Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.138
Filtrar
1.
Int J Parasitol Parasites Wildl ; 25: 100967, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39220322

RESUMEN

The Japanese rock ptarmigan (Lagopus muta japonica) is an herbivorous species of partridges that inhabits only alpine zones. Alpine plants are their main source of food. These alpine plants contain toxic compounds to deter herbivores from consuming them. A previous analysis of the alpine plants frequently consumed by Japanese rock ptarmigans revealed the presence of a unique mixture of secondary metabolites and a novel compound. Additionally, wild Japanese rock ptarmigans are often infected by two species of Eimeria parasites. When these parasites were experimentally administered to Svalbard rock ptarmigans (Lagopus muta hyperborean), which do not feed on alpine plants, the birds exhibited symptoms, such as diarrhea and depression, and in some cases, they died. Although little is known about the pathogenesis of these parasites in wild Japanese rock ptarmigans, it was hypothesized that compounds found in alpine plants, their main food source, may reduce the pathogenicity of Eimeria parasites. In the present study, we evaluated the anticoccidial activity of the compounds derived from alpine plants in vitro using Eimeria tenella, which infects chickens belonging to the same pheasant family, as an experimental model. Twenty-seven natural components were extracted from eight alpine plants. The natural components were added to E. tenella sporozoites and incubated for 24 h to evaluate their direct effect. Additionally, Madin-Darby bovine kidney cells were incubated with sporozoites and natural components for 24 h to evaluate the inhibitory effect of the components on sporozoite cell invasion. Six compounds from four alpine plants decreased sporozoite viability by up to 88.3%, and two compounds inhibited sporozoite invasion into the cells. Although further studies are needed to evaluate the effects of these components against Eimeria infections in vivo, our findings suggest that these alpine plants may reduce the degree of infection by decreasing the number of sporozoites in the intestinal tract.

2.
Front Immunol ; 15: 1435702, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221251

RESUMEN

Anticoccidial vaccines comprising living oocysts of Eimeria tenella, Eimeria necatrix, Eimeria maxima, and Eimeria acervulina are used to control coccidiosis. This study explored the potential of IL-1ß to act as a molecular adjuvant for enhancing the immunogenicity of Eimeria necatrix and mucosal immunity. We engineered E. necatrix to express a functional chIL-1ß (EnIL-1ß) and immunized chickens with oocysts of the wild type (EnWT) and tranegenic (EnIL-1ß) strains, respectively. The chickens were then challenged with EnWT oocysts to examine the immunogenicity-enhancing potential of chIL-1ß. As expected, the oocyst output of EnIL-1ß-immunized chickens was significantly reduced compared to those immunized using EnWT. No difference in body weight gain and lesion scores of EnIL-1ß and EnWT groups was observed. The parasite load in the small intestine and caeca showed that the invasion and replication of EnIL-1ß was not affected. However, the markers of immunogenicity and mucosal barrier, Claudin-1 and avian ß-defensin-1, were elevated in EnIL-1ß-infected chickens. Ectopic expression of chIL-1ß in E. necatrix thus appears to improve its immunogenicity and mucosal immunity, without increasing pathogenicity. Our findings support chIL-1ß as a candidate for development of effective live-oocyst-based anticoccidial vaccines.


Asunto(s)
Pollos , Coccidiosis , Eimeria , Inmunidad Mucosa , Interleucina-1beta , Enfermedades de las Aves de Corral , Vacunas Antiprotozoos , Animales , Coccidiosis/inmunología , Coccidiosis/veterinaria , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Pollos/inmunología , Eimeria/inmunología , Vacunas Antiprotozoos/inmunología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/prevención & control , Inmunización , Oocistos/inmunología , Microorganismos Modificados Genéticamente
3.
Acta Parasitol ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207650

RESUMEN

PURPOSE: Coccidiosis caused by eimerian parasites results in lethal watery or bloody diarrhea in hosts, and markedly impairs the growth of and feed utilization by host animals. We previously investigated detailed the life cycle of Eimeria krijgsmanni as a mouse eimerian parasite. Only second-generation meronts, as an asexual stage, were morphologically detected in the epithelium of the host cecum for at least 8 weeks after infection, even though oocyst shedding finished approximately 3 weeks after infection. The presence of zoites was of interest because infection by eimerian parasites is considered to be self-limited after their patent period. METHODS: To clarify the significance of residual second-generation meronts in E. krijgsmanni infection, we performed infection experiments using immunocompetent mice under artificial immunosuppression and congenital immunodeficient mice. RESULTS: The number of oocysts discharged and the duration of oocyst discharge both increased in immunosuppressed mice. In immunodeficient mice, numerous oocysts were shed over a markedly longer period, and oocyst discharge did not finish until 56 days after inoculation. CONCLUSIONS: The present results suggest that the second-generation meronts survived in the epithelial cells of the cecum after the patent period, thereby contributing to extended infection as an asexual stage. The results obtained on E. krijgsmanni indicate that infections by Eimeria spp. are not self-limited and potentially continue for a long period of time.

4.
Vet Parasitol ; 331: 110293, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39216333

RESUMEN

Coccidiosis poses a significant challenge to the poultry industry. However, the excessive and improper use of anticoccidial drugs and vaccines has led to resistance and food safety concerns. Consequently, traditional Chinese herbs have garnered attention as a potentially safer and more effective alternative. ChangQing compound derived from various Chinese herbal medicines is a promising anticoccidiosis agent, but its therapeutic effects have not been comprehensively evaluated. This study aimed to assess the therapeutic efficacy of ChangQing Compound against Eimeria tenella-induced coccidiosis in chickens on the basis of physiological indicators, cecum lesions, and changes in microbial diversity. The comparison with the positive control group revealed the average weight gain (AWG) and anticoccidial index (ACI) of the chicks were significantly higher, in contrast, the feed conversion ratio (FCR), cecal lesion score (CLS), and oocyst count per gram of cecal content (OPG) were significantly lower (P<0.05). Notably, AWG (138.87 g), OPG (0.57 × 106), ACI (177.92), and FCR (2.51) reflected the significant therapeutic effect of the 2.5 g/L ChangQing compound treatment (CQM). Histological sections showed that the cecal villus damage and intestinal wall swelling were minimal in the CQM, consistent with the CLS (0.73). Additionally, the 2.5 g/L ChangQing compound treatment effectively prevented the decrease of red blood cells, platelets, and hemoglobin, while promoting the release of anti-inflammatory factors interleukin-10 and interleukin-4, and inhibiting the pro-inflammatory factors interferon-γ and interleukin-17. The microbial community structure in the CQM was most similar to that of the negative control group. In summary, ChangQing compound had multiple positive effects (e.g., promoting weight gain, alleviating anemia, suppressing coccidial proliferation, reducing intestinal damage, modulating immunity, and maintaining intestinal microbiota homeostasis). The study results may be relevant to developing a novel strategy for the clinical management of coccidiosis.

5.
Int J Parasitol Parasites Wildl ; 24: 100966, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135742

RESUMEN

Saiga antelope (Saiga tatarica) is a protected species in Kazakhstan. Little is known about the parasitofauna of these mammals. Therefore, the focus of this study was to evaluate the prevalence and species diversity of Eimeria spp. infection in the Volga-Ural Saiga antelope population. In June 2023, 104 Saiga antelope fecal samples collected from the district of Zhanibek, located in the province of West Kazakhstan were evaluated using microscopic and molecular techniques. Based on coprovoscopy results, Eimeria spp. Oocysts were present in 22 samples (21%). The four fecal samples containing the largest numbers of Eimeria spp. Oocysts per 10x field were selected for further genetic analysis. DNA extraction, nested PCR amplification, and sequencing were performed on 91 clones, with 80 clones forming a distinct clade and exhibiting genetic similarity to MT801034 Eimeria sp. Voucher HY3. These clones possibly represent an Eimeria specific to Saiga antelopes and gazelle that has previously been morphologically described as Eimeria elegans (Svanbaev, 1979), underscoring the importance of further research into parasitic infections in this protected species.

6.
Front Vet Sci ; 11: 1387856, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149147

RESUMEN

Avian coccidiosis, a common disease caused by Eimeria species, results in significant losses in global poultry production. Mycotoxins are low-molecular-weight natural products (i.e., small molecules) produced as secondary metabolites by filamentous fungi and they have the potential to economically and significantly affect global poultry production. Little is known about the relationship between mycotoxins and avian coccidiosis, although they often co-occur in the field. This comprehensive review examines the intricate relationship between mycotoxins and avian coccidiosis, in particular how mycotoxins, including aflatoxins, ochratoxins, trichothecenes as well as Fusarium mycotoxins, compromise the health of the poultry flock and open the door to Eimeria parasites in the gut. In addition, this review sheds light on the immunosuppressive effects of mycotoxins, their disruption of cellular signaling pathways, and the consequent exacerbation of coccidiosis infections. The mechanisms of mycotoxin toxicity are also reviewed, emphasizing direct damage to intestinal epithelial cells, impaired nutrient absorption, inflammation, oxidative stress, and changes in the gut microbiota. Finally, the consequences for the prevention and treatment of coccidiosis when mycotoxins are present in the feed are discussed. This review emphasizes the need for effective management strategies to mitigate the combined risks of mycotoxins and coccidiosis and highlights the complexity of diagnosing and controlling these interrelated problems in poultry. The review advocates a holistic approach that includes strict feed management, disease prevention measures and regular monitoring to maintain the health and productivity of poultry against these significant challenges.

7.
Br Poult Sci ; : 1-12, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39210891

RESUMEN

1. Two experiments were conducted, the first was to investigate the effect of increasing digesta viscosity by dietary carboxymethyl cellulose (CMC) on the growth performance and intestinal morphology and characteristics of healthy birds. The second experiment evaluated the impact of increased digesta viscosity in birds during an Eimeria spp. challenge.2. In experiment 1, a corn-soybean meal-based basal diet was supplemented with 0, 10 or 20 g/kg CMC at the expense of cornstarch and offered to seven birds in each of eight replicate cages per diet from d 8 to 22 post hatching.3. Increasing digesta viscosity due to dietary CMC linearly reduced (p < 0.05) body weight (BW) gain and the apparent ileal digestibility of nutrients. The relative lengths of the duodenum, jejunum and ileum linearly increased (p < 0.01) with dietary CMC inclusion.4. In experiment 2, on d 14, 256 broiler chickens were randomly assigned to eight replicate cages in a 2 × 2 factorial arrangement of treatments with two CMC concentrations (0 or 10 g CMC/kg of diet), with or without an Eimeria challenge. On d 15, birds in the challenge groups were orally gavaged with a 1 ml solution containing 25,000, 25,000 or 125,000 oocysts of E. maxima, E. tenella and E. acervulina; or 1% PBS, respectively.5. Increasing digesta viscosity in Eimeria-challenged birds decreased the total tract digestibility of dry matter and gross energy (p < 0.05). The ileal gene expression of glucose transporters was upregulated (p < 0.05) in challenged birds that received the CMC-supplemented diet.6. In summary, increased digesta viscosity induced changes in the expression of nutrient transporter genes and decreased nutrient utilisation in Eimeria-challenged birds.

8.
Vet Res Commun ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196493

RESUMEN

The water can be a significant risk factor for the occurrence of cattle eimeriosis on farms located in tropical climate regions. This study aimed to assess the viability period of sporulated oocysts of bovine Eimeria spp. in water containing organic matter and to evaluate the efficacy of disinfectants against sporulated oocysts of this protozoa. Two experiments were conducted, each comprising in vitro and in vivo evaluations. In Experiment 1, the viability period of oocysts sporulated in buckets containing a solution composed of a mixture of feces with oocysts, water, and potassium dichromate was assessed. Quantifications and identification of Eimeria spp. oocysts were performed on days + 30, + 60, + 90, and every 30 days thereafter until no more oocysts were detected. Naïve calves were inoculated with this solution kept in the bucket for 6 and 12 months. In Experiment 2, the efficacy of various disinfectants (acetic acid, sodium hypochlorite, ethanol + acetic acid, and ammonia quaternary) against a new solution of sporulated oocysts and pH changes over time (10', 30', and 24 h) were evaluated in the laboratory. The most effective disinfectant was used to treat the water solution and inoculate the calves, and its efficacy was calculated. In Experiment 1, Eimeria spp. oocysts remained viable in the solution for up to 12 months. E. zuernii persisted until the end of the study period. Calves inoculated with the solution kept in the buckets for 6 and 12 months excreted at least four Eimeria species (E. zuernii, E. bovis, E. ellipsoidalis, and E. cylindrica). In Experiment 2, among the tested disinfectants, 3% acetic acid demonstrated the highest efficacy (10' = 80.9%; 30' = 87.9%; 24 h = 91.7%). The pH values of the solutions containing acetic acid ranged from 2.4 to 3.5. Calves that received the inoculum treated with 3% acetic acid did not excrete Eimeria spp. oocysts in feces during the study period (efficacy = 100%). In contrast, all animals in the control group excreted Eimeria spp. oocysts in feces. Future studies should be carried out to better understand the possible effects of cattle drinking water with 3% acetic acid.

9.
Poult Sci ; 103(10): 104064, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106704

RESUMEN

Coccidiosis, caused by a protozoan parasite of the genus Eimeria, is one of the most severe contagious parasite diseases affecting the poultry industry worldwide. Using phytogenics to prevent chicken coccidiosis is a strategy aimed at combating the increasing issue of drug-resistant strains of Eimeria spp. This study demonstrates the anticoccidial activities of a medicinal herb, Trifolium pratense (TP) powder, and its ethanolic extract (designated TPE) against Eimeria spp. TPE exhibited significant suppressive activity against E. maxima oocyst sporulation and E. tenella sporozoite invasion and reproduction in Madin-Darby bovine kidney cells. Furthermore, administration of basal chicken diets containing TP powder or TPE to Eimeria-infected chickens significantly reduced the output of oocysts and severity of intestinal lesions. Dietary supplementation with TP significantly improved relative weight gain in E. tenella- and E. acervulina-infected chickens, while there was no significant improvement in E. maxima-infected chickens. The anticoccidial activities of TP and TPE on E. acervulina, E. tenella and E. maxima were further supported by anticoccidial index scores, which showed greater efficacy than those of amprolium, a commercial coccidiostat used in poultry. TP supplementation positively impacted the primary metabolism of chickens challenged with E. tenella or E. acervulina. The chemical fingerprints of TPE were established using liquid column chromatography; TPE contained 4 major compounds: ononin, sissotrin, formononetin, and biochanin A. In addition, various spectrometric methods were used to ensure the batch-to-batch consistency of TP/TPE. In conclusion, T. pratense is demonstrated to be a novel phytogenic supplement that can be used to control Eimeria-induced coccidiosis in chickens.

10.
J Vet Diagn Invest ; : 10406387241261991, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39108102

RESUMEN

Nematode, cestode, protozoan, microsporidian, and pentastomid parasites affect domesticated and wild rabbits, hares, and jackrabbits of the genera Brachylagus, Lepus, Oryctolagus, Pentalagus, and Sylvilagus. Some endoparasite infections are of limited or no significance, whereas others have potentially profound consequences. Accurate identification of endoparasites of rabbits, hares, and jackrabbits is an important facet of the work of veterinary pathologists engaged in lagomorph pathology. Here I review endoparasites from the pathologist's perspective, focusing on pathogenesis, lesions, and implications of infection. Stomach nematodes Graphidium strigosum and Obeliscoides cuniculi are infrequently pathogenic but may cause gastritis and gastric mucosal thickening. Nematodes Passalurus ambiguus, Protostrongylus spp., Trichostrongylus spp., and Trichuris spp. are rarely associated with disease. Adult Capillaria hepatica (syn. Calodium hepaticum) nematodes and non-embryonated eggs cause granulomatous hepatitis in wild Oryctolagus cuniculus and Lepus europaeus, resulting in multifocal, off-white, hepatic lesions, which may be misdiagnosed as hepatic eimeriosis. When the rabbit is an intermediate host for carnivore cestodes, the space-occupying effects of Cysticercus pisiformis and Coenurus serialis may have pathologic consequences. Eimeria stiedai is a major cause of white-spotted liver in O. cuniculus, particularly in juveniles. Enteric coccidiosis is a noteworthy cause of unthriftiness in young animals, and frequently manifests as diarrhea with grossly appreciable multifocal off-white intestinal lesions. O. cuniculus is the natural host for the zoonotic microsporidian Encephalitozoon cuniculi. Infection may be acute and focused mainly on the kidneys, or it may follow a chronic disease course, frequently with neurologic lesions. A latent carrier status may also develop.

11.
Parasit Vectors ; 17(1): 327, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095927

RESUMEN

BACKGROUND: Chicken coccidiosis is an intracellular parasitic disease that presents major challenges to the development of the commercial poultry industry. Perennial drug selective pressure has led to the multi-drug resistance of chicken coccidia, which makes the prevention and control of chicken coccidiosis extremely difficult. In recent years, natural plant products have attracted the attention of researchers due to their inherent advantages, such as the absence of veterinary drug residues. The development of these natural products provides a new direction for the prevention and treatment of chicken coccidiosis. METHODS: The anticoccidial effect of a natural plant product combination formulation (eucalyptus oil + apigenin + eugenol essential oil) was tested against Eimeria tenella in broilers. To search for the optimal concentration of the combination formulation, we screened 120 broilers in a chicken cage trial in which 100 broilers were infected with 5 × 104 sporulated Eimeria tenella oocysts; broilers receiving a decoquinate solution was set up as a chemical control. The optimal anticoccidial concentration was determined by calculating the anticoccidial index (ACI), and the suitable concentration was used as the recommended dose for a series of safety dose assessment tests, such as feed conversion ratio (FCR), hematological indices and serum biochemical indices, as well as liver and kidney sections, at onefold (low dose), threefold (medium dose) and sixfold (high dose) the recommended dose (RD). RESULTS: The results showed that this combination formulation of three plant natural products had a better anticoccidial effect than formulations containing two plant natural products or a single one, with an ACI of 169.3. The dose gradient anticoccidial test revealed that the high-dose formulation group had a better anticoccidial effect (ACI = 169.2) than the medium- and low-dose groups. The safety evaluation test showed that concentrations of the formulation at one-, three- and sixfold the RD were non-toxic to Arbor Acres broilers, indicating the high safety of the combination formulation. CONCLUSIONS: The combination formulation showed not only a moderate anticoccidial effect but also had a high safety profile for broilers. The results of this study indicate a new alternative for the prevention and control of coccidiosis in broilers.


Asunto(s)
Pollos , Coccidiosis , Coccidiostáticos , Eimeria tenella , Eucalyptus , Eugenol , Enfermedades de las Aves de Corral , Animales , Pollos/parasitología , Eimeria tenella/efectos de los fármacos , Coccidiosis/tratamiento farmacológico , Coccidiosis/veterinaria , Coccidiosis/parasitología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/parasitología , Coccidiostáticos/farmacología , Coccidiostáticos/uso terapéutico , Coccidiostáticos/administración & dosificación , Eugenol/farmacología , Eugenol/administración & dosificación , Eucalyptus/química , Productos Biológicos/farmacología , Productos Biológicos/administración & dosificación , Oocistos/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/administración & dosificación , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites Volátiles/administración & dosificación
12.
Parasitol Res ; 123(8): 289, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096422

RESUMEN

Chicken coccidiosis causes retarded growth and low production performance in poultry, resulting in huge economic losses to the poultry industry. In order to prevent and control chicken coccidiosis, great efforts have been made to develop new drugs and vaccines, which require pure isolates of Eimeria spp. In this study, we obtained the Eimeira tenella Xiantao isolate by single oocyst isolation technology and compared its genome with the reference genome GCF_000499545.2_ETH001 of the Houghton strain. The results of the comparative genomic analysis indicated that the genome of this isolate contained 46,888 single nucleotide polymorphisms (SNPs). There were 15,107 small insertion and deletion variations (indels), 1693 structural variations (SV), and 3578 copy number variations (CNV). In addition, 64 broilers were used to determine the resistance profile of Xiantao strain. Drug susceptibility testing revealed that this isolate was completely resistant to monensin, diclazuril, halofuginone, sulfachlorpyrazine sodium, and toltrazuril, but sensitive to decoquinate. These data improve our understanding of drug resistance in avian coccidia.


Asunto(s)
Pollos , Coccidiosis , Resistencia a Medicamentos , Eimeria tenella , Enfermedades de las Aves de Corral , Eimeria tenella/genética , Eimeria tenella/efectos de los fármacos , Eimeria tenella/aislamiento & purificación , Animales , China , Pollos/parasitología , Enfermedades de las Aves de Corral/parasitología , Coccidiosis/veterinaria , Coccidiosis/parasitología , Resistencia a Medicamentos/genética , Coccidiostáticos/farmacología , Polimorfismo de Nucleótido Simple , Genoma de Protozoos
13.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125967

RESUMEN

The codon usage bias (CUB) of genes encoded by different species' genomes varies greatly. The analysis of codon usage patterns enriches our comprehension of genetic and evolutionary characteristics across diverse species. In this study, we performed a genome-wide analysis of CUB and its influencing factors in six sequenced Eimeria species that cause coccidiosis in poultry: Eimeria acervulina, Eimeria necatrix, Eimeria brunetti, Eimeria tenella, Eimeria praecox, and Eimeria maxima. The GC content of protein-coding genes varies between 52.67% and 58.24% among the six Eimeria species. The distribution trend of GC content at different codon positions follows GC1 > GC3 > GC2. Most high-frequency codons tend to end with C/G, except in E. maxima. Additionally, there is a positive correlation between GC3 content and GC3s/C3s, but a significantly negative correlation with A3s. Analysis of the ENC-Plot, neutrality plot, and PR2-bias plot suggests that selection pressure has a stronger influence than mutational pressure on CUB in the six Eimeria genomes. Finally, we identified from 11 to 15 optimal codons, with GCA, CAG, and AGC being the most commonly used optimal codons across these species. This study offers a thorough exploration of the relationships between CUB and selection pressures within the protein-coding genes of Eimeria species. Genetic evolution in these species appears to be influenced by mutations and selection pressures. Additionally, the findings shed light on unique characteristics and evolutionary traits specific to the six Eimeria species.


Asunto(s)
Composición de Base , Uso de Codones , Eimeria , Eimeria/genética , Composición de Base/genética , Animales , Genoma de Protozoos , Coccidiosis/veterinaria , Coccidiosis/parasitología , Coccidiosis/genética , Evolución Molecular , Codón/genética
14.
Poult Sci ; 103(9): 104000, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002369

RESUMEN

Dietary anti-interleukin (IL)-10 antibodies may protect broiler performance during coccidiosis by inhibiting Eimeria host-evasion pathways; however, anti-IL-10's effects on microbial communities during coccidiosis and secondary Clostridium perfringens (necrotic enteritis) challenge is unknown. The study objectives were to assess the jejunal microbiota of broilers fed anti-IL-10 during E. maxima ± C. perfringens challenge. Two replicate studies using Ross 308 chicks placed in wire-floor cages (32 cages/ replicate study; 20 chicks/ cage) were conducted, with chicks assigned to diets ± 0.03% anti-IL-10 for 25 d. In both replicate studies, challenge-designated chicks were inoculated with 1 × 108Salmonella Typhimurium colony forming units (CFU) at placement. On d14, S. Typhimurium-inoculated chicks were gavaged with 15,000 sporulated Eimeria maxima M6 oocysts and half the E. maxima-challenged chicks received 1×108C. perfringens CFUs on d 18 and 19. Six chicks/ treatment were euthanized for distal jejunum content collection at baseline (d 14), 7 d post-inoculation (pi) with E. maxima/ 3 dpi with C. perfringens (peak) or 11 dpi with E. maxima/ 7 dpi with C. perfringens (post-peak) for 16S rRNA gene amplicon sequencing. Sequences were quality screened (Mothur V.1.43.0) and clustered into de novo operation taxonomical units (OTU; 99% similarity) using the SILVA reference database (v138). Alpha diversity and log-transformed relative abundance data were analyzed in SAS 9.4 with replicate study, diet, challenge, and timepoint main effects plus associated interactions (P ≤ 0.05). Few baseline changes were observed, but E. maxima ± C. perfringens challenge reduced Romboutsia and Staphylococcus relative abundance 4- to 800-fold in both replicate studies (P ≤ 0.008). At peak challenge with secondary C. perfringens, feeding anti-IL-10 instead of the control diet reduced Clostridium sensu stricto 1 relative abundance 13- and 1,848-fold in both replicate studies (P < 0.0001); however, OTUs identified as C. perfringens were not affected by dietary anti-IL-10. These results indicate that anti-IL-10 does not affect the jejunal microbiota of unchallenged broilers, while coccidiosis or necrotic enteritis challenge generally contributed to greater microbiota alterations than diet.


Asunto(s)
Alimentación Animal , Pollos , Infecciones por Clostridium , Clostridium perfringens , Coccidiosis , Coinfección , Dieta , Eimeria , Microbioma Gastrointestinal , Interleucina-10 , Yeyuno , Enfermedades de las Aves de Corral , Salmonella typhimurium , Animales , Alimentación Animal/análisis , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/prevención & control , Clostridium perfringens/fisiología , Coccidiosis/veterinaria , Coccidiosis/parasitología , Coinfección/veterinaria , Dieta/veterinaria , Eimeria/fisiología , Enteritis/veterinaria , Enteritis/parasitología , Enteritis/prevención & control , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/microbiología , Salmonella typhimurium/fisiología
15.
Poult Sci ; 103(9): 104001, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002368

RESUMEN

Strategies to counteract interleukin (IL)-10-mediated immune evasion by Eimeria spp. during coccidiosis- like anti-IL-10 antibodies- may protect broiler chicken health and reduce incidence of secondary necrotic enteritis (Clostridium perfringens) via undetermined mechanisms. Objectives were to use sequencing techniques to evaluate jejunal microbial community composition and function in anti-IL-10-fed broilers during coccidiosis and necrotic enteritis. On d0, Ross 308 chicks were placed in 32 cages (15 chicks/ cage) for a 25-d study and randomly assigned to diets ± 0.03% anti-IL-10. Six chicks/ diet were euthanized for distal jejunum content and tissue collection on d 14 (baseline) before inoculating the remainder with saline or 15,000 E. maxima oocysts (M6 strain). Half the chicks challenged with E. maxima were challenged with C. perfringens (1×108 colony forming units) on d 18 and 19. Follow-up samples (6 chicks/treatment) were collected at 7 and 11 d postinoculation (pi) for the E. maxima-only group, or 3 and 7 dpi for the E. maxima + C. perfringens group with 3/7 dpi being designated as peak and 7/11dpi as postpeak challenge. DNA was extracted from digesta for microbiota composition analysis (16S rRNA gene sequencing) while RNA was extracted from tissue to evaluate the metatranscriptome (RNA sequencing). Alpha diversity and genus relative abundances were analyzed using the diet or challenge main effects with associated interactions (SAS 9.4; P ≤ 0.05). No baseline microbial changes were associated with dietary anti-IL-10. At peak challenge, a diet main effect reduced observed species 36.7% in chicks fed anti-IL-10 vs. control; however, the challenge effect reduced observed species and Shannon diversity 51.2-58.3% and 33.0 to 35.5%, respectively, in chicks challenged with E. maxima ± C. perfringens compared to their unchallenged counterparts (P ≤ 0.05). Low sequencing depth limited metatranscriptomic analysis of jejunal microbial function via RNA sequencing. This study demonstrates that challenge impacted the broiler distal jejunum microbiota more than anti-IL-10 while future research to characterize the microbial metatranscriptome may benefit from investigating other intestinal compartments.


Asunto(s)
Pollos , Clostridium perfringens , Coccidiosis , Dieta , Eimeria , Enteritis , Microbioma Gastrointestinal , Interleucina-10 , Yeyuno , Enfermedades de las Aves de Corral , Animales , Alimentación Animal/análisis , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/microbiología , Clostridium perfringens/fisiología , Coccidiosis/veterinaria , Coccidiosis/parasitología , Coccidiosis/prevención & control , Dieta/veterinaria , Eimeria/fisiología , Enteritis/veterinaria , Enteritis/prevención & control , Enteritis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Interleucina-10/genética , Yeyuno/microbiología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Distribución Aleatoria
16.
Vet Parasitol ; 330: 110250, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970904

RESUMEN

The apicomplexan Eimeria ovinoidalis is distributed worldwide. It can cause clinical coccidiosis, which is one of the most pathogenic species in sheep, reducing growth rates and resulting in significant economic losses in the industry. Its principal clinical sign is profuse diarrhoea in young animals. In this study, we established a model of E. ovinoidalis infection in lambs to understand its pathogenicity and evaluate the gut microbiota and fecal metabolite profiles. Specifically, we observed a significant shift in the abundance of bacteria and disrupted metabolism in lambs. Especially during the peak period of excrete oocysts, it promoted the reproduction of some harmful bacteria in Proteobacteria and Actinobacteriota, and reduced the abundance of beneficial bacteria such as Lachnospiraceae and Rikenellaceae. In the later stage of the patent period, the abundance of harmful bacteria in the intestine decreased, the abundance of beneficial bacteria which could produce anti-inflammatory substances began to increase, and the abundance and diversity of intestinal flora also tended to parallel with the control group. Coccidia infection could lead to the increase of differential metabolites and metabolic pathways between infected and control group, but the difference decreased with time. During the peak period of excrete oocysts, although the antimicrobial metabolites such as Lividamine were up-regulated, the excess of these metabolites could still induce the production of endotoxin, while Butanoic acid and other anti-inflammatory metabolites decreased significantly. A metabolomics analysis showed that E. ovinoidalis infection altered metabolites and metabolic pathways, with biosynthesis of unsaturated fatty acids, Teichoic acid biosynthesis and Butanoate metabolism as the major disrupted metabolic pathways. Details of the gut microbiota and the metabolome after infection with E. ovinoidalis may aid in the discovery of specific diagnostic markers and help us understand the changes in parasite metabolic pathways.


Asunto(s)
Coccidiosis , Eimeria , Heces , Microbioma Gastrointestinal , Enfermedades de las Ovejas , Animales , Eimeria/fisiología , Coccidiosis/veterinaria , Coccidiosis/parasitología , Ovinos , Enfermedades de las Ovejas/parasitología , Enfermedades de las Ovejas/microbiología , Heces/parasitología , Heces/microbiología
17.
BMC Vet Res ; 20(1): 314, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010064

RESUMEN

Eimeria spp. are the pathogen that causes coccidiosis, a significant disease that affects intensively reared livestock, especially poultry. Anticoccidial feed additives, chemicals, and ionophores have routinely been employed to reduce Eimeria infections in broiler production. Therefore, the shift to antibiotic-free and organic farming necessitates novel coccidiosis preventive strategies. The present study evaluated the effects of potential feed additives, liver free and chitosan, against Eimeria tenella infection in White Leghorn broiler female chickens. One hundred sixty-five 1-day-old White Leghorn broiler female chicks were divided into 11 groups (15 female chicks per group), including the positive control group (G1), the negative control group (G2), a chitosan-treated group (G3), a chitosan-treated-infected group (G4), the liver free-treated group (G5), the liver free-treated-infected group (G6), the liver free-and-chitosan-treated group (G7), the liver free-and-chitosan-infected group (G8), the therapeutic liver free-and-chitosan-treated-infected group (G9), the sulfaquinoxaline-treated group (G10), and the sulfaquinoxaline-treated-infected group (G11). Chitosan was fed to the chicks in G3 and G4 as a preventative measure at a dose of 250 mg/kg. The G5 and G6 groups received 1.5 mg/kg of Liverfree. The G7 and G8 groups received chitosan and Liverfree. The G10 and G11 groups were administered 2 g/L of sulfaquinoxaline. From the moment the chicks arrived at Foshan University (one-day-old chicks) until the completion of the experiment, all medications were given to them as a preventative measure. G8 did; however, receive chitosan and liver free as therapeutic supplements at 7 dpi. The current study showed that the combination of liver free and chitosan can achieve better prophylactic and therapeutic effects than either alone. In E. tenella challenged chickens, G8 and G9 chickens showed reduced oocyst shedding and lesion score, improved growth performance (body weight, body weight gain, feed intake, feed conversion ratio, and mortality rate), and cecal histology. The current study demonstrates that combining liver free and chitosan has superior preventive and therapeutic benefits than either alone, and they could also be used as alternative anticoccidial agents.


Asunto(s)
Alimentación Animal , Pollos , Quitosano , Coccidiosis , Coccidiostáticos , Eimeria tenella , Hígado , Enfermedades de las Aves de Corral , Animales , Quitosano/farmacología , Quitosano/uso terapéutico , Coccidiosis/veterinaria , Coccidiosis/tratamiento farmacológico , Coccidiosis/parasitología , Coccidiosis/prevención & control , Eimeria tenella/efectos de los fármacos , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/prevención & control , Femenino , Coccidiostáticos/uso terapéutico , Coccidiostáticos/farmacología , Hígado/efectos de los fármacos , Hígado/parasitología
18.
Vet Parasitol ; 331: 110245, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39018905

RESUMEN

Live anticoccidial vaccines, either formulated with unattenuated or attenuated Eimeria parasites, are powerful stimulators of chicken intestinal immunity. Little is known about the dynamics of gene expression and the corresponding biological processes of chicken responses against infection with precocious line (PL) of Eimeria parasites. In the present study, we performed a time-series transcriptomic analysis of chicken duodenum across 15 time points from 6 to 156 hours post-infection (p.i.) with PL of E. acervulina. A high-quality profile showing two distinct changes in chicken duodenum mRNA expression was generated during the infection of Eimeria. Early response revealed that activation of the chicken immune response was detectable from 6 h.p.i., prominent genes triggered during the initiation of asexual and sexual parasite growth encompass immune regulatory effects, such as interferon gamma (IFN-γ), interferon regulatory factor 1 (IRF1), and interleukin-10 (IL10). The late response was identified significantly associating with maintaining cellular structure and activating lipid metabolic pathways. These analyses provide a detailed depiction of the biological response landscape in chickens infected by the PL of E. acervulina, contributing significant insights for the investigation of the host-parasite interactions and the management of parasitic diseases.

19.
J Eukaryot Microbiol ; : e13044, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962865

RESUMEN

Coccidiosis is one of the most prevalent diseases found in local rabbits (Oryctolagus cuniculus), which is caused by the Eimeria. The study aimed to more reliably identify Eimeria species (Eimeria magna) infecting Local Rabbits in Alkarg City, Saudi Arabia, based the method on the molecular properties and morphological and molecular biological techniques. Sub-spheroidal oocysts measuring 21-27 × 12-16 (24 × 14.4) µm (20 n) and with a length/width (L/W) ratio of 0.9-1.1 (1.0) were identified by microscopic analysis of a fecal sample. Oocysts feature a bi-layered wall that is 1.0-1.2 (1.1) µm thick. About two-thirds of the wall's thickness is made up of a smooth outer layer. A polar granule is present, but neither a micropyle nor an oocyst residuum is present. The ovoidal sporozoites measure 15-18 × 8-11 (16.5 × 9.5) µm, have an L/W ratio of 1.6-1.8 (1.7), and take up around 21% of the oocyst's total surface. The mean size of the sub-Stieda body is 1.4 × 2.3 µm, while the average size of the Stieda body is 0.9 × 1.8 µm. The para-Stieda body is lacking. Sporocyst residuum appears membrane-bound and has an uneven form made up of several granules. With two refractile bodies below the striations and pronounced striations at the more pointed end, sporozoites are vermiform, measuring an average of 11.6 × 4.0 µm. The results of the sequencing for the 18S rDNA gene confirmed the species of Eimeria parasites found in the host (rabbits). The current parasite species is closely related to the previously described and deposited E. magna and deeply embedded in the genus Eimeria (family Eimeriidae). According to the findings, single oocyst molecular identification of Eimeria may be accomplished through consistent use of the morphological and molecular results. It is possible to draw the conclusion that the current research supplies relevant facts that help assess the potential infection and future control measures against rabbit coccidiosis to reduce the financial losses that can be incurred by the rabbit industry in Saudi Arabia.

20.
Front Vet Sci ; 11: 1416459, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036795

RESUMEN

Introduction: Avian coccidiosis presents a significant challenge to the poultry industry in Egypt, highlighting the urgent need for validating new drug targets offering promising prospects for the development of advanced anticoccidials. Although numerous reports highlight the activity of lactoferrin (LF) against various microorganisms, its potential against Eimeria has not been explored. The present study evaluated the potential anticoccidial effect of LF and diclazuril in broiler chickens experimentally infected with Eimeria tenella. Methods: A total of 100 one-day-old broiler chicks were divided into five equal groups (20 each) as follows: Group 1 (G1) served as the normal healthy control group, Group 2 (G2) consisted of chickens infected with 1 × 105 sporulated E. tenella oocysts at 14 days of age, Group 3 (G3) comprised infected chickens treated with diclazuril (0.5 mL/L in drinking water) for 3 days successively, Group 4 (G4) included infected chickens treated with LF (at a dose of 250 mg/kg of diet) from one day of age until the end of the study, and Group 5 (G5) comprised infected chickens treated with both LF and diclazuril. Results: The positive control group (G2) experienced significant reductions in body weight (BW), BW gain, serum glucose, lipase, amylase, total antioxidant capacity, several hematological indices, and total proteins, along with alterations in various antioxidant enzymes. Conversely, serum levels of aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Alkaline phosphatases (ALP), urea, creatinine, nitric oxide, mean corpuscular volume (MCV), White blood cells (WBCs), heterophils, alpha 2, beta 1, and liver contents of malondialdehyde were elevated in this group. Moreover, higher oocyst counts and lesion scores, along with histopathological alterations, were observed in G2. Remarkably, treatment with diclazuril and/or LF demonstrated potent antioxidant and anticoccidial effects, resulting in reduced shedding of oocysts, lesion scores, and lymphocytic infiltrates in the cecum. Additionally, these treatments improved the antioxidant and immune systems in chickens and restored all histopathological changes reported in the infected non-treated group (G2). Conclusion: This study offers novel perspectives on the potential anticoccidial effects of the combination of LF and diclazuril in broiler chickens infected with E. tenella, highlighting the potential synergistic actions of LF in treating poultry coccidiosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA