RESUMEN
BACKGROUND: Early metabolic reorganization was only recently recognized as an essentially integrated part of immunology. In this context, unbalanced ROS/RNS levels connected to increased aerobic fermentation, which is linked to alpha-tubulin-based cell restructuring and control of cell cycle progression, were identified as a major complex trait for early de novo programming ('CoV-MAC-TED') during SARS-CoV-2 infection. This trait was highlighted as a critical target for developing early anti-viral/anti-SARS-CoV-2 strategies. To obtain this result, analyses had been performed on transcriptome data from diverse experimental cell systems. A call was released for wide data collection of the defined set of genes for transcriptome analyses, named 'ReprogVirus', which should be based on strictly standardized protocols and data entry from diverse virus types and variants into the 'ReprogVirus Platform'. This platform is currently under development. However, so far, an in vitro cell system from primary target cells for virus attacks that could ideally serve for standardizing the data collection of early SARS-CoV-2 infection responses has not been defined. RESULTS: Here, we demonstrate transcriptome-level profiles of the most critical 'ReprogVirus' gene sets for identifying 'CoV-MAC-TED' in cultured human nasal epithelial cells infected by two SARS-CoV-2 variants differing in disease severity. Our results (a) validate 'Cov-MAC-TED' as a crucial trait for early SARS-CoV-2 reprogramming for the tested virus variants and (b) demonstrate its relevance in cultured human nasal epithelial cells. CONCLUSION: In vitro-cultured human nasal epithelial cells proved to be appropriate for standardized transcriptome data collection in the 'ReprogVirus Platform'. Thus, this cell system is highly promising to advance integrative data analyses with the help of artificial intelligence methodologies for designing anti-SARS-CoV-2 strategies.
RESUMEN
Ultraviolet (UV) exposure has been linked to skin damage and carcinogenesis, but recently UVB has been proposed as a therapeutic approach for cancer. Herein, we investigated the cellular and molecular effects of UVB in immortal and tumorigenic HPV positive and negative cells. Cells were irradiated with 220.5 to 1102.5 J/m2 of UVB and cell proliferation was evaluated by crystal violet, while cell cycle arrest and apoptosis analysis were performed through flow cytometry. UVB effect on cells was recorded at 661.5 J/m2 and it was exacerbated at 1102.5 J/m2. All cell lines were affected by proliferation inhibition, cell cycle ablation and apoptosis induction, with different degrees depending on tumorigenesis level or HPV type. Analysis of the well-known UV-responsive p53, E2F1 and microtubules system proteins was performed in SiHa cells in response to UVB through Western-blotting assays. E2F1 and the Microtubule-associated protein 2 (MAP2) expression decrease correlated with cellular processes alteration while p53 and Microtubule-associated Protein 1S (MAP1S) expression switch was observed since 882 J/m2, suggesting they were required under more severe cellular damage. However, expression transition of α-Tubulin3C and ß-Tubulin was abruptly noticed until 1102.5 J/m2 and particularly, γ-Tubulin protein expression remained without alteration. This study provides insights into the effect of UVB in cervical cancer cell lines.
Asunto(s)
Factor de Transcripción E2F1/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Microtúbulos/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo , Rayos Ultravioleta , Neoplasias del Cuello Uterino/patología , Apoptosis , Ciclo Celular , Proliferación Celular , Factor de Transcripción E2F1/genética , Femenino , Humanos , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/radioterapiaRESUMEN
Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents, which participates in cell response to disease. We previously characterized VMP1 (Vacuole Membrane Protein 1) as an essential autophagy related protein that mediates autophagy in pancreatic diseases. We also demonstrated that VMP1-mediated autophagy is induced by HIF-1A (hypoxia inducible factor 1 subunit alpha) in colon-cancer tumor cell lines, conferring resistance to photodynamic treatment. Here we identify a new molecular pathway, mediated by VMP1, by which gemcitabine is able to trigger autophagy in human pancreatic tumor cell lines. We demonstrated that gemcitabine requires the VMP1 expression to induce autophagy in the highly resistant pancreatic cancer cells PANC-1 and MIAPaCa-2 that carry activated KRAS. E2F1 is a transcription factor that is regulated by the retinoblastoma pathway. We found that E2F1 is an effector of gemcitabine-induced autophagy and regulates the expression and promoter activity of VMP1. Chromatin immunoprecipitation assays demonstrated that E2F1 binds to the VMP1 promoter in PANC-1 cells. We have also identified the histone acetyltransferase EP300 as a modulator of VMP1 promoter activity. Our data showed that the E2F1-EP300 activator/co-activator complex is part of the regulatory pathway controlling the expression and promoter activity of VMP1 triggered by gemcitabine in PANC-1 cells. Finally, we found that neither VMP1 nor E2F1 are induced by gemcitabine treatment in BxPC-3 cells, which do not carry oncogenic KRAS and are sensitive to chemotherapy. In conclusion, we have identified the E2F1-EP300-VMP1 pathway that mediates gemcitabine-induced autophagy in pancreatic cancer cells. These results strongly support that VMP1-mediated autophagy may integrate the complex network of events involved in pancreatic ductal adenocarcinoma chemo-resistance. Our experimental findings point at E2F1 and VMP1 as novel potential therapeutic targets in precise treatment strategies for pancreatic cancer.
Asunto(s)
Autofagia , Desoxicitidina/análogos & derivados , Proteína p300 Asociada a E1A/metabolismo , Factor de Transcripción E2F1/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Desoxicitidina/farmacología , Proteína p300 Asociada a E1A/genética , Factor de Transcripción E2F1/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Células Tumorales Cultivadas , GemcitabinaRESUMEN
HIG2A promotes cell survival under hypoxia and mediates the assembly of complex III and complex IV into respiratory chain supercomplexes. In the present study, we show that human HIGD2A and mouse Higd2a gene expressions are regulated by hypoxia, glucose, and the cell cycle-related transcription factor E2F1. The latter was found to bind the promoter region of HIGD2A. Differential expression of the HIGD2A gene was found in C57BL/6 mice in relation to tissue and age. Besides, the silencing of HIGD2A evidenced the modulation of mitochondrial dynamics proteins namely, OPA1 as a fusion protein increases, while FIS1, a fission protein, decreases. Besides, the mitochondrial membrane potential (ΔΨm) increased. The protein HIG2A is localized in the mitochondria and nucleus. Moreover, we observed that the HIG2A protein interacts with OPA1. Changes in oxygen concentration, glucose availability, and cell cycle regulate HIGD2A expression. Alterations in HIGD2A expression are associated with changes in mitochondrial physiology.
Asunto(s)
Ciclo Celular/fisiología , Potencial de la Membrana Mitocondrial/fisiología , Dinámicas Mitocondriales/fisiología , Membranas Mitocondriales/metabolismo , Animales , Complejo I de Transporte de Electrón/genética , Humanos , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/metabolismoRESUMEN
Arylamine N-acetyltransferase (NAT; E.C. 2.3.1.5) enzymes are responsible for the biotransformation of several arylamine and hydrazine drugs by acetylation. In this process, the acetyl group transferred to the acceptor substrate produces NAT deacetylation and, in consequence, it is susceptible of degradation. Sirtuins are protein deacetylases, dependent on nicotine adenine dinucleotide, which perform post-translational modifications on cytosolic proteins. To explore possible sirtuin participation in the enzymatic activity of arylamine NATs, the expression levels of NAT1, NAT2, SIRT1 and SIRT6 in peripheral blood mononuclear cells (PBMC) from healthy subjects were examined by flow cytometry and Western blot. The in situ activity of the sirtuins on NAT enzymatic activity was analyzed by HPLC, in the presence or absence of an agonist (resveratrol) and inhibitor (nicotinamide) of sirtuins. We detected a higher percentage of positive cells for NAT2 in comparison with NAT1, and higher numbers of SIRT1+ cells compared to SIRT6 in lymphocytes. In situ NAT2 activity in the presence of NAM inhibitors was higher than in the presence of its substrate, but not in the presence of resveratrol. In contrast, the activity of NAT1 was not affected by sirtuins. These results showed that NAT2 activity might be modified by sirtuins.
RESUMEN
E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells.
Asunto(s)
Daño del ADN , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F2/metabolismo , Inestabilidad Genómica , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Cicloheximida/toxicidad , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Dactinomicina/toxicidad , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F2/genética , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/efectos de la radiación , Células HEK293 , Histonas/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Quinasas Quinasa Quinasa PAM/metabolismo , Neuronas/citología , Neuronas/metabolismo , Inhibidores de la Síntesis de la Proteína/toxicidad , Recombinasa Rad51/metabolismo , Rayos Ultravioleta , Regulación hacia Arriba/efectos de los fármacos , Factores de Transcripción p300-CBP/metabolismoRESUMEN
E2F1 plays a key role in cell-cycle regulation in mammals, since its transcription factor activity controls genes required for DNA synthesis and apoptosis. E2F1 deregulation is a common feature among different tumor types and can be a major cause of cell proliferation. Thus, blocking E2F1 expression by RNA interference represents a promising therapeutic approach. In this study, the introduction of specific short hairpin RNAs (shRNAs) reduced E2f1 expression by up to 77%, and impaired rat glioma cell proliferation by approximately 70%, as compared to control cells. Furthermore, we investigated the expression of E2f1 target genes, Cyclin A and Cyclin E. Cyclin A was found to be down-regulated, whereas Cyclin E had similar expression to control cells, indicating that gene(s) other than E2f1 control its transcription. Other E2f family members, E2f2 and E2f3, which have been classified in the same subgroup of transcriptional activators, were also analyzed. Expression of both E2f2 and E2f3 was similar to control cells, showing no cross-inactivation or up-regulation to compensate for the absence of E2f1. Nevertheless, their expression was insufficient to maintain the initial proliferation potential. Taken together, our results suggest that shE2f1 is a promising therapy to control tumor cell proliferation.
RESUMEN
E2F1 plays a key role in cell-cycle regulation in mammals, since its transcription factor activity controls genes required for DNA synthesis and apoptosis. E2F1 deregulation is a common feature among different tumor types and can be a major cause of cell proliferation. Thus, blocking E2F1 expression by RNA interference represents a promising therapeutic approach. In this study, the introduction of specific short hairpin RNAs (shRNAs) reduced E2f1 expression by up to 77 percent, and impaired rat glioma cell proliferation by approximately 70 percent, as compared to control cells. Furthermore, we investigated the expression of E2f1 target genes, Cyclin A and Cyclin E. Cyclin A was found to be down-regulated, whereas Cyclin E had similar expression to control cells, indicating that gene(s) other than E2f1 control its transcription. Other E2f family members, E2f2 and E2f3, which have been classified in the same subgroup of transcriptional activators, were also analyzed. Expression of both E2f2 and E2f3 was similar to control cells, showing no cross-inactivation or up-regulation to compensate for the absence of E2f1. Nevertheless, their expression was insufficient to maintain the initial proliferation potential. Taken together, our results suggest that shE2f1 is a promising therapy to control tumor cell proliferation.