynyl bromides. Large-area networks of several hundred nanometers with topological defects at domain boundaries are obtained due to the Ag-acetylide bonds' reversible nature. The thermodynamically controlled growth mechanism is explained through the direct observation of intermediates, which differ on Ag(111) and Au(111). Scanning tunneling spectroscopy resolved unoccupied states delocalized across the network. The energy of these states can be shifted locally by the attachment of a different number of Br atoms within the network. DFT revealed that free-standing metal-bis-acetylide networks are semimetals with a linear band dispersion around several high-symmetry points, which suggest the presence of Weyl points. These results demonstrate that the organometallic Ag-bis-acetylide networks feature the typical 2D material properties, which make them of great interest for fundamental studies and electronic materials in devices.

16.
Nanomaterials (Basel) ; 9(11)2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31683857

RESUMEN

Recently, several research groups have reported on anomalous enhancement of the self-field critical currents, Ic(sf,T), at low temperatures in superconductor/Dirac-cone material/superconductor (S/DCM/S) junctions. Some papers attributed the enhancement to the low-energy Andreev bound states arising from winding of the electronic wave function around DCM. In this paper, Ic(sf,T) in S/DCM/S junctions have been analyzed by two approaches: modified Ambegaokar-Baratoff and ballistic Titov-Beenakker models. It is shown that the ballistic model, which is traditionally considered to be a basic model to describe Ic(sf,T) in S/DCM/S junctions, is an inadequate tool to analyze experimental data from these type of junctions, while Ambegaokar-Baratoff model, which is generally considered to be a model for Ic(sf,T) in superconductor/insulator/superconductor junctions, provides good experimental data description. Thus, there is a need to develop a new model for self-field critical currents in S/DCM/S systems.

17.
ACS Appl Mater Interfaces ; 11(50): 47279-47288, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31736292

RESUMEN

We report a previously unknown monolayer borophene allotrope and we call it super-B with a flat structure based on ab initio calculations. It has good thermal, dynamical, and mechanical stability compared with many other typical borophenes. We find that super-B has a fascinating chemical bond environment consisting of standard sp, sp2 hybridizations, and delocalized five-center three-electron π bond, called π(5c-3e). This particular electronic structure plays a pivotal role in stabilizing the super-B chemically. By extra doping, super-B can be transformed into a Dirac material from pristine metal. Like graphene, it can also sustain tensile strain smaller than 24%, indicating superior flexibility. Moreover, due to the small atomic mass and large density of states at the Fermi level, super-B has the highest critical temperature Tc of 25.3 K in single-element superconductors at ambient conditions. We attribute this high Tc of super-B to the giant anharmonicity of two linear acoustic phonon branches and an unusually low optic phonon mode. These predictions provide new insight into the chemical nature of low dimensional boron nanostructures and highlight the potential applications of designing flexible devices and high Tc superconductor.

18.
ACS Appl Mater Interfaces ; 11(35): 32144-32150, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31416305

RESUMEN

The unique properties of topological insulators such as Bi2Se3 are intriguing for their potential implementation in novel device architectures for low power and defect-tolerant logic and memory devices. Recent improvements in the synthesis of Bi2Se3 have positioned researchers to fabricate new devices to probe the limits of these materials. The fabrication of such devices, of course, requires etching of the topological insulator, in addition to other materials including gate oxides and contacts which may impact the topologically protected surface states. In this paper, we study the impact of He+ sputtering and inductively coupled plasma Cl2 and SF6 reactive etch chemistries on the physical, chemical, and electronic properties of Bi2Se3. Chemical analysis by X-ray photoelectron spectroscopy tracks changes in the surface chemistry and Fermi level, showing preferential removal of Se that results in vacancy-induced n-type doping. Chlorine-based chemistry successfully etches Bi2Se3 but with residual Se-Se bonding and interstitial Cl species remaining after the etch. The Se vacancies and residuals can be removed with postetch anneals in a Se environment, repairing Bi2Se3 nearly to the as-grown condition. Critically, in each of these cases, angle-resolved photoemission spectroscopy (ARPES) reveals that the topologically protected surface states remain even after inducing significant surface disorder and chemical changes, demonstrating that topological insulators are quite promising for defect-tolerant electronics. Changes to the ARPES intensity and momentum broadening of the surface states are discussed. Fluorine-based etching aggressively reacts with the film resulting in a relatively thick insulating film of thermodynamically favored BiF3 on the surface, prohibiting the use of SF6-based etching in Bi2Se3 processing.

19.
ACS Appl Mater Interfaces ; 10(50): 43962-43969, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30474373

RESUMEN

Rashba spin-orbit coupling (SOC) in topological insulators (TIs) is a very interesting phenomenon and has received extensive attention in two-dimensional (2D) materials. However, the coexistence of Rashba SOC and band topology, especially for materials with a square lattice, is still lacking. Here, by using first-principles calculations, we propose for the first time a SeTe monolayer as a 2D candidate with these novel properties. We find that the square lattice exhibits anisotropic band dispersions near the Fermi level and a Rashba effect related to large SOC and inversion asymmetry, which leads to a Dirac semimetal state. Another prominent feature is that SeTe can achieve a topological state under a tensile strain of only 1%, characterized by the Z2 invariant and helical edge states. Our findings demonstrate that SeTe is a promising material for novel electronic and spintronics applications.

20.
Beilstein J Nanotechnol ; 9: 1399-1404, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977674

RESUMEN

The cubic ThTaN3 compound has long been known as a semiconductor with a band gap of approximately 1 eV, but its electronic properties remain largely unexplored. By using density functional theory, we find that the band gap of ThTaN3 is very sensitive to the hydrostatic pressure/strain. A Dirac cone can emerge around the Γ point with an ultrahigh Fermi velocity at a compressive strain of 8%. Interestingly, the effect of spin-orbital coupling (SOC) is significant, leading to a band gap reduction of 0.26 eV in the ThTaN3 compound. Moreover, the strong SOC can turn ThTaN3 into a topological insulator with a large inverted gap up to 0.25 eV, which can be primarily attributed to the inversion between the d-orbital of the heavy element Ta and the p-orbital of N. Our results highlight a new 3D topological insulator with strain-mediated topological transition for potential applications in future spintronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA