Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.121
Filtrar
1.
Front Immunol ; 15: 1425374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091504

RESUMEN

Vaccines containing tetanus-diphtheria antigens have been postulated to induce cross-reactive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which could protect against coronavirus disease (COVID-19). In this work, we investigated the capacity of Tetanus-diphtheria (Td) vaccine to prime existing T cell immunity to SARS-CoV-2. To that end, we first collected known SARS-CoV-2 specific CD8+ T cell epitopes targeted during the course of SARS-CoV-2 infection in humans and identified as potentially cross-reactive with Td vaccine those sharing similarity with tetanus-diphtheria vaccine antigens, as judged by Levenshtein edit distances (≤ 20% edits per epitope sequence). As a result, we selected 25 potentially cross-reactive SARS-CoV-2 specific CD8+ T cell epitopes with high population coverage that were assembled into a synthetic peptide pool (TDX pool). Using peripheral blood mononuclear cells, we first determined by intracellular IFNγ staining assays existing CD8+ T cell recall responses to the TDX pool and to other peptide pools, including overlapping peptide pools covering SARS-CoV-2 Spike protein and Nucleocapsid phosphoprotein (NP). In the studied subjects, CD8+ T cell recall responses to Spike and TDX peptide pools were dominant and comparable, while recall responses to NP peptide pool were less frequent and weaker. Subsequently, we studied responses to the same peptides using antigen-inexperienced naive T cells primed/stimulated in vitro with Td vaccine. Priming stimulations were carried out by co-culturing naive T cells with autologous irradiated peripheral mononuclear cells in the presence of Td vaccine, IL-2, IL-7 and IL-15. Interestingly, naive CD8+ T cells stimulated/primed with Td vaccine responded strongly and specifically to the TDX pool, not to other SARS-CoV-2 peptide pools. Finally, we show that Td-immunization of C57BL/6J mice elicited T cells cross-reactive with the TDX pool. Collectively, our findings support that tetanus-diphtheria vaccines can prime SARS-CoV-2 cross-reactive T cells and likely contribute to shape the T cell responses to the virus.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Reacciones Cruzadas , Epítopos de Linfocito T , SARS-CoV-2 , Humanos , Reacciones Cruzadas/inmunología , SARS-CoV-2/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Toxoide Tetánico/inmunología , Animales , Ratones , Femenino , Vacunas contra la COVID-19/inmunología , Masculino , Adulto , Glicoproteína de la Espiga del Coronavirus/inmunología , Persona de Mediana Edad
2.
Artículo en Inglés | MEDLINE | ID: mdl-39091165

RESUMEN

Objectives: Current tuberculosis (TB) control strategies face limitations, such as low antibiotic treatment compliance and a rise in multidrug resistance. Furthermore, the lack of a safe and effective vaccine compounds these challenges. The limited efficacy of existing vaccines against TB underscores the urgency for innovative strategies, such as immunoinformatics. Consequently, this study aimed to design a targeted multi-epitope vaccine against TB infection utilizing an immunoinformatics approach. Methods: The multi-epitope vaccine targeted Ag85A, Ag85B, ESAT-6, and CFP-10 proteins. The design adopted various immunoinformatics tools for cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and linear B lymphocyte (LBL) epitope prediction, the assessment of vaccine characteristics, structure modeling, population coverage analysis, disulfide engineering, solubility prediction, molecular docking/dynamics with toll-like receptors (TLRs), codon optimization/cloning, and immune simulation. Results: The multi-epitope vaccine, which was assembled using 12 CTL, 25 HTL, and 21 LBL epitopes associated with CpG adjuvants, showed promising characteristics. The immunoinformatics analysis confirmed the antigenicity, immunogenicity, and lack of allergenicity. Physicochemical evaluations indicated that the proteins were stable, thermostable, hydrophilic, and highly soluble. Docking simulations suggested high-affinity binding to TLRs, including TLR2, TLR4, and TLR9. In silico immune simulation predicted strong T cell (cytokine release) and B cell (immunoglobulin release) responses. Conclusion: This immunoinformatics-designed multi-epitope vaccine targeting Ag85A, Ag85B, ESAT-6, and CFP-10 proteins showed promising characteristics in terms of stability, immunogenicity, antigenicity, solubility, and predicted induction of humoral and adaptive immune responses. This suggests its potential as a prophylactic and therapeutic vaccine against TB.

3.
Sci Rep ; 14(1): 17910, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095538

RESUMEN

Helicobacter pylori (H. pylori) is responsible for various chronic or acute diseases, such as stomach ulcers, dyspepsia, peptic ulcers, gastroesophageal reflux, gastritis, lymphoma, and stomach cancers. Although specific drugs are available to treat the bacterium's harmful effects, there is an urgent need to develop a preventive or therapeutic vaccine. Therefore, the current study aims to create a multi-epitope vaccine against H. pylori using lipid nanoparticles. Five epitopes from five target proteins of H. pylori, namely, Urease, CagA, HopE, SabA, and BabA, were used. Immunogenicity, MHC (Major Histocompatibility Complex) bonding, allergenicity, toxicity, physicochemical analysis, and global population coverage of the entire epitopes and final construct were carefully examined. The study involved using various bioinformatic web tools to accomplish the following tasks: modeling the three-dimensional structure of a set of epitopes and the final construct and docking them with Toll-Like Receptor 4 (TLR4). In the experimental phase, the final multi-epitope construct was synthesized using the solid phase method, and it was then enclosed in lipid nanoparticles. After synthesizing the construct, its loading, average size distribution, and nanoliposome shape were checked using Nanodrop at 280 nm, dynamic light scattering (DLS), and atomic force microscope (AFM). The designed vaccine has been confirmed to be non-toxic and anti-allergic. It can bind with different MHC alleles at a rate of 99.05%. The construct loading was determined to be about 91%, with an average size of 54 nm. Spherical shapes were also observed in the AFM images. Further laboratory tests are necessary to confirm the safety and immunogenicity of the multi-epitope vaccine.


Asunto(s)
Vacunas Bacterianas , Biología Computacional , Helicobacter pylori , Nanopartículas , Helicobacter pylori/inmunología , Nanopartículas/química , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/química , Biología Computacional/métodos , Humanos , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/química , Epítopos/inmunología , Epítopos/química , Simulación del Acoplamiento Molecular , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/química , Infecciones por Helicobacter/prevención & control , Infecciones por Helicobacter/inmunología , Receptor Toll-Like 4/inmunología , Ureasa/inmunología , Ureasa/química , Inmunoinformática , Liposomas
4.
Talanta ; 280: 126636, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39126964

RESUMEN

As artificial receptors for protein recognition, epitope-imprinted polymers combined with fluorescence sensing based on quantum dots (QDs) can be potentially used for biological analysis and disease diagnosis. However, the usual way for fabrication of QD sensors through unoriented epitope imprinting is confronted with the problems of disordered imprinting sites and low template utilization. In this context, a facile and efficient oriented epitope surface imprinting was put forward based on immobilization of the epitope templates via thiol-disulfide exchange reactions. With N-succinimidyl 3-(2-pyridyldithio)-propionate (SPDP) as a heterobifunctional reagent, cysteine-modified epitopes of cytochrome c were anchored on the surface of pyridyl disulfide functionalized silica nanoparticles sandwiching CdTe QDs. After surface imprinting via a sol-gel process, the epitope templates were removed from the surface-imprinted layers simply by reduction of the thiol-disulfide, affording oriented epitope-imprinted sites. By this method, the amount of epitope templates was only 1/20 of traditionally unoriented epitopes. The resulting sensors demonstrated significantly enhanced imprinting performance and high sensitivity, with the imprinting factor increasing from 2.6 to 3.9, and the limit of detection being 91 nM. Such epitope-oriented surface-imprinted method may offer a new design strategy for the construction of high-affinity protein recognition nanomaterials with fluorescence sensing.

5.
Vaccine ; 42(21): 126178, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39096765

RESUMEN

American Tegumentary Leishmaniasis (ATL) is a disease of high severity and incidence in Brazil, in addition to being a worldwide concern in public health. Leishmania amazonensis is one of the etiological agents of ATL, and the inefficiency of control measures, associated with the high toxicity of the treatment and the lack of effective immunoprophylactic strategies, makes the development of vaccines indispensable and imminent. In this light, the present study proposes to elaborate a chimeric protein (rChiP), based on the fusion of multiple epitopes of CD4+/CD8+ T cells, identified in the immunoproteome of the parasites L. amazonensis and L. braziliensis. The designed chimeric protein was tested in the L. amazonensis murine model of infection using the following formulations: 25 µg of the rChiP in saline (rChiP group) and 25 µg of the rChiP plus 25 µg of MPLA-PHAD® (rChiP+MPLA group). After completing immunization, CD4+ and CD8+ T cells, stimulated with SLa-Antigen or rChiP, showed an increased production of nitric oxide and intracytoplasmic pro-inflammatory cytokines, in addition to the generation of central and effector memory T cells. rChiP and rChiP+MPLA formulations were able to promote an effective protection against L. amazonensis infection determined by a reduction in the development of skin lesions and lower parasitic burden. Reduction in the development of skin lesions and lower parasitic burden in the vaccinated groups were associated with an increase of nitrite, CD4+/CD8+IFN-γ+TNF-α+ and CD4+/CD8+CD44highCD62Lhigh/low T cells, IgGTotal, IgG2a, and lower rates of IgG1 and CD4+/CD8+IL-10+. This data suggests that proposed formulations could be considered potential tools to prevent ATL.


Asunto(s)
Adyuvantes Inmunológicos , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Epítopos de Linfocito T , Memoria Inmunológica , Vacunas contra la Leishmaniasis , Leishmaniasis Cutánea , Animales , Leishmaniasis Cutánea/prevención & control , Leishmaniasis Cutánea/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Ratones , Vacunas contra la Leishmaniasis/inmunología , Femenino , Adyuvantes Inmunológicos/administración & dosificación , Ratones Endogámicos BALB C , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/genética , Leishmania braziliensis/inmunología , Lípido A/análogos & derivados , Lípido A/inmunología , Anticuerpos Antiprotozoarios/inmunología , Citocinas/metabolismo , Citocinas/inmunología , Modelos Animales de Enfermedad , Antígenos de Protozoos/inmunología
6.
Vet Microbiol ; 298: 110200, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39173399

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is the pathogen of Porcine epidemic diarrhea (PED) and can mainly cause acute diarrhea, vomiting, dehydration and high mortality in neonatal piglets. The nucleocapsid (N) protein of PEDV is a highly conserved structural protein. In this study, 6-8-week-old BALB/c mice were immunized with purified PEDV, and three monoclonal antibodies (mAbs) against the PEDV N protein were generated, named 3C6,4F8,4C9. Among them, three new B cell epitopes, 235IGENPDKL242, 12KRVPLSLY19, 372DAFKTGNA380 were firstly identified in the viral N-protein. Among them, 4F8 and 4C9 had IgG1 isotype with Kappa light chain, while 3C6 had IgG2a isotype with Kappa light chain. Three monoclonal antibodies (mAbs) demonstrated specific reactivity with PEDV as evidenced by Western blot and indirect immunofluorescence assay. By studying the interaction between the mAbs and the N protein, we can gain insights into the protein's conformation and functional regions. This information will help develop fast and accurate PEDV diagnostic methods.

7.
Trends Pharmacol Sci ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39181736

RESUMEN

Autoantibody binding has a central role in autoimmune diseases and has also been linked to cancer, infections, and behavioral disorders. Autoimmune neurological diseases remain misclassified also due to an incomplete understanding of the underlying disease-specific epitopes. Such epitopes are crucial for both pathology and diagnosis, but have historically been overlooked. Recent technological advancements have enabled the exploration of these epitopes, potentially opening novel clinical avenues. The precise identification of novel B and T cell epitopes and their autoreactivity has led to the discovery of autoantigen-specific biomarkers for patients at high risk of autoimmune neurological diseases. In this review, we propose utilizing newly available synthetic and cellular-surface display technologies and guide epitope-focused studies to unlock the potential of disease-specific epitopes for improving diagnosis and treatments. Additionally, we offer recommendations to guide emerging epitope-focused studies to broaden the current landscape.

8.
J Mol Graph Model ; 132: 108848, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182254

RESUMEN

Staphylococcus aureus is a common bacterium that causes a variety of infections in humans. This microorganism produces several virulence factors, including hemolysins, which contribute to its disease-causing ability. The treatment of S. aureus infections typically involves the use of antibiotics. However, the emergence of antibiotic-resistant strains has become a major concern. Therefore, vaccination against S. aureus has gained attention as an alternative approach. Vaccination has the advantage of stimulating the immune system to produce specific antibodies that can neutralize bacteria and prevent infection. However, developing an effective vaccine against S. aureus has proven to be challenging. This study aimed to use in silico methods to design a multi-epitope vaccine against S. aureus infection based on hemolysin proteins. The designed vaccine contained four B-cell epitopes, four CTL epitopes, and four HTL epitopes, as well as the ribosomal protein L7/L12 and pan-HLA DR-binding epitope, included as adjuvants. Furthermore, the vaccine was non-allergenic and non-toxic with the potential to stimulate the TLR2-, TLR-4, and TLR-6 receptors. The predicted vaccine exhibited a high degree of antigenicity and stability, suggesting potential for further development as a viable vaccine candidate. The population coverage of the vaccine was 94.4 %, indicating potential widespread protection against S. aureus. Overall, these findings provide valuable insights into the design of an effective multi-epitope vaccine against S. aureus infection and pave the way for future experimental validations.

9.
Biotechniques ; 76(7): 299-309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185782

RESUMEN

Epitope tagging represents a powerful strategy for expedited identification, isolation, and characterization of proteins in molecular biological studies, including protein-protein interactions. We aimed to improve the reproducibility of epitope-tagged protein expression and detection by developing a range of plasmids as positive controls. The pJoseph2 family of expression plasmids functions in diverse cellular environments and cell types to enable the evaluation of transfection efficiency and antibody staining for epitope detection. The expressed green fluorescent proteins harbor five unique epitope tags, and their efficient expression in Escherichia coli, Drosophila Schneider's line 2 cells, and human SKOV3 and HEK293T cells was demonstrated by fluorescence microscopy and western blotting. The pJoseph2 plasmids provide versatile and valuable positive controls for numerous experimental applications.


Epitope tagging, a fundamental technique in molecular biology, involves attaching short amino acid sequences (epitope tags) to target proteins for their efficient identification and study. This technique has evolved since its inception, enabling diverse applications in protein research. Notably, CRISPR/Cas9 gene editing has enhanced epitope tagging by enabling the tagging of endogenous genes, expanding its versatility. However, reproducibility challenges exist, demanding positive controls for troubleshooting. The pJoseph2 family of plasmids was developed to address this need, providing robust positive controls for various epitope-based experiments, from bacterial expression to Drosophila and mammalian cell studies. This resource enhances the reliability and accuracy of epitope tagging, benefiting researchers across disciplines.


Asunto(s)
Western Blotting , Escherichia coli , Proteínas Fluorescentes Verdes , Plásmidos , Transfección , Humanos , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Animales , Células HEK293 , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Epítopos/genética , Línea Celular
10.
Front Vet Sci ; 11: 1392350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166172

RESUMEN

African swine fever (ASF) is a highly fatal infectious disease in pigs, caused by the African swine fever virus (ASFV). It is characterized by short disease duration and high morbidity and mortality. In August 2018, ASF was first reported in China and it subsequently spread rapidly throughout the country, causing serious economic losses for the Chinese pig industry. Early detection plays a critical role in preventing and controlling ASF because there is currently no effective vaccine or targeted therapeutic medication available. Additionally, identifying conserved protective antigenic epitopes of ASFV is essential for the development of diagnostic reagents. The E165R protein, which is highly expressed in the early stages of ASFV infection, can serve as an important indicator for early detection. In this study, we successfully obtained high purity soluble prokaryotic expression of the E165R protein. We then utilized the purified recombinant E165R protein for immunization in mice to prepare monoclonal antibodies (mAbs) using the hybridoma fusion technique. After three subclonal screens, we successfully obtained three mAbs against ASFV E165R protein in cells named 1B7, 1B8, and 10B8. Through immunofluorescence assay (IFA) and Western blot, we confirmed that the prepared mAbs specifically recognize the baculovirus-expressed E165R protein. By using overlapping truncated E165R protein and overlapping peptide scanning analysis, we tentatively identified two novel linear B cell epitopes (13EAEAYYPPSV22 and 55VACEHMGKKC64) that are highly conserved in genotype I and genotype II of ASFV. Thus, as a detection antibody, it has the capability to detect ASFV across a wide range of genotypes, providing valuable information for the development of related immunodiagnostic reagents.

11.
Immunol Rev ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180190

RESUMEN

Antibodies are able to up- or downregulate antibody responses to the antigen they bind. Two major mechanisms can be distinguished. Suppression is most likely caused by epitope masking and can be induced by all isotypes tested (IgG1, IgG2a, IgG2b, IgG3, IgM, and IgE). Enhancement is often caused by the redistribution of antigen in a favorable way, either for presentation to B cells via follicular dendritic cells (IgM and IgG3) or to CD4+ T cells via dendritic cells (IgE, IgG1, IgG2a, and IgG2b). IgM and IgG3 complexes activate complement and are transported from the marginal zone to follicles by marginal zone B cells expressing complement receptors. IgE-antigen complexes are captured by CD23+ B cells in the blood and transported to follicles, delivered to CD8α+ conventional dendritic cells, and presented to CD4+ T cells. Enhancement of antibody responses by IgG1, IgG2a, and IgG2b in complex with proteins requires activating FcγRs. These immune complexes are captured by dendritic cells and presented to CD4+ T cells, subsequently helping cognate B cells. Endogenous feedback regulation influences the response to booster doses of vaccines and passive administration of anti-RhD antibodies is used to prevent alloimmunization of RhD-negative women carrying RhD-positive fetuses.

12.
Gastroenterology ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173722

RESUMEN

BACKGROUND AND AIMS: Inflammatory bowel disease is a chronic manifestation of dysregulated immune response to the gut microbiota in genetically pre-disposed hosts. Nearly half of patients with Crohn's disease (CD) develop selective serum IgG response to flagellin proteins expressed by bacteria in the Lachnospiraceae family. This study aimed to identify the binding epitopes of these IgG antibodies and assess their relevance in CD and in homeostasis. METHODS: Sera from an adult CD cohort, a treatment-naïve pediatric CD cohort, and three independent non-IBD infant cohorts were analyzed using novel techniques including a flagellin peptide microarray and a flagellin peptide cytometric bead array. RESULTS: A dominant B cell peptide epitope in CD patients was identified, locating in the highly conserved "hinge region" between the D0 and D1 domains at the amino-terminus of Lachnospiraceae flagellins. Elevated serum IgG reactivity to the hinge peptide was strongly associated with incidence of CD and the development of disease complications in children with CD up to five years in advance. Notably, high levels of serum IgG to the hinge epitope were also found in most infants from 3 different geographic regions (Uganda, Sweden, and the USA) at one year of age, which decrements rapidly afterwards. CONCLUSIONS: These findings identified a distinct subset of CD patients, united by a shared reactivity to a dominant commensal bacterial flagellin epitope that may represent failure of a homeostatic response to the gut microbiota beginning in infancy.

13.
Front Pharmacol ; 15: 1363139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185315

RESUMEN

Advances in synthetic peptide synthesis have enabled rapid and cost-effective peptide drug manufacturing. For this reason, peptide drugs that were first produced using recombinant DNA (rDNA) technology are now being produced using solid- and liquid-phase peptide synthesis. While peptide synthesis has some advantages over rDNA expression methods, new peptide-related impurities that differ from the active pharmaceutical ingredient (API) may be generated during synthesis. These impurity byproducts of the original peptide sequence feature amino acid insertions, deletions, and side-chain modifications that may alter the immunogenicity risk profile of the drug product. Impurities resulting from synthesis have become the special focus of regulatory review and approval for human use, as outlined in the FDA's Center for Drug Evaluation and Research guidance document, "ANDAs for Certain Highly Purified Synthetic Peptide Drug Products That Refer to Listed Drugs of rDNA Origin," published in 2021. This case study illustrates how in silico and in vitro methods can be applied to assess the immunogenicity risk of impurities that may be present in synthetic generic versions of the salmon calcitonin (SCT) drug product. Sponsors of generic drug abbreviated new drug applications (ANDAs) should consider careful control of these impurities (for example, keeping the concentration of the immunogenic impurities below the cut-off recommended by FDA regulators). Twenty example SCT impurities were analyzed using in silico tools and assessed as having slightly more or less immunogenic risk potential relative to the SCT API peptide. Class II human leukocyte antigen (HLA)-binding assays provided independent confirmation that a 9-mer sequence present in the C-terminus of SCT binds promiscuously to multiple HLA DR alleles, while T-cell assays confirmed the expected T-cell responses to SCT and selected impurities. In silico analysis combined with in vitro assays that directly compare the API to each individual impurity peptide may be a useful approach for assessing the potential immunogenic risk posed by peptide impurities that are present in generic drug products.

14.
Mol Cell Proteomics ; : 100829, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147027

RESUMEN

Listeria monocytogenes is a foodborne intracellular bacterial model pathogen. Protective immunity against Listeria depends on an effective CD8+ T cell response, but very few T cell epitopes are known in mice as a common animal infection model for listeriosis. To identify epitopes we screened for Listeria immunopeptides presented in the spleen of infected mice by mass spectrometry-based immunopeptidomics. We mapped more than 6,000 mouse self-peptides presented on MHC Class I molecules, including 12 high confident Listeria peptides from 12 different bacterial proteins. Bacterial immunopeptides with confirmed fragmentation spectra were further tested for their potential to activate CD8+ T cells, revealing VTYNYINI from the putative cell wall surface anchor family protein LMON_0576 as a novel bona fide peptide epitope. The epitope showed high biological potency in a prime boost model and can be used as a research tool to probe CD8+ T cell responses in mouse models of Listeria infection. Together, our results demonstrate the power of immunopeptidomics for bacterial antigen identification.

15.
Heliyon ; 10(15): e35129, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157328

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 poses a significant adverse effects on health and economy globally. Due to mutations in genome, COVID-19 vaccine efficacy decreases. We used immuno-informatics to design a Multi epitope vaccine (MEV) candidate for SARS-CoV-2 variants of concern (VOCs). Hence, we predicted binders/epitopes MHC-I, CD8+, MHC-II, CD4+, and CTLs from spike, membrane and envelope proteins of VOCs. In addition, we assessed the conservation of these binders and epitopes across different VOCs. Subsequently, we designed MEV by combining the predicted CTL and CD4+ epitopes from spike protein, peptide linkers, and an adjuvant. Further, we evaluated the binding of MEV candidate against immune receptors namely HLA class I histocompatibility antigen, HLA class II histocompatibility antigen, and TLR4, achieving binding scores of -1265.3, -1330.7, and -1337.9. Molecular dynamics and normal mode analysis revealed stable docking complexes. Moreover, immune simulation suggested MEV candidate elicits both innate and adaptive immune response. We anticipate that this conserved MEV candidate will provide protection from VOCs and emerging strains.

16.
Heliyon ; 10(15): e34628, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157355

RESUMEN

Background and objectives: Perineural invasion (PNI) refers to the invasion, encasement, or penetration of tumor cells around or through nerves. Various malignant tumors, including pancreatic cancer, head and neck tumors, and bile duct cancer, exhibit the characteristic of PNI. Particularly, in head and neck-skull base tumors such as adenoid cystic carcinoma (ACC), PNI is a significant factor leading to incomplete surgical resection and postoperative recurrence. Methods: Spatial transcriptomic and single-cell transcriptomic sequencing were conducted on a case of ACC tissue with PNI to identify potential probes targeting PNI. The efficacy of the probes was validated through in vivo and in vitro experiments. Results: Spatial transcriptomic and single-cell RNA sequencing revealed phenotypic changes in Schwann cells within the PNI region of ACC. Peptide probes were designed based on the antigen-presenting characteristics of Schwann cells in the PNI region, which are dependent on Major Histocompatibility Complex II (MHC-II) molecules. Successful validation in vitro and in vivo experiments confirmed that these probes can label viable Schwann cells in the PNI region, serving as a tool for dynamic in vivo marking of tumor invasion into nerves. Conclusions: Peptide probes targeting Schwann cells' MHC-II molecules have the potential to demonstrate the occurrence of PNI in patients with ACC.

17.
Adv Sci (Weinh) ; : e2405949, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159239

RESUMEN

Approaches to analyze and cluster T-cell receptor (TCR) repertoires to reflect antigen specificity are critical for the diagnosis and prognosis of immune-related diseases and the development of personalized therapies. Sequence-based approaches showed success but remain restrictive, especially when the amount of experimental data used for the training is scarce. Structure-based approaches which represent powerful alternatives, notably to optimize TCRs affinity toward specific epitopes, show limitations for large-scale predictions. To handle these challenges, TCRpcDist is presented, a 3D-based approach that calculates similarities between TCRs using a metric related to the physico-chemical properties of the loop residues predicted to interact with the epitope. By exploiting private and public datasets and comparing TCRpcDist with competing approaches, it is demonstrated that TCRpcDist can accurately identify groups of TCRs that are likely to bind the same epitopes. Importantly, the ability of TCRpcDist is experimentally validated to determine antigen specificities (neoantigens and tumor-associated antigens) of orphan tumor-infiltrating lymphocytes (TILs) in cancer patients. TCRpcDist is thus a promising approach to support TCR repertoire analysis and TCR deorphanization for individualized treatments including cancer immunotherapies.

18.
Int J Dermatol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160661

RESUMEN

BACKGROUND: Anti-p200 pemphigoid is a rare autoimmune subepidermal blistering disease. Although the phenomenon of epitope spreading has been reported to be common in anti-p200 pemphigoid, the association between its clinical and immunoserological features has yet to be elucidated. OBJECTIVES: Our aim was to compare the clinical and immunoserological characteristics of anti-p200 pemphigoid patients with and without epitope spreading. METHODS: We performed a retrospective cohort study encompassing 30 patients with anti-p200 pemphigoid between January 2015 and December 2022. The clinical and immunoserological characteristics of anti-p200 pemphigoid were analyzed using combined immunoserological assays. RESULTS: Epitope spreading was observed in 11 of 30 patients (36.7%) with anti-p200 pemphigoid. Compared with patients in the non-epitope spreading group, patients in the epitope spreading group showed more heterogeneous clinical presentations (P = 0.018), a higher proportion of mucosal involvement (P = 0.003), higher Bullous Pemphigoid Disease Area Index (BPDAI) scores for skin erosions/blisters (P = 0.018), mucosal erosions/blisters (P = 0.001), activity (P = 0.017) and total scores (P = 0.022), and required a higher initial dose of prednisone for disease control (P = 0.040). CONCLUSIONS: This study supported the idea that anti-p200 pemphigoid was prone to epitope spreading. Anti-p200 pemphigoid patients with epitope spreading are more likely to present heterogeneous clinical phenotypes, frequent mucosal involvement, and a more severe and recalcitrant disease course.

19.
Cell Genom ; : 100634, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39151427

RESUMEN

Cancer cells and pathogens can evade T cell receptors (TCRs) via mutations in immunogenic epitopes. TCR cross-reactivity (i.e., recognition of multiple epitopes with sequence similarities) can counteract such escape but may cause severe side effects in cell-based immunotherapies through targeting self-antigens. To predict the effect of epitope point mutations on T cell functionality, we here present the random forest-based model Predicting T Cell Epitope-Specific Activation against Mutant Versions (P-TEAM). P-TEAM was trained and tested on three datasets with TCR responses to single-amino-acid mutations of the model epitope SIINFEKL, the tumor neo-epitope VPSVWRSSL, and the human cytomegalovirus antigen NLVPMVATV, totaling 9,690 unique TCR-epitope interactions. P-TEAM was able to accurately classify T cell reactivities and quantitatively predict T cell functionalities for unobserved single-point mutations and unseen TCRs. Overall, P-TEAM provides an effective computational tool to study T cell responses against mutated epitopes.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39154658

RESUMEN

BACKGROUND: The bead-based epitope assay (BBEA) has been used to identify epitope-specific (es) antibodies and successfully utilized to diagnose clinical allergy to milk, egg and peanut. OBJECTIVE: This study aimed to identify es-IgE, es-IgG4 and es-IgG1 of wheat proteins and determine the optimal peptides to differentiate wheat-allergic from wheat-tolerant using the BBEA. METHODS: Children and adolescents who underwent an oral food challenge to confirm their wheat allergy status were enrolled. Seventy-nine peptides from alpha/beta-gliadin, gamma-gliadin (γ-gliadin), omega-5-gliadin (ω-5-gliadin), high and low molecular weight glutenin were commercially synthesized and coupled to LumAvidin beads. Machine learning (ML) methods were used to identify diagnostic epitopes and performance was evaluated using DeLong's test. RESULTS: The analysis includes 122 children (83 wheat-allergic and 39 wheat-tolerant, 57.4% male). ML coupled with simulations identified wheat es-IgE, but not es-IgG4 or es-IgG1 to be most informative for diagnosing wheat allergy. Higher es-IgE binding intensity correlated with the severity of allergy phenotypes, with wheat anaphylaxis exhibiting the highest es-IgE binding intensity. In contrast, wheat-dependent exercise-induced anaphylaxis (WDEIA) showed lower es-IgG1 binding than all other groups. A set of 4 informative epitopes from ω-5-gliadin, and γ-gliadin were the best predictors of wheat allergy with an AUC of 0.908 (sensitivity=83.4%, specificity=88.4%), higher than the performance exhibited by wheat-specific IgE (AUC=0.646, p < 0.001). The predictive ability of our model was confirmed in an external cohort of 71 patients (29 allergic, 42 non-allergic), with an AUC of 0.908 (sensitivity=75.9%, specificity=90.5%). CONCLUSION: The wheat BBEA demonstrated greater diagnostic accuracy compared to existing specific IgE tests for wheat allergy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...