Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.895
Filtrar
1.
J Ethnopharmacol ; 336: 118739, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197805

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Modified Danzhi Xiaoyao San (MDXS) is an effective clinical prescription for depression in China, which was deprived of Danzhi Xiaoyao San in the Ming Dynasty. MDSX has significant implications for the development of new antidepressants, but its pharmacological mechanism has been rarely studied. AIM OF THE STUDY: To reveal the active components and molecular mechanism of MDXS in treating depression through network pharmacology and experimental verification in vivo and in vitro. MATERIALS AND METHODS: UPLC-Q-TOF-MS/MS was used to identify the chemical components in the MDXS freeze-dried powder, drug-containing serum, and cerebrospinal fluid (CSF). Based on the analysis of prototype components in the CSF, the major constituents, potential therapeutic targets and possible pharmacological mechanisms of MDXS in treating depression were investigated using network pharmacological and molecular docking. Then corticosterone (CORT)-induced mice model of depression was established to investigate the antidepressant effects of MDXS. HT22 cells were cultured to verify the neuroprotective effects and core targets of the active components. RESULTS: There were 81 compounds in MDXS freeze-dried powder, 36 prototype components in serum, and 13 prototype components in CSF were identified, respectively. Network pharmacology analysis showed that these 13 prototype components in the CSF shared 190 common targets with depression, which were mainly enriched in MAPK and PI3K/AKT signaling pathways. PPI analysis suggested that AKT1 and MAPK1 (ERK1/2) were the core targets. Molecular docking revealed that azelaic acid (AA), senkyunolide A (SA), atractylenolide III (ATIII), and tokinolide B (TB) had the highest binding energy with AKT1 and MAPK1. Animal experiments verified that MDXS could reverse CORT-induced depression-like behaviors, improve synaptic plasticity, alleviate neuronal injury in hippocampal CA3 regions, and up-regulate the protein expression of p-ERK1/2 and p-AKT. In HT22 cells, azelaic acid, senkyunolide A, and atractylenolide III significantly protected the cell injury caused by CORT, and up-regulated the protein levels of p-ERK1/2 and p-AKT. CONCLUSIONS: These results suggested that MDXS may exert antidepressant effects partially through azelaic acid, senkyunolide A, and atractylenolide III targeting ERK1/2 and AKT.


Asunto(s)
Antidepresivos , Depresión , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Animales , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Ratones , Masculino , Línea Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Corticosterona/sangre , Espectrometría de Masas en Tándem , Conducta Animal/efectos de los fármacos
2.
Proc Natl Acad Sci U S A ; 121(41): e2321378121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39352925

RESUMEN

Progerin causes Hutchinson-Gilford progeria syndrome (HGPS), but how progerin accelerates aging is still an interesting question. Here, we provide evidence linking nuclear envelope (NE) budding and accelerated aging. Mechanistically, progerin disrupts nuclear lamina to induce NE budding in concert with lamin A/C, resulting in transport of chromatin into the cytoplasm where it is removed via autophagy, whereas emerin antagonizes this process. Primary cells from both HGPS patients and mouse models express progerin and display NE budding and chromatin loss, and ectopically expressing progerin in cells can mimic this process. More excitingly, we screen a NE budding inhibitor chaetocin by high-throughput screening, which can dramatically sequester progerin from the NE and prevent this NE budding through sustaining ERK1/2 activation. Chaetocin alleviates NE budding-induced chromatin loss and ameliorates HGPS defects in cells and mice and significantly extends lifespan of HGPS mice. Collectively, we propose that progerin-induced NE budding participates in the induction of progeria, highlight the roles of chaetocin and sustained ERK1/2 activation in anti-aging, and provide a distinct avenue for treating HGPS.


Asunto(s)
Lamina Tipo A , Membrana Nuclear , Proteínas Nucleares , Progeria , Progeria/metabolismo , Progeria/tratamiento farmacológico , Progeria/patología , Progeria/genética , Animales , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Ratones , Humanos , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Envejecimiento/metabolismo , Envejecimiento/efectos de los fármacos , Cromatina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Modelos Animales de Enfermedad , Autofagia/efectos de los fármacos
3.
Biochimie ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39369940

RESUMEN

Obesity increases the risk and mortality of breast cancer through dysregulated secretion of proinflammatory cytokines and tumor adipokines that induce an inflammatory breast microenvironment. Resistin is an adipokine secreted by adipocytes, immune cells, and predominantly macrophages, which contributes to cancer progression, but its molecular mechanism in cancer is not completely described. In this study, we analyzed the relationship of resistin on breast cancer prognosis and tumor progression and the effect in vitro of resistin on p38 and ERK1/2 activation in breast cancer cell lines. By bioinformatic analysis, we found that resistin is overexpressed in the basal subtype triple-negative breast cancer and is related to poor prognosis. In addition, we demonstrated a positive correlation between RETN and MAPK3 expression in basal triple-negative breast cancer. Importantly, we found amplifications of the RETN gene in at least 20 % of metastatic samples from patients with breast cancer. Most samples with RETN amplifications metastasized to bone and showed high expression of IL-8 (CXCL8) and IL-6 (IL6). Finally, resistin could be considered a prognostic marker for basal triple-negative breast cancer, and we also proposed the possibility that resistin-induced cell migration involves the activation of MAPK in breast cancer cells.

4.
FASEB J ; 38(19): e70076, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39373973

RESUMEN

Mesenchymal stem cells (MSCs) have gained tremendous interest due to their overall potent pro-regenerative and immunomodulatory properties. In recent years, various in vitro and preclinical studies have investigated different priming ("licensing") approaches to enhance MSC functions for specific therapeutic purposes. In this study, we primed bone marrow-derived human MSCs (hMSCs) with an inflammation cocktail designed to mimic the elevated levels of inflammatory mediators found in serum of patients with severe injuries, such as bone fractures. We observed a significantly enhanced osteogenic differentiation potential of primed hMSCs compared to untreated controls. By RNA-sequencing analysis, we identified the immediate early response 3 (IER3) gene as one of the top-regulated genes upon inflammatory priming. Small interfering RNA knockdown experiments established IER3 as a novel positive regulator of osteogenic differentiation. Mechanistic analysis further revealed that IER3 deletion significantly downregulated bone marrow stromal cell antigen 2 (BST2) expression and extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation in hMSCs, suggesting that IER3 regulates osteogenic differentiation through BST2 and ERK1/2 signaling pathway activation. On the basis of these findings, we propose IER3 as a novel therapeutic target to promote hMSC osteoblastogenesis, which might be of high clinical relevance, for example, in patients with osteoporosis or compromised fracture healing.


Asunto(s)
Diferenciación Celular , Inflamación , Células Madre Mesenquimatosas , Osteogénesis , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Inflamación/metabolismo , Inflamación/genética , Células Cultivadas , Sistema de Señalización de MAP Quinasas , Antígenos CD/metabolismo , Antígenos CD/genética
5.
Tissue Barriers ; : 2398875, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230159

RESUMEN

The contribution of Erk1/2 to endothelial barrier regulation is convoluted and differs depending on the vascular bed. We explored the effects of Erk1/2 inhibition on endothelial barrier maintenance and its relationship with cAMP-dependent barrier strengthening. Thus, myocardial endothelial cells (MyEnd) were isolated and protein expression, localization and activity of structural and signaling molecules involved in maintenance of endothelial function were investigated by Western blot, immunostainings and G-LISA, respectively. The transendothelial electrical resistance (TEER) from confluent MyEnd monolayers was measured and used as a direct indicator of barrier integrity in vitro. Miles assay was performed to evaluate vascular permeability in vivo. Erk1/2 inhibition with U0126 affected neither the structural organization of adherens or tight junctions nor the protein level of their components, However, TEER drop significantly upon U0126 application, but the effect was transitory as the barrier function recovered 30 min after treatment. Erk1/2 inhibition delayed cAMP-mediated barrier strengthening but did not prevent barrier fortification despite diminishing Rac1 activation. Moreover, Erk1/2 inhibition, induced vascular leakage that could be prevented by local cAMP elevation in vivo. Our data demonstrate that Erk1/2 is required to prevent vascular permeability but is not critical for cAMP-mediated barrier enhancement.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39251466

RESUMEN

In this study, we investigated the potential therapeutic mechanism of ginsenoside Rg1 (GRg1) in chronic heart failure (CHF), focusing on its regulation of ERK1/2 protein phosphorylation. H9c2 cardiomyocytes and SD rats were divided into the control group, CHF (ADR) group, and CHF+ginsenoside Rg1 group using an isolated cardiomyocyte model and an in vivo CHF rat model induced by adriamycin (ADR). Cell viability, proliferation, apoptosis, and the expression of relevant proteins were measured to assess the effects of GRg1. The results showed that treatment with GRg1 increased cell activity and proliferation, while significantly reducing levels of inflammatory and apoptotic factors compared to the CHF (ADR) group. Moreover, the CHF+ginsenoside Rg1 group exhibited higher levels of Bcl-2 mRNA and protein expression, as well as lower levels of Caspase3 and Bax mRNA and protein expression, compared to the CHF (ADR) group. Notably, the CHF+ginsenoside Rg1 group displayed decreased serum NT-proBNP levels and heart weight/body weight (HW/BW) index. Furthermore, the electrocardiogram of rats in the CHF+ginsenoside Rg1 group resembled that of rats in the control group. Overall, our findings suggested that GRg1 alleviated CHF by inhibiting ERK1/2 protein phosphorylation, thereby inhibiting apoptosis, enhancing cell activity and proliferation, and reducing cardiac inflammatory responses.

7.
Int Immunopharmacol ; 142(Pt B): 113170, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39288626

RESUMEN

Activin A, a member of the transforming growth factor ß (TGF-ß) superfamily, is involved in tumorigenesis and tumor progression. However, it remains unclear whether activin A can affect the migration of lung adenocarcinoma (LUAD) cells. In this study, the results of differentially expressed genes (DEGs) identification revealed that lung adenocarcinoma tissues exhibited lower expression of activin ßA mRNA, but higher expression of epidermal growth factor (EGF) and MMP9 mRNA compared to nontumor tissues. Moreover, we found that activin A inhibited human LUAD A549 cell proliferation promoted by EGF. Additionally, EGF induced A549 cell migration in microfluidic device, while activin A attenuated EGF actions. Simultaneously, EGF increased the levels of migration-related proteins, but activin A played the opposite role. Furthermore, the study revealed that EGF upregulated the ratio of p-ERK/ERK in A549 cells, which was weakened by activin A, and A549 cell migration regulated by activin A was not related to calcium signaling. In addition, the inhibitory effect of activin A on EGF-induced A549 cell migration was attenuated by the ERK inhibitor FR180204. These findings demonstrate that activin A effectively hinders the migration of A549 cells induced by EGF through ERK1/2 signaling, suggesting that targeting activin A may hold promise in the treatment of EGF-dependent LUAD growth and metastasis.

8.
Int J Biol Macromol ; 280(Pt 1): 135626, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278441

RESUMEN

Galectin-9 (LGALS9) plays an important role in the occurrence and development of many diseases, including immunity, infection, cancer, etc. Studies have found that LGALS9 can phosphorylate ERK1/2 in the MAPK pathway. However, there is currently no clear conclusion on the role of LGALS9 in OA, and it is worth further exploring the regulatory role and mechanism of LGALS9 in OA in this study. In the initial stage, we collected 6 cases of hip joint soft tissue from normal individuals and 6 cases from OA patients clinically to analyze the differential expression of LGALS9 between normal individuals and OA patients; Subsequently, RNAi technology was used to preliminarily clarify the regulatory role of LGALS9 in an in vitro OA model; Then, lentivirus was used to knock down and overexpress LGALS9, and in vivo and in vitro OA models were constructed. QRT-PCR, western blot, safranin fast green staining (SO), immunofluorescence and other experimental methods were used to quantitatively analyze inflammatory and signaling pathway indicators, further improving the regulatory effect of LGALS9 on inflammation and the pathogenesis of OA.

9.
Br J Pharmacol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294930

RESUMEN

BACKGROUND AND PURPOSE: The pattern recognition receptors, formyl peptide receptors, FPR1 and FPR2, are G protein-coupled receptors that recognize many different pathogen- and host-derived ligands. While FPR1 conveys pro-inflammatory signals, FPR2 is linked with pro-resolving outcomes. To analyse how the two very similar FPRs exert opposite effects in modulating inflammatory responses despite their high homology, a shared expression profile on immune cells and an overlapping ligand repertoire, we questioned whether the signalling profile differs between these two receptors. EXPERIMENTAL APPROACH: We deduced EC50 and Emax values for synthetic, pathogen-derived and host-derived peptide agonists for both FPR1 and FPR2 and analysed them within the framework of biased signalling. We furthermore investigated whether FPR isoform-specific agonists affect the ex vivo lifespan of human neutrophils. KEY RESULTS: The FPRs share a core signature across signalling pathways. Whereas the synthetic WKYMVm and formylated peptides acted as potent agonists at FPR1, and at FPR2, only WKYMVm was a full agonist. Natural FPR2 agonists, irrespective of N-terminal formylation, displayed lower activity ratios, suggesting an underutilized signalling potential of this receptor. FPR2 agonism did not counteract LPS-induced neutrophil survival, indicating that FPR2 activation per se is not linked with a pro-resolving function. CONCLUSION AND IMPLICATIONS: Activation of FPR1 and FPR2 by a representative agonist panel revealed a lack of a receptor-specific signalling texture, challenging assumptions about distinct inflammatory profiles linked to specific receptor isoforms, signalling patterns or agonist classes. These conclusions are restricted to the specific agonists and signalling pathways examined.

10.
Br J Haematol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39295138

RESUMEN

Covalent Bruton's tyrosine kinase-inhibitors (cBTK-i) are highly active in MYD88-mutated (MYD88Mut) Waldenstrom's macroglobulinaemia and suppress nuclear factor kappa-light-chain-enhancer of activated B cells and extracellular signal-regulated kinases-1/2 (ERK1/2)-related signalling. BTKCys481 mutations are associated with cBTK-i acquired resistance and are accompanied by reactivation of ERK1/2 that promotes inflammatory cytokine secretion and paracrine-mediated resistance of BTK wild-type (BTKWT) tumour cells. Pirtobrutinib is a non-covalent BTK-inhibitor that binds at non-BTKCys481 sites. We show that pirtobrutinib blocked p-ERK1/2, ERK1/2-driven inflammatory cytokines, and overcame paracrine-mediated resistance in MYD88Mut lymphoma cells expressing mutated BTKCys481. Our results provide important mechanistic insights for the activity of pirtobrutinib in MYD88Mut lymphomas carrying BTKCys481 mutations.

11.
Adv Biol (Weinh) ; : e2400032, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267218

RESUMEN

A wide range of cells respond to fibroblast growth factor 2 (FGF2) by proliferation via activation of the Ras/ERK1/2 pathway. In this study, the potential involvement of salt inducible kinase SIK2) in this cascade within retinal Müller glia is explored. It is found that SIK2 phosphorylation status and activity are modulated in an FGF2-dependent manner, possibly via ERK1/2. With SIK2 downregulation, enhanced ERK1/2 activation with delayed attenuation and increased cell proliferation is observed, while SIK2 overexpression hampers FGF2-dependent ERK1/2 activation. In vitro kinase and site-directed mutagenesis studies indicate that SIK2 targets the pathway element GRB2-associated-binding protein 1 (Gab1) on Ser266. This phosphorylation event weakens Gab1 interactions with its partners growth factor receptor-bound protein 2 (Grb2) and Src homology region 2 domain containing phosphatase 2 (Shp2). Collectively, these results suggest that during FGF2-dependent proliferation process ERK1/2-mediated activation of SIK2 targets Gab1, resulting in downregulation of the Ras/ERK1/2 cascade in a feedback loop.

12.
J Biochem Mol Toxicol ; 38(10): e23851, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39267350

RESUMEN

Doxorubicin (Dox) is frequently employed as a chemotherapy agent for breast cancer. As the chemotherapy moves forward, breast cancer cells tend to develop resistance to Dox, besides that, Dox are also easy to cause cardiotoxicity related to cumulative dose. Therefore, how to potentiate the chemosensitivity of breast cancer cells to Dox while attenuating its cardiotoxicity has become a research hotspot. Tanshinone IIA (Tan IIA) is known for its anticancer activity as well as for its cardioprotective effects. In view of the aforementioned facts, we assessed whether Tan IIA possesses synergism and attenuation effect on Dox for breast cancer chemotherapy. Our studies in vitro indicated that, Tan IIA could potentiate the effect of Dox on breast cancer cells proliferation inhibition and apoptosis promotion by inhibiting ERK1/2 pathway, but interestingly, Tan IIA attenuated the cytotoxicity of Dox to myocardial cells by activating ERK1/2 pathway. Additionally, our studies in vivo also suggested that Tan IIA potentiated the chemotherapeutic effect of Dox against breast cancer while attenuating Dox-induced myocardial injury. Given that Tan IIA had a synergism and attenuation effect on Dox, we believed that Tan IIA can be used as an ideal drug in combination with Dox for breast cancer therapy.


Asunto(s)
Abietanos , Neoplasias de la Mama , Cardiotoxicidad , Doxorrubicina , Sistema de Señalización de MAP Quinasas , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Abietanos/farmacología , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/prevención & control , Cardiotoxicidad/etiología , Sinergismo Farmacológico , Células MCF-7 , Ratones , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo
13.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273423

RESUMEN

Experimental autoimmune encephalomyelitis is a demyelinating disease that causes paralysis in laboratory rats. This condition lacks treatment that reverses damage to the myelin sheaths of neuronal cells. Therefore, in this study, treatment with EPO as a neuroprotective effect was established to evaluate the ERK 1/2 signaling pathway and its participation in the EAE model. EPO was administered in 5000 U/Kg Sprague Dawley rats. U0126 was used as an inhibitor of the ERK 1/2 pathway to demonstrate the possible activation of this pathway in the model. Spinal cord and optic nerve tissues were evaluated using staining techniques such as H&E and the Luxol Fast Blue myelin-specific technique, as well as immunohistochemistry of the ERK 1/2 protein. The EPO-treated groups showed a decrease in cellular sampling in the spinal cord tissues but mainly in the optic nerve, as well as an increase in the expression of the ERK 1/2 protein in both tissues. The findings of this study suggest that EPO treatment reduces cellular death in EAE-induced rats by regulating the ERK pathway.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Eritropoyetina , Sistema de Señalización de MAP Quinasas , Fármacos Neuroprotectores , Nervio Óptico , Ratas Sprague-Dawley , Médula Espinal , Animales , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Eritropoyetina/farmacología , Nervio Óptico/efectos de los fármacos , Nervio Óptico/patología , Nervio Óptico/metabolismo , Ratas , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Femenino , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo
14.
Front Cell Infect Microbiol ; 14: 1452124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39328360

RESUMEN

Introduction: Microbial pathogens invade various human organs, including the oral cavity. Candida albicans (C.a) and Streptococcus mutans (S.m) served respectively as representative oral pathogenic fungi and bacteria to stimulate dental pulp stem cells (DPSCs) and to screen the DPSC subcluster that specifically responded to fungal infection. Methods: DPSCs were obtained from the impacted third molars of six healthy subjects. Then, cells were mixed and divided into three samples, two of which were stimulated with C.a and S.m, respectively; the third sample was exposed to cell medium only (Ctrl). Single-cell mRNA sequencing analysis of treated DPSCs was performed. Results: DPSCs were composed of four major clusters of which one, DPSC.7, exhibited unique changes compared to those of other subclusters. The DPSC.7 cell percentage of the C.a sample was twice those of the Ctrl and S.m samples. DPSC.7 cells expressed genes associated with the response to reactive oxygen species (ROS) response. DPSC.7 subgroup cells established characteristic aggregation under the stimulation of different pathogens in UMAP. The MAPK/ERK1/2 and NF-κB pathways were up-regulated, DUSP1/5/6 expressions were suppressed, FOS synthesis was activated, the immune-related pathway was induced, and the levels of cytokines, including IL-6 and CCL2, were up-regulated in DPSC.7 cells when stimulated with C.a. Conclusions: Our study analyzed the cellular and molecular properties of DPSCs infected by oral fungi and bacteria with single-cell RNA sequencing. A subcluster of DPSCs responded specifically to infections with different pathogens, activating the MAPK and NF-κB pathways to induce immune responses via the ROS pathway. This suggests novel treatment strategies for fungal infections.


Asunto(s)
Candida albicans , Pulpa Dental , Especies Reactivas de Oxígeno , Células Madre , Streptococcus mutans , Humanos , Pulpa Dental/microbiología , Pulpa Dental/citología , Pulpa Dental/inmunología , Células Madre/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Streptococcus mutans/genética , FN-kappa B/metabolismo , Adulto Joven , Análisis de la Célula Individual , Transducción de Señal , Células Cultivadas , Citocinas/metabolismo
15.
ACS Chem Neurosci ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325017

RESUMEN

While amyloidopathy and tauopathy have been recognized as hallmarks in Alzheimer's disease (AD) brain, recently, increasing lines of evidence have supported the pathological roles of cerebrovascular changes in the pathogenesis and progression of AD. Restoring or ameliorating the impaired cerebrovascular function during the early phase of the disease may yield benefits against the cognitive decline in AD. In the present study, we evaluated the potential therapeutic effects of nicergoline [NG, a well-known α1 adrenergic receptor (ADR) blocker and vasodilator] against AD through ameliorating vascular abnormalities. Our in vitro data revealed that NG could reverse ß-amyloid1-42 (Aß1-42)-induced PKC/ERK1/2 activation, the downstream pathway of α1-ADR activation, in α1-ADR-overexpressed N2a cells. NG also blocked Aß1-42- or phenylephrine-induced constrictions in isolated rat arteries. All these in vitro data may suggest ADR-dependent impacts of Aß on vascular function and the reversal effect of NG. In addition, the ameliorating impacts of NG treatment on cerebral vasoconstriction, vasoremodeling, and cognitive decline were investigated in vivo in a PSAPP transgenic AD mouse model. Consistent with in vitro findings, the chronic treatment of NG significantly ameliorated the cerebrovascular dysfunctions and Aß plaque depositions in the brain. Moreover, an improved cognitive performance was also observed. Taken together, our findings supported the beneficial effects of NG on AD through adrenergic-related mechanisms and highlighted the therapeutic potential of α1-adrenergic vasomodulators against AD pathologies.

16.
J Nutr Biochem ; : 109772, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39313008

RESUMEN

Obesity is a widely concerned health problem. Mobilizing white adipose tissue and reducing fat synthesis are considered as effective strategies in the treatment of obesity. Here, using Connectivity Map (CMap) approach, we identified the pinocembrin (PB), a natural flavonoid primarily found in propolis, as a potential anti-obesity drug. Therefore, high-fat-diet (HFD) mice were randomly divided into two groups and fed a HFD or HFD with PB in this study. In vivo experiments showed that supplementation of PB reduced the body weight gain and ameliorated insulin resistance in HFD-induced mice. More importantly, PB did not cause side effect through detecting the levels of alanine transaminase (ALT), aspartate aminotransferase (AST), creatinine (CRE) and blood urea nitrogen (BUN) in serum of mice. Additionally, PB reduced expansion of white adipose tissue with upregulation of genes related lipolysis and downregulation of genes related lipogenesis. Furthermore, in vitro experiments revealed that PB treatment dose-dependently inhibited lipid droplet formation with upregulation of genes related lipolysis and downregulation of genes related lipogenesis. Molecular docking analysis combined with cellular thermal shift assay (CETSA) suggested that PB has a high affinity to the G protein-coupled receptor 120 (GPR120). Meanwhile, we confirmed that PB efficiently inhibited adipogenic differentiation of preadipocytes by directly binding to GPR120 and subsequently activating the downstream phosphorylation extracellular regulated kinase 1/2 (ERK1/2). Collectively, PB exerted anti-obesity effect through GPR120-ERK1/2 signaling pathway, providing a novel and promising natural drug for the treatment of obesity.

17.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39337521

RESUMEN

Metabotropic glutamate receptor 4 (mGluR4) is widely regarded as an umami receptor activated by L-glutamate to exert essential functions. Numerous studies have shown that umami receptors participate in food intake regulation. However, little is known about mGluR4's role in mediating food ingestion and its possible molecular mechanism. Mandarin fish, a typical carnivorous fish, is sensitive to umami substances and is a promising vertebrate model organism for studying the umami receptor. In this study, we identified the mGluR4 gene and conducted evolutionary analyses from diverse fish species with different feeding habits. mGluR4 of mandarin fish was cloned and functionally expressed to investigate the effects of L-glutamate on mGluR4. We further explored whether the signal pathway mGluR4-Ca2+-ERK1/2 participates in the process in mandarin fish brain cells. The results suggest that L-glutamate could regulate Neuropeptide Y (Npy) via the mGluR4-Ca2+-ERK1/2 signaling pathway in mandarin fish. Our findings unveil the role of mGluR4 in feeding decisions and its possible molecular mechanisms in carnivorous fishes.


Asunto(s)
Proteínas de Peces , Ácido Glutámico , Sistema de Señalización de MAP Quinasas , Neuropéptido Y , Receptores de Glutamato Metabotrópico , Animales , Secuencia de Aminoácidos , Calcio/metabolismo , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Peces/metabolismo , Peces/genética , Ácido Glutámico/metabolismo , Neuropéptido Y/metabolismo , Neuropéptido Y/genética , Perciformes/metabolismo , Perciformes/genética , Filogenia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética
18.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39204199

RESUMEN

BACKGROUND: 5-fluorouracil (5-FU) is a widely used, highly effective chemotherapeutic agent. However, its therapeutic efficacy is often limited by associated adverse effects, with hepatotoxicity being frequently reported with 5-FU therapy. Thymol is a monoterpene found in thyme (Thymus vulgaris L., Lamiaceae) and is known for its antioxidant, anti-apoptotic, and anticancer activities. This study aimed to explore the hepatoprotective activity of thymol against 5-FU-induced liver injury. METHODS: Rats received two intraperitoneal doses of 5-FU (150 mg/kg) either alone or in combination with thymol at doses of 60 mg/kg or 120 mg/kg. Liver enzymes, oxidative stress, and apoptotic markers, in addition to histopathological changes, were assessed. RESULTS: 5-FU induced marked liver injuries as evidenced by elevated liver enzymes and histopathological changes, in addition to abnormalities of oxidative and apoptotic markers. The administration of thymol ameliorated the 5-FU-induced oxidative damage through increasing hepatic antioxidants and lowering lipid peroxidation. Apoptotic response markers such as Bax, Bcl-2, Bax/Bcl-2 ratio, and PARP were also improved. Furthermore, Western blotting analysis showed that thymol modulated the 5-FU-induced changes in the expression of Akt/GSK-3ß and p44/42 MAPK (ERK1/2) signaling pathways. CONCLUSIONS: Our research is the first to shed light on thymol's potential protective effect against 5-FU- induced hepatotoxicity by inhibiting oxidative and apoptotic pathways and modulating the Akt/ GSK-3ß as well as p44/42 MAPK (ERK1/2) signaling pathways.

19.
Neuropharmacology ; 259: 110118, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153731

RESUMEN

The decline of microglia in the dentate gyrus is a new phenomenon that may explain the pathogenesis of depression, and reversing this decline has an antidepressant effect. The development of strategies that restore the function of dentate gyrus microglia in under stressful conditions is becoming a new focus. Lymphocyte-activating gene-3 (LAG3) is an immune checkpoint expressed by immune cells including microglia. One of its functions is to suppress the expansion of immune cells. In a recent study, chronic systemic administration of a LAG3 antibody that readily penetrates the brain was reported to reverse chronic stress-induced hippocampal microglia decline and depression-like behaviors. We showed here that a single intranasal infusion of a LAG3 antibody (In-LAG3 Ab) reversed chronic unpredictable stress (CUS)-induced depression-like behaviors in a dose-dependent manner, which was accompanied by an increase in brain-derived neurotrophic factor (BDNF) in the dentate gyrus. Infusion of an anti-BDNF antibody into the dentate gyrus, construction of knock-in mice with the BDNF Val68Met allele, or treatment with the BDNF receptor antagonist K252a abolished the antidepressant effect of In-LAG3 Ab. Activation of extracellular signal-regulated kinase1/2 (ERK1/2) is required for the reversal effect of In-LAG3 Ab on CUS-induced depression-like behaviors and BDNF decrease in the dentate gyrus. Moreover, both inhibition and depletion of microglia prevented the reversal effect of In-LAG3 Ab on CUS-induced depression-like behaviors and impairment of ERK1/2-BDNF signaling in the dentate gyrus. These results suggest that In-LAG3 Ab exhibits an antidepressant effect through microglia-mediated activation of ERK1/2 and synthesis of BDNF in the dentate gyrus.


Asunto(s)
Administración Intranasal , Antidepresivos , Antígenos CD , Factor Neurotrófico Derivado del Encéfalo , Depresión , Hipocampo , Proteína del Gen 3 de Activación de Linfocitos , Sistema de Señalización de MAP Quinasas , Estrés Psicológico , Animales , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Masculino , Antidepresivos/farmacología , Antidepresivos/administración & dosificación , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Depresión/tratamiento farmacológico , Antígenos CD/metabolismo , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Anticuerpos/farmacología , Carbazoles/farmacología , Carbazoles/administración & dosificación , Transducción de Señal/efectos de los fármacos , Alcaloides Indólicos
20.
Biochem Pharmacol ; 229: 116504, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39179118

RESUMEN

Hepatic encephalopathy (HE) is one of the most prevalent and severe hepatic and brain disorders in which escalation of the oxidative, inflammatory and apoptotic trajectories pathologically connects acute liver injury with neurological impairment. Mirabegron (Mira) is a beta3 adrenergic receptor agonist with proven antioxidant and anti-inflammatory activities. The current research pointed to exploring Mira's hepato-and neuroprotective impacts against thioacetamide (TAA)-induced HE in rats. Rats were distributed into three experimental groups: the normal control group, the TAA group, received TAA (200 mg/kg/day for three consecutive days) and the Mira-treated group received Mira (10 mg/kg/day; oral gavage) for 15 consecutive days and intoxicated with TAA from the 13th to the 15th day of the experimental period. Mira counteracted hyperammonemia, enhanced rats' locomotor capability and motor coordination. It attenuated hepatic/neurological injuries by its antioxidant, anti-apoptotic as well as anti-inflammatory potentials. Mira predominantly targeted cyclic adenosine monophosphate (cAMP)/phosphorylated extracellular signal-regulated kinase (p-Erk1/2)/peroxisome proliferator-activated receptor gamma (PPARγ) dependent pathways via downregulation of p S536-nuclear factor kappa B p65 (p S536 NF-κB p 65)/tumor necrosis alpha (TNF-α) axis. Meanwhile, it attenuated nuclear factor erythroid 2-related factor (Nrf2) depletion in parallel with restoring of the neuroprotective defensive pathway by upregulation of cerebral cAMP/PPAR-γ/p-ERK1/2 and p-CREB/BDNF/TrkB besides reduction of GFAP immunoreactivity. Mira showed anti-apoptotic activity through inhibition of Bax immunoreactivity and elevation of Bcl2. To summarize, Mira exhibited a hepato-and neuroprotective effect against TAA-induced HE in rats via shielding antioxidant defense and mitigation of the pathological inflammatory and apoptotic axis besides upregulation of neuroprotective signaling pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA