Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(23): 15035-15045, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38796777

RESUMEN

Two-electron oxygen reduction reaction (2e- ORR) is of great significance to H2O2 production and reversible nonalkaline Zn-air batteries (ZABs). Multiple oxygen-containing sp2-bonded nanocarbons have been developed as electrocatalysts for 2e- ORR, but they still suffer from poor activity and stability due to the limited and mixed active sites at the edges as well as hydrophilic character. Herein, graphdiyne (GDY) with rich sp-C bonds is studied for enhanced 2e- ORR. First, computational studies show that GDY has a favorable formation energy for producing five-membered epoxy ring-dominated groups, which is selective toward the 2e- ORR pathway. Then based on the difference in chemical activity of sp-C bonds in GDY and sp2-C bonds in CNTs, we experimentally achieved conductive and hydrophobic carbon nanotubes (CNTs) covering O-modified GDY (CNTs/GDY-O) through a mild oxidation treatment combined with an in situ CNTs growth approach. Consequently, the CNTs/GDY-O exhibits an average Faraday efficiency of 91.8% toward H2O2 production and record stability over 330 h in neutral media. As a cathode electrocatalyst, it greatly extends the lifetime of 2e- nonalkaline ZABs at both room and subzero temperatures.

2.
Angew Chem Int Ed Engl ; 62(36): e202308349, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37452696

RESUMEN

Electrocatalysts for highly efficient oxygen reduction reaction (ORR) are crucial for energy conversion and storage devices. Single-atom catalysts with maximized metal utilization and altered electronic structure are the most promising alternatives to replace current benchmark precious metals. However, the atomic level understanding of the functional role for each species at the anchoring sites is still unclear and poorly elucidated. Herein, we report Fe single atom catalysts with the sulfur and oxygen functional groups near the atomically dispersed metal centers (Fe1/NSOC) for highly efficient ORR. The Fe1/NSOC delivers a half-wave potential of 0.92 V vs. RHE, which is much better than those of commercial Pt/C (0.88 V), Fe single atoms on N-doped carbon (Fe1/NC, 0.89 V) and most reported nonprecious metal catalysts. The spectroscopic measurements reveal that the presence of sulfur group induces the formation of epoxy groups near the FeN4S2 centers, which not only modulate the electronic structure of Fe single atoms but also participate the catalytic process to improve the kinetics. The density functional theory calculations demonstrate the existence of sulfur and epoxy group engineer the charges of Fe reactive center and facilitate the reductive release of OH* (rate-limiting step), thus boosting the overall oxygen reduction efficiency.

3.
Polymers (Basel) ; 14(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36501549

RESUMEN

In this study a new type of bifunctional epoxy compound (DDSQ-EP) based on double-decker silsesquioxane (DDSQ) was synthesized by process of alkaline hydrolysis condensation of phenyltrimethoxysilane and corner capping reaction with dichloromethylvinylsilane, followed by epoxidation reaction of vinyl groups. The resultant structures were confirmed using Fourier transform infrared spectrometry, nuclear magnetic resonance spectrometry and time-of-flight mass spectrometry, respectively. The DDSQ-EP was incorporated into polybenzoxazine to obtain the PBZ/DDSQ-EP nanocomposites. The uniform dispersion of DDSQ-EP in the nanocomposites was verified by X-ray diffraction and scanning electron microscope. The reactions occurred during the curing of the composites and were investigated using infrared spectroscopy of segmented cures. Dynamic mechanical analysis and thermal gravimetric analysis indicated that the storage modulus, glass transition temperature and thermal stability of PBZ/DDSQ-EP were increased in comparison with pure benzoxazine resins. Assessment of dielectric properties demonstrated that the dielectric permittivity and dielectric loss of polybenzoxazine decreased slightly because of the addition of DDSQ-EP.

4.
Food Chem ; 373(Pt B): 131285, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34740049

RESUMEN

The digestion behavior of epoxy triglyceride, the main cytotoxic product of deep-frying oil, remains unknown, which may affect its biosafety. In this study, epoxy triglyceride (EGT) and triglyceride (GT) were used to reveal the effect of epoxy group on digestion. Digestibility rate analysis showed that the free fatty acids release rate of EGT was slower. To clarify this phenomenon, binding ability with salt ions in digestive juice and particle size were also been studied. Cluster size analysis indicated that epoxy group increased triglyceride particle size, resulting in smaller contact area between EGT and lipase. Interface behaviors displayed EGT decreased binding ability with salt ions in digestive juice. Spectroscopic analysis showed EGT caused the red shift of lipase peak, indicating that epoxy group changed lipase structure. Molecular dynamics simulation suggested EGT leads to loosen lipase structure. In conclusion, this study highlights that epoxy group could weaken the triglyceride digestion.


Asunto(s)
Digestión , Simulación de Dinámica Molecular , Emulsiones , Lipasa/metabolismo , Triglicéridos
5.
Polymers (Basel) ; 13(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34641112

RESUMEN

Silica nanoparticles (G-SiNPs) blocked with 3-glycidoxypropyl trimethoxysilane (GPTS) were newly applied to hydrogel films for improving film coating properties and to distribute the epoxy groups on the film surface. The effects of the content of epoxy-functionalized G-SiNPs on the crosslinking features by photo-induced radical polymerization and the surface mechanical properties of the hydrogel films containing poly(ethylene glycol) dimethacrylate (PEGDMA) and glycidyl methacrylate (GMA) were investigated. The real-time elastic modulus of various PEG hydrogel mixtures with prepared particles was monitored using a rotational rheometer. The distribution of epoxy groups on the crosslinked film surface was directly and indirectly estimated by the elemental analysis of Si and Br. The surface mechanical properties of various hydrogel films were measured by nano-indentation and nano-scratch tests. The relationship between the rheological and surface properties of PEG-based hydrogel films suggests that the use of small amounts of G-SiNPs enhances the surface hardness and crosslinked network of the film and uniformly distributes sufficient epoxy groups on the film surface for further coating applications.

6.
Polymers (Basel) ; 13(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070820

RESUMEN

New bio-based polymers capable of either outperforming fossil-based alternatives or possessing new properties and functionalities are of relevant interest in the framework of the circular economy. In this work, a novel bio-based polycarvone acrylate di-epoxide (PCADE) was used as an additive in a one-step straightforward electrospinning process to endow the fibres with functionalisable epoxy groups at their surface. To demonstrate the feasibility of the approach, poly(vinylidene fluoride) (PVDF) fibres loaded with different amounts of PCADE were prepared. A thorough characterisation by TGA, DSC, DMTA and XPS showed that the two polymers are immiscible and that PCADE preferentially segregates at the fibre surface, thus developing a very simple one-step approach to the preparation of ready-to-use surface functionalisable fibres. We demonstrated this by exploiting the epoxy groups at the PVDF fibre surface in two very different applications, namely in epoxy-based carbon fibre reinforced composites and membranes for ω-transaminase enzyme immobilisation for heterogeneous catalysis.

7.
Molecules ; 24(14)2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31319460

RESUMEN

New types of ionic liquids (ILs) with an epoxy group on a piperidinium-type cation were successfully synthesized by the simple anion exchange reaction of a solid 1-allyl-1-(oxiran-2-ylmethyl)piperidinium bromide, which was designed in this study. Unfortunately, the physicochemical properties, e.g., viscosity and ionic conductivity, of the ILs were inferior to those of common ILs such as 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C4mim][Tf2N]). However, the resulting ILs are of great interest as reaction intermediates: For example, the epoxy group on the cation could react with various reagents, including CO2. Consequently, the modification of the cation structure in the ILs was possible. This is particularly interesting because it is very difficult to modify commonly used ILs. The approach established in this article will provide a favorable synthetic route for creating novel functional ILs in the future.


Asunto(s)
Compuestos Epoxi/química , Líquidos Iónicos/química , Piperazinas/química , Aniones , Cationes , Compuestos Epoxi/síntesis química , Piperazinas/síntesis química , Viscosidad
8.
Arch Toxicol ; 92(11): 3381-3389, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30171291

RESUMEN

Deoxynivalenol (DON) is the most abundant trichothecene in food and feed. It causes both acute and chronic disorders of the human and animal intestine, liver and the immune system. The structural basis for the toxicity of DON has not been fully elucidated. Using the pig as a target and a model species for human, the toxicity of DON and its deepoxy-metabolite (DOM-1) was compared. Animals were exposed by gavage to 1 and 0.5 nmol toxin/kg b.w./day for 2 and 3 weeks respectively. Whatever the dose/duration, DOM-1 was less toxic than DON in terms of weight gain and emesis. In the 3-week experiment, animals were vaccinated with ovalbumin, and their immune response was analyzed in addition to tissue morphology, biochemistry and hematology. DON impaired the morphology of the jejunum and the ileum, reduced villi height, decreased E-cadherin expression and modified the intestinal expression of cytokines. Similarly, DON induced hepatotoxicity as indicated by the lesion score and the blood biochemistry. By contrast, DOM-1 only induced minimal intestinal toxicity and did not trigger hepatotoxicity. As far as the immune response was concerned, the effects of ingesting DOM-1 were similar to those caused by DON, as measured by histopathology of lymphoid organs, PCNA expression and the specific antibody response. Taken together, these data demonstrated that DOM-1, a microbial detoxification product of DON, was not toxic in the sensitive pig model but retained some immune-modulatory properties of DON, especially its ability to stimulate a specific antibody response during a vaccination protocol.


Asunto(s)
Sistema Inmunológico/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Intestino Delgado/efectos de los fármacos , Intestino Delgado/inmunología , Hígado/efectos de los fármacos , Masculino , Porcinos , Tricotecenos/farmacología , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA