Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Virol ; : e0081624, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264156

RESUMEN

Viruses employ various evasion strategies to establish prolonged infection, with evasion of innate immunity being particularly crucial. Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen in swine industry, characterized by reproductive failures in sows and respiratory distress in pigs of all ages, leading to substantial economic losses globally. In this study, we found that the non-structural protein 5 (Nsp5) of PRRSV antagonizes innate immune responses via inhibiting the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs), which is achieved by degrading multiple proteins of RIG-I-like receptor (RLR) signaling pathway (RIG-I, MDA5, MAVS, TBK1, IRF3, and IRF7). Furthermore, we showed that PRRSV Nsp5 is located in endoplasmic reticulum (ER), where it promotes accumulation of RLR signaling pathway proteins. Further data demonstrated that Nsp5 activates reticulophagy (ER-phagy), which is responsible for the degradation of RLR signaling pathway proteins and IFN-I production. Mechanistically, Nsp5 interacts with one of the ER-phagy receptor family with sequence similarity 134 member B (FAM134B), promoting the oligomerization of FAM134B. These findings elucidate a novel mechanism by which PRRSV utilizes FAM134B-mediated ER-phagy to elude host antiviral immunity.IMPORTANCEInnate immunity is the first line of host defense against viral infections. Therefore, viruses developed numerous mechanisms to evade the host innate immune responses for their own benefit. PRRSV, one of the most important endemic swine viruses, poses a significant threat to the swine industry worldwide. Here, we demonstrate for the first time that PRRSV utilizes its non-structural protein Nsp5 to degrade multiple proteins of RLR signaling pathways, which play important roles in IFN-I production. Moreover, FAM134B-mediated ER-phagy was further proved to be responsible for the protein's degradation. Our study highlights the critical role of ER-phagy in immune evasion of PRRSV to favor replication and provides new insights into the prevention and control of PRRSV.

2.
Dev Cell ; 59(16): 2035-2052.e10, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39094564

RESUMEN

Protein biogenesis within the endoplasmic reticulum (ER) is crucial for organismal function. Errors during protein folding necessitate the removal of faulty products. ER-associated protein degradation and ER-phagy target misfolded proteins for proteasomal and lysosomal degradation. The mechanisms initiating ER-phagy in response to ER proteostasis defects are not well understood. By studying mouse primary cells and patient samples as a model of ER storage disorders (ERSDs), we show that accumulation of faulty products within the ER triggers a response involving SESTRIN2, a nutrient sensor controlling mTORC1 signaling. SESTRIN2 induction by XBP1 inhibits mTORC1's phosphorylation of TFEB/TFE3, allowing these transcription factors to enter the nucleus and upregulate the ER-phagy receptor FAM134B along with lysosomal genes. This response promotes ER-phagy of misfolded proteins via FAM134B-Calnexin complex. Pharmacological induction of FAM134B improves clearance of misfolded proteins in ERSDs. Our study identifies the interplay between nutrient signaling and ER quality control, suggesting therapeutic strategies for ERSDs.


Asunto(s)
Retículo Endoplásmico , Diana Mecanicista del Complejo 1 de la Rapamicina , Pliegue de Proteína , Proteína 1 de Unión a la X-Box , Animales , Retículo Endoplásmico/metabolismo , Humanos , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Transducción de Señal , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Lisosomas/metabolismo , Estrés del Retículo Endoplásmico , Sestrinas/metabolismo , Sestrinas/genética , Fosforilación , Proteostasis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice
3.
Cell Mol Life Sci ; 81(1): 336, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120751

RESUMEN

Preeclampsia (PE) is a life-threatening pregnancy-specific complication with controversial mechanisms and no effective treatment except delivery is available. Currently, increasing researchers suggested that PE shares pathophysiologic features with protein misfolding/aggregation disorders, such as Alzheimer disease (AD). Evidences have proposed defective autophagy as a potential source of protein aggregation in PE. Endoplasmic reticulum-selective autophagy (ER-phagy) plays a critical role in clearing misfolded proteins and maintaining ER homeostasis. However, its roles in the molecular pathology of PE remain unclear. We found that lncRNA DUXAP8 was upregulated in preeclamptic placentae and significantly correlated with clinical indicators. DUXAP8 specifically binds to PCBP2 and inhibits its ubiquitination-mediated degradation, and decreased levels of PCBP2 reversed the activation effect of DUXAP8 overexpression on AKT/mTOR signaling pathway. Function experiments showed that DUXAP8 overexpression inhibited trophoblastic proliferation, migration, and invasion of HTR-8/SVneo and JAR cells. Moreover, pathological accumulation of swollen and lytic ER (endoplasmic reticulum) was observed in DUXAP8-overexpressed HTR8/SVneo cells and PE placental villus trophoblast cells, which suggesting that ER clearance ability is impaired. Further studies found that DUXAP8 overexpression impaired ER-phagy and caused protein aggregation medicated by reduced FAM134B and LC3II expression (key proteins involved in ER-phagy) via activating AKT/mTOR signaling pathway. The increased level of FAM134B significantly reversed the inhibitory effect of DUXAP8 overexpression on the proliferation, migration, and invasion of trophoblasts. In vivo, DUXAP8 overexpression through tail vein injection of adenovirus induced PE-like phenotypes in pregnant rats accompanied with activated AKT/mTOR signaling, decreased expression of FAM134B and LC3-II proteins and increased protein aggregation in placental tissues. Our study reveals the important role of lncRNA DUXAP8 in regulating trophoblast biological behaviors through FAM134B-mediated ER-phagy, providing a new theoretical basis for understanding the pathogenesis of PE.


Asunto(s)
Autofagia , Retículo Endoplásmico , Preeclampsia , Proteínas Proto-Oncogénicas c-akt , ARN Largo no Codificante , Transducción de Señal , Serina-Treonina Quinasas TOR , Trofoblastos , Adulto , Animales , Femenino , Humanos , Embarazo , Ratas , Autofagia/genética , Línea Celular , Movimiento Celular/genética , Proliferación Celular/genética , Retículo Endoplásmico/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Preeclampsia/genética , Preeclampsia/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Serina-Treonina Quinasas TOR/metabolismo , Trofoblastos/metabolismo , Trofoblastos/patología , Masculino
4.
J Biol Chem ; 300(9): 107674, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39128711

RESUMEN

Autophagy is classified as nonselective or selective depending on the types of degrading substrates. Endoplasmic reticulum (ER)-phagy is a form of selective autophagy for transporting the ER-resident proteins to autolysosomes. FAM134B, a member of the family with sequence similarity 134, is a well-known ER-phagy receptor. Dysfunction of FAM134B results in several diseases including viral infection, inflammation, neurodegenerative disorder, and cancer, indicating that FAM134B has crucial roles in various kinds of intracellular functions. However, how FAM134B-mediated ER-phagy regulates intracellular functions is not well understood. In this study, we found that FAM134B knockdown in mammalian cells accelerated cell proliferation. FAM134B knockdown increased the protein amount of stromal interaction molecule 1 (STIM1), an ER Ca2+ sensor protein mediating the store-operated Ca2+ entry involved in G1 to S phase transition. FAM134B bound to STIM1 through its C-terminal cytosolic region. FAM134B knockdown reduced transport of STIM1 from the ER to autolysosomes. Finally, FAM134B knockdown accelerated G1 to S phase transition. These results suggest that FAM134B is involved in cell proliferation possibly through degradation of STIM1 via ER-phagy.

5.
EMBO Rep ; 25(8): 3651-3677, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39039299

RESUMEN

Endoplasmic reticulum (ER) remodeling is vital for cellular organization. ER-phagy, a selective autophagy targeting ER, plays an important role in maintaining ER morphology and function. The FAM134 protein family, including FAM134A, FAM134B, and FAM134C, mediates ER-phagy. While FAM134B mutations are linked to hereditary sensory and autonomic neuropathy in humans, the physiological role of the other FAM134 proteins remains unknown. To address this, we investigate the roles of FAM134 proteins using single and combined knockouts (KOs) in mice. Single KOs in young mice show no major phenotypes; however, combined Fam134b and Fam134c deletion (Fam134b/cdKO), but not the combination including Fam134a deletion, leads to rapid neuromuscular and somatosensory degeneration, resulting in premature death. Fam134b/cdKO mice show rapid loss of motor and sensory axons in the peripheral nervous system. Long axons from Fam134b/cdKO mice exhibit expanded tubular ER with a transverse ladder-like appearance, whereas no obvious abnormalities are present in cortical ER. Our study unveils the critical roles of FAM134C and FAM134B in the formation of tubular ER network in axons of both motor and sensory neurons.


Asunto(s)
Axones , Retículo Endoplásmico , Proteínas de la Membrana , Animales , Humanos , Ratones , Axones/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados
6.
Autophagy ; 20(3): 692-693, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37941410

RESUMEN

Tightly regulated cell surface expression of NTRK2/TrkB provides a mechanism for fine-tuning cellular responses to the neurotrophic factor BDNF. Recently, the degradation of NTRK2 by reticulophagy has been identified as a mechanism to limit its availability for trafficking to the cell membrane. The ER-chaperone CANX (calnexin) delivers NTRK2 to the reticulophagy receptor RETREG1/Fam134b for lysosomal degradation. Upon phosphorylation of CANX, NTRK2 is released from this complex, which facilitates its cell surface transport. These results identify a novel role for CANX in regulating the cell surface expression of NTRK2 and imply a function for reticulophagy that goes beyond regulating the degradation of misfolded proteins within the ER.


Asunto(s)
Autofagia , Transducción de Señal , Calnexina , Membrana Celular , Proteínas Portadoras
7.
Arch Biochem Biophys ; 748: 109766, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37813237

RESUMEN

AIMS: FAM134B, the initial endoplasmic reticulum (ER)-phagy receptor identified, facilitates ER-phagy during ER stress. The malfunction of FAM134B has been demonstrated to have a crucial role in the pathological mechanisms of diverse human ailments. However, the role of FAM134B-mediated ER-phagy in ototoxicity, particularly in cisplatin-induced ototoxicity, remains unclear. The present study endeavors to investigate whether FAM134B is expressed in House Ear Institute-Organ of Corti 1 (HEI-OC1) and C57BL/6 murine cochlear hair cells (HCs), and to explore its potential function in cisplatin-mediated ototoxicity, with the aim of discovering new insights that can mitigate or forestall the irreversible adverse effect of cisplatin. METHODS: Immunofluorescence (IF) staining was used to test the expression pattern of FAM134B, levels of C/EBP-homologous protein (CHOP), autophagy, and co-localization ratio of lysosomes and ER. Western blotting was employed to measure changes in expression levels of FAM134B, LC3B, ER stress-related proteins, LAMP1 and apoptotic mediators. Cell apoptosis was examined using transferase dUTP nick end labeling (TUNEL) assay and flow cytometry. RESULTS: In the present investigation, it was observed that FAM134B exhibited a diffuse expression pattern in the cytoplasm and nuclei of control HEI-OC1 cells. Following cisplatin administration, FAM134B was found to accumulate and form distinct dots around the nuclei, concomitant with increased levels of ER-phagy, ER stress, unfolded protein response (UPR), and cell apoptosis. Additionally, knockdown of FAM134B resulted in reduced ER-phagy, mitigated ER stress and UPR, and decreased apoptotic activity in HEI-OC1 cells following cisplatin exposure. CONCLUSIONS: Collectively, the findings of this study demonstrate that FAM134B-mediated ER-phagy enhances the susceptibility of HCs to ER stress and apoptosis in response to cisplatin-induced stress. This suggests a sequential progression of ER-phagy, ER stress and apoptosis following cisplatin stimulus, and implies the potential therapeutic benefit of inhibiting of FAM134B-mediated ER-phagy in the prevention of cisplatin-related ototoxicity.


Asunto(s)
Cisplatino , Ototoxicidad , Ratones , Humanos , Animales , Cisplatino/toxicidad , Ototoxicidad/metabolismo , Estrés del Retículo Endoplásmico , Células Ciliadas Auditivas/metabolismo , Autofagia , Retículo Endoplásmico/metabolismo , Apoptosis
8.
Proc Natl Acad Sci U S A ; 120(37): e2221929120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669380

RESUMEN

The endoplasmic reticulum (ER) is selectively degraded by ER-phagy to maintain cell homeostasis. α-synuclein accumulates in the ER, causing ER stress that contributes to neurodegeneration in Parkinson's disease (PD), but the role of ER-phagy in α-synuclein modulation is largely unknown. Here, we investigated the mechanisms by which ER-phagy selectively recognizes α-synuclein for degradation in the ER. We found that ER-phagy played an important role in the degradation of α-synuclein and recovery of ER function through interaction with FAM134B, where calnexin is required for the selective FAM134B-mediated α-synuclein clearance via ER-phagy. Overexpression of α-synuclein in the ER of the substantia nigra (SN) resulted in marked loss of dopaminergic neurons and motor deficits, mimicking PD characteristics. However, enhancement of ER-phagy using FAM134B overexpression in the SN exerted neuroprotective effects on dopaminergic neurons and recovered motor performance. These data suggest that ER-phagy represents a specific ER clearance mechanism for the degradation of α-synuclein.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , alfa-Sinucleína , Retículo Endoplásmico , Autofagia
9.
J Cell Mol Med ; 28(5): e17964, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37728036

RESUMEN

Endoplasmic reticulum (ER) stress can stimulate the proliferation and metastasis of hepatocellular carcinoma (HCC) cells while hindering apoptosis and immune system function, but the molecular mechanism of ER stress in HCC has yet to be fully studied. We aim to investigate the molecular mechanism by which FAM134B inhibits autophagy of HCC cells by reducing the expression of ER stress-related degradation proteins. Clinical samples were collected for this study. Normal liver cell lines HL7702 and Hep3B and Huh7 HCC cell lines were cultured. Construction of FAM134B knockdown cell line. Cell proliferation was measured using the CCK-8 assay, while cell migration and invasion capabilities were detected using the plate colony formation assay. Flow cytometry was used to detect the apoptosis rate. Transmission electron microscopy was used to observe the formation of autophagosomes. qRT-PCR and WB detective expression changes related to autophagy proteins. Finally, the expression of the relevant proteins was observed by immunohistochemistry. The expression of FAM134B was significantly increased in human liver cancer tissue and HCC cell lines Hep3B and Huh7. After the lentiviral vector was transfected into Hep3B cells with sh-FAM134B, results showed that sh-FAM134B could effectively inhibit Hep3B cell proliferation and promote HCC cell apoptosis. Meanwhile, sh-FAM134B could effectively induce the autophagy of Hep3B liver cancer cells. Immunohistochemistry results showed that sh-FAM134B could effectively induce ER stress. FAM134B inhibits HCC cell autophagy and promotes the progression of liver cancer by inhibiting the expression of ER stress-related degradation factors such as DERL2, EDEM1, SEL1L and HRD1.

10.
BMC Cancer ; 23(1): 671, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460952

RESUMEN

BACKGROUND: Previous studies have shown that Family with sequence similarity 134 member B (FAM134B) was involved in the occurrence and development of malignancy, however, the function and molecular mechanism of FAM134B in Hepatocellular Carcinoma (HCC) radiotherapy resistance remain unclear. Therefore, it may clinical effective to clarify the molecular mechanism and identify novel biomarker to overcome radiotherapy resistance in HCC. METHODS: The protein and mRNA expression of FAM134B were determined using Real-time PCR and Western blot, respectively. IHC assay was performed to investigate the association between FAM134B expression and the clinicopathological characteristics of 132 HCC patients. Functional assays, such as in situ model, colon formation, FACS, and Tunel assay were used to determine the oncogenic role of FAM134B in human HCC progression. Furthermore, western blotting and luciferase assay were used to determine the mechanism of FAM134B promotes radiation-sensitive in HCC cells. RESULTS: We noted that FAM134B was downregulated in HCC, which was correlated with the radiation resistance in patients with HCC. Overexpression of FAM134B contribute to radiation sensitive in HCC; however, inhibition of FAM134B confers HCC cell lines to radiation resistance both in vitro and in vivo. Moreover, we found that FAM134B interacts with FMS related receptor tyrosine kinase 3 (FLT3) and downregulation of FAM134B activated JAK/Stat3 signaling pathway. Importantly, pharmacological inhibition of JAK/Stat3 signaling pathway significantly counteracted downregulation of FAM134B-induced radiation resistance and enhanced radiation therapeutic efficacy in HCC. CONCLUSIONS: Our findings suggest that FAM134B may be a potential therapeutic biomarker for the treatment of HCC patients with radiotherapy tolerance.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA