Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 996
Filtrar
1.
Bioorg Chem ; 153: 107852, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39362081

RESUMEN

Irinotecan (CPT-11) is a widely utilized topoisomerase I inhibitor in the treatment of colorectal cancer and other malignant tumors. However, severe and even life-threatening dose-limiting toxicity-delayed diarrhea affects the clinical application of CPT-11. The standard treatment for CPT-11-induced delayed diarrhea is prompt use of loperamide (LPA), however LPA can also cause constipation, diarrhea and even intestinal obstruction and has a high failure rate. Carboxylesterase 2 (CES2) is the main enzyme in the intestinal transformation of CPT-11, which can convert CPT-11 into toxic metabolite SN-38 and produce intestinal toxicity. Inhibiting CES2 activity can block the hydrolysis process of CPT-11 in the intestine and reduce SN-38 accumulation. Additionally, Farnesoid X receptor (FXR) agonists have anti-inflammatory, anti-secretory, and protective functions on intestinal barrier integrity that could potentially alleviate diarrhea. In this study, we investigated for the first time the anti-delayed diarrhea effect of FXR agonists, and the first time identified LE-77 as a potent dual modulator that activates FXR and inhibits CES2 through high-throughput screening. In the CPT-11-induced delayed diarrhea model, LE-77 demonstrated a dual modulator mechanism by activating FXR and inhibiting CES2, thereby reducing the accumulation of SN-38 in the intestine, alleviating intestinal inflammation, preserving intestinal mucosal integrity, and ultimately alleviating delayed diarrhea.

2.
Toxicol Mech Methods ; 34(8): 920-925, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39319528

RESUMEN

Valproic acid (VA) is a broad-spectrum anticonvulsant agent that acts through several molecular mechanisms to control different types of seizures. The main concern of the drug is its liver toxicity. Considering the regulatory roles of the Farnesoid nuclear receptors and the nuclear transcription factor Nrf2 in modifying and neutralizing the harmful effects of oxidative damage, the present study was designed to evaluate the role of FXR-Nrf2 and some downstream target gene alterations in hepatotoxicity induced by VA. Thirty-five eight-week-old male albino mice were randomly divided into five groups, including a control group, and four groups were assigned to receive VA (300 mg/kg/day; oral) for 3, 7, 10, and 14 days. Serum levels of ALT, AST, ALP, and total and direct bilirubin (TB, DB) were measured. Liver histology and the expression of FXR, Nrf2, α-GST, SOD, and TNF-α were assessed using H&E staining and real-time RT-PCR techniques. Maximum extent of biochemical and histopathological damage was observed on the 14th day, but changes in the expression of FXR, Nrf2, α-GST, and SOD were seen at three points: a significant upregulation on the 3rd day, a remarkable downregulation on the 10th day, and a second-time upregulation on the 14th day. In conclusion, considering the observed dysregulation in FXR-Nrf2 cascade expression during VA administration, it seems that downregulation in this pathway and consequently its downstream detoxification and antioxidant genes may play a role in liver toxicity.


Asunto(s)
Anticonvulsivantes , Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado , Factor 2 Relacionado con NF-E2 , Receptores Citoplasmáticos y Nucleares , Ácido Valproico , Animales , Ácido Valproico/toxicidad , Masculino , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Anticonvulsivantes/toxicidad , Estrés Oxidativo/efectos de los fármacos , Factores de Tiempo
3.
Cells ; 13(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39329760

RESUMEN

Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompensation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there is a consensus that individuals with a genetic predisposition develop the disease in the presence of specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the main target of a dysregulated immune response, and cholangiocytes senescence has been recognized as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids are also recognized as playing an important role, both in disease development and therapy. Thus, while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years. In this review, we will examine published and ongoing clinical trials in PBC, including the recently approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar. These novel second-line therapies are expected to improve therapy in PBC and the development of personalized approaches.


Asunto(s)
Cirrosis Hepática Biliar , Humanos , Cirrosis Hepática Biliar/terapia , Cirrosis Hepática Biliar/tratamiento farmacológico , Cirrosis Hepática Biliar/patología , Ácidos y Sales Biliares/metabolismo , Animales , Ácido Ursodesoxicólico/uso terapéutico , Ensayos Clínicos como Asunto , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/uso terapéutico
4.
Sci Rep ; 14(1): 22751, 2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-39349582

RESUMEN

Currently, there is a lack of targeted medications for estrogen-induced intrahepatic cholestasis (EIC) and the primary objective in managing this condition is to safeguard liver function. Consequently, this study was conducted to examine the pharmacological efficacy of cilostazol (CTZ) in the management of EIC and explore its underlying mechanisms through the use of an animal model. Thirty female Sprague-Dawley rats were divided into five groups of six animals each: Normal group, 17-ethinylestradiol (EE)-induced intrahepatic cholestasis group, EE + ursodeoxycholic acid (UDCA)-treated group, EE + CTZ (5 mg/kg)-treated group, and EE + CTZ (10 mg/kg)-treated group. It was found that the therapeutic efficacy of UDCA and low dosage of CTZ (5 mg/kg) was comparable. Nevertheless, when CTZ was administered at a dose of 10 mg/kg, it resulted in the normalization of all liver function parameters, oxidative stress, and pro-inflammatory markers, together with improvement in the histopathological derangements and hepatocytic apoptosis. These effects were mediated through the activation of the hepatocyte nuclear factor-1 alpha (HNF1α)/Farnesoid X receptor (FXR) pathway with subsequent down-regulation of the bile acids (BAs) synthesis enzyme; cholesterol 7α-hydroxylase (CYP7A1), and up-regulation of the BAs-metabolizing enzyme; cytochrome P450 (CYP)3A1 and the bile salt export pump; BSEP. Therefore, the administration of CTZ in a dose-dependent manner can protect against EIC through regulating the HNF1α/FXR pathway and anti-apoptotic mechanisms. This implies that CTZ exhibits considerable promise as a therapeutic agent for the treatment of cholestatic liver disorders.


Asunto(s)
Apoptosis , Colestasis Intrahepática , Cilostazol , Modelos Animales de Enfermedad , Estrógenos , Factor Nuclear 1-alfa del Hepatocito , Ratas Sprague-Dawley , Transducción de Señal , Animales , Femenino , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Colestasis Intrahepática/tratamiento farmacológico , Colestasis Intrahepática/metabolismo , Colestasis Intrahepática/inducido químicamente , Colestasis Intrahepática/patología , Ratas , Cilostazol/farmacología , Estrógenos/farmacología , Estrés Oxidativo/efectos de los fármacos , Etinilestradiol/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ácido Ursodesoxicólico/farmacología , Colesterol 7-alfa-Hidroxilasa/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Sustancias Protectoras/farmacología
5.
Ecotoxicol Environ Saf ; 284: 116989, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39260212

RESUMEN

Triclosan (TCS) is an eminent antibacterial agent. However, extensive usage causes potential health risks like hepatotoxicity, intestinal damage, kidney injury, etc. Existing studies suggested that TCS would disrupt bile acid (BA) enterohepatic circulation, but its toxic mechanism remains unclear. Hence, the current study established an 8-week TCS exposure model to explore its potential toxic mechanism. The results discovered 8 weeks consecutive administration of TCS induced distinct programmed cell death, inflammatory cell activation and recruitment, and excessive BA accumulation in liver. Furthermore, the expression of BA synthesis and transport associated genes were significantly dysregulated upon TCS treatment. Additional mechanism exploration revealed that Fxr inhibition induced by TCS would be the leading cause for unusual BA biosynthesis and transport. Subsequent Fxr up-stream investigation uncovered TCS exposure caused pyroptosis and its associated IL-1ß would be the reason for Fxr reduction mediated by NF-κB. NF-κB blocking by dimethylaminoparthenolide ameliorated TCS induced BA disorder which confirmed the contribution of NF-κB in Fxr repression. To sum up, our findings conclud TCS-caused BA disorder is attributed to Fxr inhibition, which is regulated by the IL-1ß-NF-κB signaling pathway. Hence, we suggest Fxr would be a potential target for abnormal BA stimulated by TCS and its analogs.


Asunto(s)
Antiinfecciosos Locales , Ácidos y Sales Biliares , Transducción de Señal , Triclosán , Animales , Masculino , Ratones , Antiinfecciosos Locales/toxicidad , Ácidos y Sales Biliares/metabolismo , Interleucina-1beta/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Triclosán/toxicidad
6.
Acta Pharm Sin B ; 14(8): 3513-3527, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39220861

RESUMEN

Bile acids (BAs) are natural metabolites in mammals and have the potential to function as drugs against viral infection. However, the limited understanding of chenodeoxycholic acid (CDCA) receptors and downstream signaling, along with its lower suppression efficiency in inhibiting virus infection limits its clinical application. In this study, we demonstrate that farnesoid X receptor (FXR), the receptor of CDCA, negatively regulates interferon signaling, thereby contributing to the reduced effectiveness of CDCA against virus replication. FXR deficiency or pharmacological inhibition enhances interferon signaling activation to suppress virus infection. Mechanistically, FXR impairs the DNA binding and transcriptional abilities of activated interferon regulatory factor 3 (IRF3) through interaction. Reduced IRF3 transcriptional activity by FXR-IRF3 interaction significantly undermines the expression of Interferon Beta 1 (IFNB1) and the antiviral response of cells, especially upon the CDCA treatment. In FXR-deficient cells, or when combined with Z-guggulsterone (GUGG) treatment, CDCA exhibits a more potent ability to restrict virus infection. Thus, these findings suggest that FXR serves as a limiting factor for CDCA in inhibiting virus replication, which can be attributed to the "signaling-brake" roles of FXR in interferon signaling. Targeting FXR inhibition represents a promising pharmaceutical strategy for the clinical application of BAs metabolites as antiviral drugs.

7.
Phytother Res ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237123

RESUMEN

Gardenia jasminoides Ellis. polysaccharide (GPS) can protect against cholestatic liver injury (CLI) by regulating nuclear farnesoid X receptor (FXR).However, the mechanism via which GPS mediates the FXR pathway remains unclear. The aim of this study was to investigate the mechanism. Firstly, an alpha-naphthylisothiocyanate-induced cholestatic mouse model was administered with GPS to evaluate its hepatoprotective effects. The metabolic pathways influenced by GPS in cholestatic mice were detected by serum metabolomics. The effect of GPS on bile acid (BA) homeostasis, FXR expression, and liver inflammation were investigated. Second, the intestinal bacteria metabolites affected by GPS in vivo and in vitro were determined. The activation of FXR by sodium butyrate (NaB) was measured. Finally, the effects of NaB on cholestatic mice were demonstrated. The main pathways influenced by GPS involved BA biosynthesis. GPS upregulated hepatic FXR expression, improved BA homeostasis, reduced F4/80+ and Ly6G+ positive areas in the liver, and inhibited liver inflammation in cholestatic mice. Butyric acid was the most notable intestinal bacterial metabolite following GPS intervention. NaB activated the transcriptional activity of FXR in vitro, upregulated hepatic FXR and its downstream efflux transporter expression, and ameliorated disordered BA homeostasis in CLI mice. NaB inhibited the toll-like receptor 4/nuclear factor (TLR4/NF-κB) pathway and reduced inflammation and CLI in mice. An FXR antagonist suppressed the effects. In conclusion, GPS increased butyric acid production, which can activate hepatic FXR, reverse BA homeostasis disorder, and inhibit the TLR4/NF-κB inflammatory pathway, exerting protective effects against CLI.

8.
Gut Microbes ; 16(1): 2387402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39264803

RESUMEN

Cholestatic liver injury results from the accumulation of toxic bile acids in the liver, presenting a therapeutic challenge with no effective treatment available to date. Andrographolide (AP) has exhibited potential as a treatment for cholestatic liver disease. However, its limited oral bioavailability poses a significant obstacle to harnessing its potent therapeutic properties and restricts its clinical utility. This limitation is potentially attributed to the involvement of gut microbiota in AP metabolism. In our study, employing pseudo-germ-free, germ-free and strain colonization animal models, along with 16S rRNA and shotgun metagenomic sequencing analysis, we elucidate the pivotal role played by gut microbiota in the C-sulfonate metabolism of AP, a process profoundly affecting its bioavailability and anti-cholestatic efficacy. Subsequent investigations pinpoint a specific enzyme, adenosine-5'-phosphosulfate (APS) reductase, predominantly produced by Desulfovibrio piger, which catalyzes the reduction of SO42- to HSO3-. HSO3- subsequently interacts with AP, targeting its C=C unsaturated double bond, resulting in the formation of the C-sulfonate metabolite, 14-deoxy-12(R)-sulfo andrographolide (APM). Inhibition of APS reductase leads to a notable enhancement in AP bioavailability and anti-cholestatic efficacy. Furthermore, employing RNA sequencing analysis and farnesoid X receptor (FXR) knockout mice, our findings suggest that AP may exert its anti-cholestatic effects by activating the FXR pathway to promote bile acid efflux. In summary, our study unveils the significant involvement of gut microbiota in the C-sulfonate metabolism of AP and highlights the potential benefits of inhibiting APS reductase to enhance its therapeutic effects. These discoveries provide valuable insights into enhancing the clinical applicability of AP as a promising treatment for cholestatic liver injury.


Asunto(s)
Disponibilidad Biológica , Diterpenos , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Diterpenos/metabolismo , Diterpenos/farmacología , Ratones , Colestasis/metabolismo , Colestasis/tratamiento farmacológico , Colestasis/microbiología , Masculino , ARN Ribosómico 16S/genética , Ácidos y Sales Biliares/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Humanos , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Modelos Animales de Enfermedad
9.
Artículo en Inglés | MEDLINE | ID: mdl-39301965

RESUMEN

BACKGROUND: We have developed a mouse model of Parenteral Nutrition Associated Liver Disease in which PN infusion results in cholestatic liver injury. In the liver, the master circadian genes Arntl/Bmal drive rhythmic gene expression and regulate circadian expression of hepatic functions including bile acid synthesis. The aim of this study was to examine the effect of continuous PN on ileal and hepatic expression of circadian regulatory (CR) genes, FXR signaling and bile acid synthesis in mice. METHODS: WT mice were exposed to continuous soy oil lipid emulsion-based PN infusion through a central venous catheter for 4 days (PN). Water was provided ad libitum, but no nutrients were provided enterally. On d4, mice were sacrificed every 6 hours (7AM, 1PM, 7PM and 1AM), and ileal, hepatic tissue and serum harvested. From tissue samples, the relative expression of circadian transcription factors and FXR signaling was assessed. RESULTS: Administration of 4d PN increased hepatic injury, inflammatory cytokine expression and gut permeability. In the ileum, PN activated FXR and induced expression of Fgf15 and Nr0b2. In the liver, expression of FXR-downstream targets was dysregulated. PN administrations impacted hepatic and ileal circadian transcription factor mRNA expression which was discordant between the two organs. CONCLUSIONS: Dysregulation of circadian regulatory machinery is in part due to discordance of the gut-liver axis during PN. Pharmacologic targeting of CR as a therapeutic strategy for PNALD thus deserves further investigation.

10.
bioRxiv ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39282416

RESUMEN

BACKGROUND & AIMS: We aimed to investigate the relative efficacy of feeding different bile acids in preventing PNALD in neonatal pigs. METHODS: Newborn pigs given total parenteral nutrition (TPN) combined with minimal enteral feeding of chenodeoxycholic acid (CDCA), or increasing doses of obeticholic acid (OCA) for 19 days. RESULTS: Enteral OCA (5 and 15 mg/kg), but not CDCA (30 mg/kg) reduced blood cholestasis markers compared to TPN controls and increased bile acids in the gallbladder and intestine. Major bile acids in the liver and distal intestine were CDCA, HCA, HDCA and OCA, and their relative proportions were increased by the type of bile acid (CDCA or OCA) given enterally. High doses of OCA increased the total NR1H4-agonistic bile acid profile in the liver and intestine above 50% total bile acids. Both CDCA and OCA treatments suppressed hepatic cyp7a1 expression, but only OCA increased hepatobiliary transporters, ABCB11, ABCC$ and ABCB1. Plasma phytosterol levels were reduced and biliary levels were increased by CDCA and OCA and hepatic sterol transporters, abcg5/8, expression were increased by OCA. Both CDCA and OCA increased plasma FGF19 and OCA increased intestinal FGF19, FABP6, and SLC51A. Both CDCA and OCA increased intestinal mucosal growth, whereas CDCA increased the plasma GLP-2, GLP-1 and GIP. CONCLUSIONS: Enteral OCA prevented cholestasis and phytosterolemia by increased hepatic bile acid and sterol transport via induction of hepatobiliary transporter FXR target genes and not by suppression of bile acid synthesis genes. We also showed an intestinal trophic action of OCA that demonstrates a dual clinical benefit of FXR agonism in the prevention of PNALD in piglets.

11.
J Agric Food Chem ; 72(38): 21077-21088, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39262139

RESUMEN

The polysaccharides of edible mushrooms are excellent phytochemicals for adjuvant treatment of metabolic diseases, but the potential mechanisms of synergistic effects are unclear. In this work, we discovered that NAP-3 enhanced the efficiency of metformin in lipid and glucose metabolism in type 2 diabetic (T2D) mice in a gut microbiome-dependent way. NAP-3 remodeled the intestinal microbial, resulting in the decreased activity of bile salt hydrolases and upregulation of CYP27A1 and CYP7B1 functions in the alternative pathway of bile acid synthesis, which leads to accumulation of the conjugated bile acids in ileum, specifically TßMCA and TUDCA. The accumulated conjugated bile acids either blocked or stimulated the nuclear receptors Farnesoid-X-receptor and TGR5, inducing the release of GLP-1 and ultimately enhanced glucose metabolism in mice. Collectively, our research indicated that edible mushroom polysaccharide NAP-3 may serve as a promising adjunctive oral therapeutic agent for T2D.


Asunto(s)
Ácidos y Sales Biliares , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Péptido 1 Similar al Glucagón , Metformina , Ratones Endogámicos C57BL , Polisacáridos , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Péptido 1 Similar al Glucagón/metabolismo , Metformina/farmacología , Masculino , Ácidos y Sales Biliares/metabolismo , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/metabolismo , Polisacáridos/administración & dosificación , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/administración & dosificación , Sinergismo Farmacológico , Agaricales/química , Agaricales/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación
12.
Molecules ; 29(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274927

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases encountered in clinical practice, which is characterized by the excessive accumulation of triglycerides (steatosis), and a variety of metabolic abnormalities including lipid metabolism and bile acid metabolism are closely related to NAFLD. In China, Gynostemma pentaphyllum is used as functional food and Chinese medicine to treat various diseases, especially NAFLD, for a long time. However, the active components that exert the main therapeutic effects and their mechanisms remain unclear. In this study, Gypensapogenin A was isolated from the total saponins of G. pentaphyllum and prepared as a liposomal delivery system. Gypensapogenin A liposomes could activate FXR, inhibit the expression of CYP7A1 and CYP8B1, increase the expression of CYP27A1, modulate the ratio of CA and CDCA, decrease the content of CA, and increase the content of CDCA, thus forming a virtuous cycle of activating FXR to play a role in lowering blood lipid levels.


Asunto(s)
Gynostemma , Metabolismo de los Lípidos , Liposomas , Receptores Citoplasmáticos y Nucleares , Receptores Citoplasmáticos y Nucleares/metabolismo , Liposomas/química , Metabolismo de los Lípidos/efectos de los fármacos , Humanos , Animales , Gynostemma/química , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Saponinas/farmacología , Saponinas/química , Células Hep G2 , Ratones , Ácidos y Sales Biliares/metabolismo , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos
13.
J Lipid Res ; : 100649, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306039

RESUMEN

Cholestasis is a chronic liver disease with limited therapeutic options. Hydrophobic bile acid-induced hepatobiliary injury is a major pathological driver of cholestasis progression. This study investigates the anti-cholestasis efficacy and mechanisms of action of glycine-conjugated ß-muricholic acid (Gly-ß-MCA). We use female Cyp2c70 KO mice, a rodent cholestasis model that do not produce endogenous muricholic acid (MCA) and exhibit a "human-like" hydrophobic bile acid pool and female-dominant progressive hepatobiliary injury and portal fibrosis. The efficacy of Gly-ß-MCA and ursodeoxycholic acid (UDCA), the 1st line drug for cholestasis, on cholangiopathy and portal fibrosis are compared. At a clinically relevant dose, Gly-ß-MCA shows comparable efficacy as UDCA in reducing serum transaminase, portal inflammation and ductular reaction, and better efficacy than UDCA against portal fibrosis. Unlike endogenous bile acids, orally administered Gly-ß-MCA is absorbed at low efficiency in the gut and enters the enterohepatic circulation mainly after microbiome-mediated deconjugation, which leads to taurine-conjugated MCA enrichment in bile that alters enterohepatic bile acid pool composition and reduces bile acid pool hydrophobicity. Gly-ß-MCA also promotes fecal excretion of endogenous hydrophobic bile acids and decreases total bile acid pool size, while UDCA treatment does not alter total bile acid pool. Furthermore, Gly-ß-MCA treatment leads to gut unconjugated MCA enrichment and reduces gut hydrophobic lithocholic acid (LCA) exposure. In contrast, UDCA treatment drives a marked increase of LCA flux through the large intestine. In conclusion, Gly-ß-MCA is a potent anti-cholestasis agent with potential clinical application in treating human cholestasis.

14.
Clin Res Hepatol Gastroenterol ; 48(8): 102448, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39159828

RESUMEN

OBJECTIVE: Vascular hyporeactivity increases with the incidence of obstructive jaundice (OJ). Evidence suggests that OJ activates the farnesoid X receptor (FXR) as well as the large-conductance Ca2+-activated K+ (BKCa or MaxiK) channel. This study was designed to explore the role of the FXR in vascular hyporesponsiveness induced by cholestasis. METHODS: The OJ model rats were constructed by bile duct ligation (BDL) and treated with an FXR agonist or antagonist. Vasoconstriction of the mesenteric arteries (MAs) was assessed in vitro. Whole-cell patch clamp recordings were used to investigate BKCa channel function. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot were used to detect mRNA and protein levels. RESULTS: A significant increase in vascular tone and responsiveness to norepinephrine (NE) was observed after the MaxiK channel blocker (IbTX) was administered. This effect was pronounced in BDL animals and can be mimicked by the FXR agonist GW4064 and inhibited by the FXR antagonist Z-guggulsterone (Z-Gu). GW4064 has a similar effect as cholestasis in promoting MaxiK currents in isolated arterial smooth muscle cells (ASMCs), while Z-Gu blunted this effect. The mRNA and protein expression of FXR and MaxiK-ß1, but not MaxiK-α, were significantly increased in the BDL group in comparison to the sham. Furthermore, activation or inhibition of FXR promoted or inhibited the mRNA and protein expression of the MaxiK-ß1 subunit, respectively. CONCLUSION: Activation of FXR enhances the capability of the MaxiK channel to regulate vascular tone and leads to vascular hyporesponsiveness in the MAs of BDL rats, which may be mediated by the nonparallel upregulation of MaxiK-α and MaxiK-ß1 subunit expression.


Asunto(s)
Ictericia Obstructiva , Arterias Mesentéricas , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares , Animales , Ictericia Obstructiva/metabolismo , Arterias Mesentéricas/fisiopatología , Ratas , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/metabolismo , Masculino , Vasoconstricción , Modelos Animales de Enfermedad , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo
15.
Comput Biol Med ; 180: 108991, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39126787

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a growing global health concern due to its potential to progress into severe liver diseases. Targeting the bile acid receptor FXR has emerged as a promising strategy for managing NAFLD. Building upon our previous research on FXR partial agonism, the present study investigates a series of 1,3,4-trisubstituted-pyrazol amide derivatives as FXR antagonists, aiming to delineate the structural features for antagonism. By means of 2D-QSAR (quantitative structure-activity relationships) modelling techniques, we elucidated the key structural elements responsible for the antagonistic properties of these derivatives. We then employed QPhAR, an open-access software, to identify key molecular features within the compounds that enhance their antagonistic activity. Additionally, 3D-QSAR modelling allowed us to analyse the steric and electrostatic fields of aligned 3D structures, further refining our understanding of structure-activity relationships. Subsequent molecular dynamics simulations provided insights into the binding mode interactions between the compounds and FXR, with varying potencies, confirming and complementing the findings from 2D-QSAR, pharmacophore, and 3D-QSAR modelling. Particularly, our study highlighted the significance of hydrophobic interactions in conferring potent antagonism by the 1,3,4-trisubstituted-pyrazol amide derivatives against FXR. Overall, this work underscores the potential of 1,3,4-trisubstituted-pyrazol amides as FXR antagonists for NAFLD treatment. Notably, our reliance on open-access software fosters reproducibility and broadens the accessibility of our findings.


Asunto(s)
Amidas , Pirazoles , Relación Estructura-Actividad Cuantitativa , Receptores Citoplasmáticos y Nucleares , Pirazoles/química , Pirazoles/farmacología , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Amidas/química , Humanos , Simulación de Dinámica Molecular , Simulación por Computador
16.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3804-3817, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099354

RESUMEN

The chemical composition of Ganoderma lucidum ethanol extracts was systematically analyzed and identified by ultra-high performance liquid chromatography-quadrupole electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Orbitrap-HRMS). The fragmentation pattern of the representative chemical compounds was summarized, and the potential anti-liver fibrosis active compounds of G. lucidum acting on the farnesoid X receptor(FXR) target were studied to elucidate its pharmacodynamic substance basis. Preliminarily, 95 chemical constituents of G. lucidum ethanol extracts were identified, including 24 ganoderic acids, 9 ganoderenic acids, 13 lucidenic acids, 3 ganolucidic acids, 1 ganoderma lactone, 40 other triterpenoids, 4 fatty acids, and 1 other constituent. In addition, the fragmentation patterns of the representative compounds were also analyzed. The structural characteristics of ganoderic acids and ganoderenic acids were the C30 skeleton, containing free-COOH and-OH groups, which could easily lose H_2O and CO_2 to form fragment ions. The D-ring was mostly a five-membered ring, which was prone to breakage. Lucidenic acids were the lanosterolane-type of the C27 skeleton, and the side-chain structure became shorter and contained the same free-COOH and-OH compared with ganoderic acids, which had been reduced from 8 to 5 cartons and prone to lose H_2O and CO_2. Then, six reported FXR receptor agonists were selected to form a training set for establishing a pharmacophore model based on FXR ligands. The 95 identified chemical constituents of G. lucidum were matched with the pharmacophore, and the optimal pharmacophore model 02(sensitivity=0.750 00, specificity=0.555 56, ROC=0.750) was selected for the virtual screening of the G. lucidum compound library through the validation of the test set. Finally, 31 potential G. lucidum active constituents were screened and chosen to activate the FXRs. The ADMET results showed that ganoderic acid H and lucidenic acid J had less than 90% plasma protein binding rate and no hepatotoxicity, which could be used as FXR activators for developing clinical drugs for the treatment of liver fibrosis, either alone or in combination.


Asunto(s)
Medicamentos Herbarios Chinos , Cirrosis Hepática , Receptores Citoplasmáticos y Nucleares , Reishi , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Humanos , Reishi/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Espectrometría de Masas/métodos , Estructura Molecular , Simulación del Acoplamiento Molecular
17.
Front Pharmacol ; 15: 1426049, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211777

RESUMEN

Background: The preservation of the Lingguizhugan (LGZG) decoction and patient compliance issue often limit the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Hence, herein, an LGZG oral solution was developed for alleviating MASLD. Additionally, the potential mechanisms underlying LGZG-mediated MASLD mitigation were explored. Methods: A MASLD mouse model was constructed using oleic and palmitic acid-induced LO2 cells and a high-fat diet. The apoptosis, lipid deposition, and mouse liver function were analyzed to assess the therapeutic effects of the LGZG oral solution on MASLD. Serum untargeted metabolomics, gut microbiota, bile acid (BA) metabolism, immunohistochemistry, and Western blotting analyses were performed to investigate the potential mechanism of action of LGZG oral solution on MASLD. Results: The LGZG oral solution ameliorated lipid deposition, oxidative stress, inflammation, and pathological damage. Serum untargeted metabolomics results revealed the LGZG-mediated regulation of the primary BA biosynthetic pathway. The 16S ribosomal RNA sequencing of the fecal microbiota showed that LGZG oral solution increased the relative abundance of the BA metabolism-associated Bacteroides, Akkermansia, and decreased that of Lactobacillus. Additionally, the BA metabolism analysis results revealed a decrease in the total taurine-α/ß-muricholic acid levels, whereas those of deoxycholic acid were increased, which activated specific receptors in the liver and ileum, including farnesoid X receptor (FXR) and takeda G protein-coupled receptor 5 (TGR5). Activation of FXR resulted in an increase in short heterodimer partner and subsequent inhibition of cholesterol 7α-hydroxylase and sterol regulatory element-binding protein-1c expression, and activation of FXR also results in the upregulation of fibroblast growth factor 15/19 expression, and consequently inhibition of cholesterol 7α-hydroxylase, which correlated with hepatic BA synthesis and lipogenesis, ultimately attenuating lipid deposition and bile acid stasis, thereby improving MASLD. Conclusion: Altogether, the findings of this study suggest that modulating microbiota-BA-FXR/TGR5 signaling pathway may be a potential mechanism of action of LGZG oral solution for the treatment of MASLD.

18.
Int J Biol Macromol ; 277(Pt 3): 134370, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094864

RESUMEN

Ulcerative Colitis (UC) is a chronic inflammatory disease of the intestinal tract with unknown definitive etiology. Polysaccharides are among the most important active components of Abelmoschi Corolla, exhibitings various pharmacological activities such as antioxidation and immunomodulation. However, no studies have yet reported the application of Abelmoschi Corolla Polysaccharides (ACP) in treating UC. This study aims to highlight the therapeutic efficacy of ACP in UC and reveal the underlying mechanism. The potential therapeutic effect is initially verified using a dextran sodium sulfate (DSS)-induced colitis model. 16S rRNA sequencing is performed using feces samples and untargeted metabolomics using serum samples to further reveal that ACP reprograms the dysbiosis triggered by UC progression, increases the abundance of Bacteroides spp., Blautia spp., and Parabacteroides spp. at the genus level and enriches the serum concentration of 7-ketodeoxycholic acid (7-KDA). Furthermore, using the FXR-/- mouse model, it is revealed that Farnesoid X Receptor (FXR) is a key target for ACP and the metabolite 7-KDA to block STAT3 phosphorylation by repairing the intestinal barrier to attenuate UC. Taken together, this work highlights the therapeutic potential of ACP against UC, mainly exerting its effects via modulating gut microbiota and regulating the FXR/STAT3 signaling pathway.


Asunto(s)
Abelmoschus , Microbioma Gastrointestinal , Polisacáridos , Receptores Citoplasmáticos y Nucleares , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Polisacáridos/farmacología , Polisacáridos/química , Transducción de Señal/efectos de los fármacos , Ratones , Receptores Citoplasmáticos y Nucleares/metabolismo , Abelmoschus/química , Sulfato de Dextran , Modelos Animales de Enfermedad , Masculino , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Ratones Endogámicos C57BL
19.
J Agric Food Chem ; 72(36): 20194-20210, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39193771

RESUMEN

Tauroursodeoxycholic acid (TUDCA) is a synthetic bile salt that has demonstrated efficacy in the management of hepatobiliary disorders. However, its specific mechanism of action in preventing and treating nonalcoholic fatty liver disease (NAFLD) remains incompletely understood. This research revealed that TUDCA treatment can reduce obesity and hepatic lipid buildup, enhance intestinal barrier function and microbial balance, and increase the presence of Allobaculum and Bifidobacterium in NAFLD mouse models. TUDCA can influence the activity of farnesoid X receptor (FXR) and cholesterol 7α-hydroxylase (CYP7A1), resulting in higher hepatic bile acid levels and increased expression of sodium taurocholate cotransporting polypeptide (NTCP), leading to elevated concentrations of liver-bound bile acids in mice. Furthermore, TUDCA can inhibit the expression of FXR and fatty acid transport protein 5 (FATP5), thereby reducing fatty acid absorption and hepatic lipid accumulation. This investigation provides new insights into the potential of TUDCA for preventing and treating NAFLD.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Ácido Tauroquenodesoxicólico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Ácido Tauroquenodesoxicólico/farmacología , Ácido Tauroquenodesoxicólico/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Humanos , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Simportadores/metabolismo , Simportadores/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética
20.
Gastro Hep Adv ; 3(3): 344-352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39131134

RESUMEN

Farnesoid X receptor (FXR) agonists have emerged as a promising therapeutic strategy for the management of various gastrointestinal (GI) diseases, including primary biliary cholangitis, nonalcoholic fatty liver disease, inflammatory bowel disease, alcohol-related liver disease, and primary sclerosing cholangitis. In this review, we discuss the mechanisms of action of FXR agonists, including their metabolic and immunomodulatory effects, and provide an overview of the clinical evidence supporting their use in the treatment of GI diseases. We also highlight the safety, adverse effects, and potential drug interactions associated with FXR agonists. While these agents have demonstrated efficacy in improving liver function, reducing hepatic steatosis, and improving histological endpoints in primary biliary cholangitis and nonalcoholic fatty liver disease, further research is needed to determine their long-term safety and effectiveness in other GI diseases, such as inflammatory bowel disease, alcohol-related liver disease, and primary sclerosing cholangitis. Additionally, the development of next-generation FXR agonists with improved potency and reduced side effects could further enhance their therapeutic potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA