Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52.650
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38868706

RESUMEN

Background and Aim: Endoscopic ultrasound shear wave elastography (EUS-SWE) can facilitate an objective evaluation of pancreatic fibrosis. Although it is primarily applied in evaluating chronic pancreatitis, its efficacy in assessing early chronic pancreatitis (ECP) remains underinvestigated. This study evaluated the diagnostic accuracy of EUS-SWE for assessing ECP diagnosed using the Japanese diagnostic criteria 2019. Methods: In total, 657 patients underwent EUS-SWE. Propensity score matching was used, and the participants were classified into the ECP and normal groups. ECP was diagnosed using the Japanese diagnostic criteria 2019. Pancreatic stiffness was assessed based on velocity (Vs) on EUS-SWE, and the optimal Vs cutoff value for ECP diagnosis was determined. A practical shear wave Vs value of ≥50% was considered significant. Results: Each group included 22 patients. The ECP group had higher pancreatic stiffness than the normal group (2.31 ± 0.67 m/s vs. 1.59 ± 0.40 m/s, p < 0.001). The Vs cutoff value for the diagnostic accuracy of ECP, as determined using the receiver operating characteristic curve, was 2.24m/s, with an area under the curve of 0.82 (95% confidence interval: 0.69-0.94). A high Vs was strongly correlated with the number of EUS findings (rs = 0.626, p < 0.001). Multiple regression analysis revealed that a history of acute pancreatitis and ≥2 EUS findings were independent predictors of a high Vs. Conclusions: There is a strong correlation between EUS-SWE findings and the Japanese diagnostic criteria 2019 for ECP. Hence, EUS-SWE can be an objective and invaluable diagnostic tool for ECP diagnosis.

2.
Front Cell Dev Biol ; 12: 1399319, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045456

RESUMEN

Background: Duchenne muscular dystrophy is a genetic disease produced by mutations in the dystrophin gene characterized by early onset muscle weakness leading to severe and irreversible disability. Muscle degeneration involves a complex interplay between multiple cell lineages spatially located within areas of damage, termed the degenerative niche, including inflammatory cells, satellite cells (SCs) and fibro-adipogenic precursor cells (FAPs). FAPs are mesenchymal stem cell which have a pivotal role in muscle homeostasis as they can either promote muscle regeneration or contribute to muscle degeneration by expanding fibrotic and fatty tissue. Although it has been described that FAPs could have a different behavior in DMD patients than in healthy controls, the molecular pathways regulating their function as well as their gene expression profile are unknown. Methods: We used single-cell RNA sequencing (scRNAseq) with 10X Genomics and Illumina technology to elucidate the differences in the transcriptional profile of isolated FAPs from healthy and DMD patients. Results: Gene signatures in FAPs from both groups revealed transcriptional differences. Seurat analysis categorized cell clusters as proliferative FAPs, regulatory FAPs, inflammatory FAPs, and myofibroblasts. Differentially expressed genes (DEGs) between healthy and DMD FAPs included upregulated genes CHI3L1, EFEMP1, MFAP5, and TGFBR2 in DMD. Functional analysis highlighted distinctions in system development, wound healing, and cytoskeletal organization in control FAPs, while extracellular organization, degradation, and collagen degradation were upregulated in DMD FAPs. Validation of DEGs in additional samples (n = 9) using qPCR reinforced the specific impact of pathological settings on FAP heterogeneity, reflecting their distinct contribution to fibro or fatty degeneration in vivo. Conclusion: Using the single-cell RNA seq from human samples provide new opportunities to study cellular coordination to further understand the regulation of muscle homeostasis and degeneration that occurs in muscular dystrophies.

3.
Front Cell Dev Biol ; 12: 1363811, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045461

RESUMEN

Lymphedema occurs as a result of lymphatic vessel damage or obstruction, leading to the lymphatic fluid stasis, which triggers inflammation, tissue fibrosis, and adipose tissue deposition with adipocyte hypertrophy. The treatment of lymphedema is divided into conservative and surgical approaches. Among surgical treatments, methods like lymphaticovenular anastomosis and vascularized lymph node transfer are gaining attention as they focus on restoring lymphatic flow, constituting a physiologic treatment approach. Lymphatic endothelial cells form the structure of lymphatic vessels. These cells possess button-like junctions that facilitate the influx of fluid and leukocytes. Approximately 10% of interstitial fluid is connected to venous return through lymphatic capillaries. Damage to lymphatic vessels leads to lymphatic fluid stasis, resulting in the clinical condition of lymphedema through three mechanisms: Inflammation involving CD4+ T cells as the principal contributing factor, along with the effects of immune cells on the VEGF-C/VEGFR axis, consequently resulting in abnormal lymphangiogenesis; adipocyte hypertrophy and adipose tissue deposition regulated by the interaction of CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor-γ; and tissue fibrosis initiated by the overactivity of Th2 cells, leading to the secretion of profibrotic cytokines such as IL-4, IL-13, and the growth factor TGF-ß1. Surgical treatments aimed at reconstructing the lymphatic system help facilitate lymphatic fluid drainage, but their effectiveness in treating already damaged lymphatic vessels is limited. Therefore, reviewing the pathophysiology and molecular mechanisms of lymphedema is crucial to complement surgical treatments and explore novel therapeutic approaches.

4.
Inflammation ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046603

RESUMEN

Recent studies increasingly suggest a connection between lipids and idiopathic pulmonary fibrosis (IPF). This study was aimed at exploring potential lipid-related biomarkers for IPF and uncovering the mechanisms underlying pulmonary fibrosis. IPF-related datasets were retrieved from the GEO database, and the ComBat algorithm was used to merge multiple datasets and eliminate batch effects. Weighted gene co-expression network analysis (WGCNA) was utilized to identify modules and genes associated with IPF. Potential hub genes were determined by intersecting these genes with lipid-related genes from the GeneCards database. A machine learning-based integrative approach was developed to construct diagnostic and prognostic signatures, which were validated across several datasets. Additionally, single-cell sequencing data was used to validate the expression differences of core IPF-related genes across various cell types. The effect of ABHD5 on fibroblasts was assessed using the cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and cell scratch assays. The expression levels of fibrotic factors were measured using real-time quantitative polymerase chain reaction and western blot analysis. WGCNA identified a red module potentially related to IPF, and the intersection with lipid-related genes yielded 51 hub genes. These genes were used to build diagnostic and prognostic models that demonstrated robust validation capabilities across multiple datasets. Single-cell sequencing analysis revealed low expression of ABHD5 in the lung tissues of IPF patients, with a higher proportion of fibroblasts exhibiting low ABHD5 expression. Cell experiments showed that under the influence of TGF-ß1, knockdown of ABHD5 slightly promoted fibroblast proliferation. Additionally, fibroblasts with low ABHD5 expression exhibited enhanced migratory capabilities and secreted more fibrotic factors. Lipid-related diagnostic and prognostic models for IPF were developed, and ABHD5 may serve as a potential biomarker. Low ABHD5 expression could potentially accelerate the progression of pulmonary fibrosis.

5.
Inflammation ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046604

RESUMEN

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a chronic lung disorder predominantly affecting preterm infants. Oxygen therapy, a common treatment for BPD, often leads to hyperoxia-induced pulmonary damage, particularly targeting alveolar epithelial cells (AECs). Crucially, disrupted lung epithelium-fibroblast interactions significantly contribute to BPD's pathogenesis. Previous studies on interleukin-11 (IL-11) in lung diseases have yielded conflicting results. Recent research, however, highlights IL-11 as a key regulator of fibrosis, stromal inflammation, and epithelial dysfunction. Despite this, the specific role of IL-11 in BPD remains underexplored. Our transcriptome analysis of normal and hyperoxia-exposed murine lung tissues revealed an increased expression of IL-11 RNA. This study aimed to investigate IL-11's role in modulating the disrupted interactions between AECs and fibroblasts in BPD. METHODS: BPD was modeled in vivo by exposing C57BL/6J neonatal mice to hyperoxia. Histopathological changes in lung tissue were evaluated with hematoxylin-eosin staining, while lung fibrosis was assessed using Masson staining and immunohistochemistry (IHC). To investigate IL-11's role in pulmonary injury contributing to BPD, IL-11 levels were reduced through intraperitoneal administration of IL-11RαFc in hyperoxia-exposed mice. Additionally, MLE-12 cells subjected to 95% oxygen were collected and co-cultured with mouse pulmonary fibroblasts (MPFs) to measure α-SMA and Collagen I expression levels. IL-11 levels in the supernatants were quantified using an enzyme-linked immunosorbent assay (ELISA). RESULTS: Both IHC and Masson staining revealed that inhibiting IL-11 expression alleviated pulmonary fibrosis in neonatal mice induced by hyperoxia, along with reducing the expression of fibrosis markers α-SMA and collagen I in lung tissue. In vitro analysis showed a significant increase in IL-11 levels in the supernatant of MLE-12 cells treated with hyperoxia. Silencing IL-11 expression in MLE-12 cells reduced α-SMA and collagen I concentrations in MPFs co-cultured with the supernatant of hyperoxia-treated MLE-12 cells. Additionally, ERK inhibitors decreased α-SMA and collagen I levels in MPFs co-cultured with the supernatant of hyperoxia-treated MLE-12 cells. Clinical studies found increased IL-11 levels in tracheal aspirates (TA) of infants with BPD. CONCLUSION: This research reveals that hyperoxia induces IL-11 secretion in lung epithelium. Additionally, IL-11 derived from lung epithelium emerged as a crucial mediator in myofibroblast differentiation via the ERK signaling pathway, highlighting its potential therapeutic value in BPD treatment.

6.
Diabetol Metab Syndr ; 16(1): 167, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39014438

RESUMEN

BACKGROUND: Diabetic nephropathy is a major secondary cause of end-stage renal disease. Apelin plays an important role in the development of DN. Understanding the exact mechanism of Apelin can help expand the means of treating DN. METHODS: Male C57BL/6 mice was used and STZ treatment was implemented for DN model establishment. Lentivirus systems including Lv-sh-RUNX3 and Lv-Apelin were obtained to knockdown RUNX3 and overexpress Apelin, respectively. A total of 36 mice were divided into 6 groups (n = 6 in each group): control, DN, DN + LV-Vector, DN + Lv-Apelin, DN + LV-Apelin + LV-sh-NC and DN + Lv-Apelin + Lv-sh-RUNX3 group. In vitro studies were performed using mesangial cells. Cell viability and proliferation was assessed through CCK8 and EDU analysis. Hematoxylin and eosin staining as well as Masson staining was implemented for histological evaluation. RT-qPCR was conducted for measuring relative mRNA levels, and protein expression was detected by western blotting. The interaction between SIRT1 and FOXO were verified by co-immunoprecipitations, and relations between RUNX3 and Apelin were demonstrated by dual luciferase report and chromatin immunoprecipitation. RESULTS: The DN group exhibited significantly lower Apelin expression compared to control (p < 0.05). Apelin overexpression markedly improved blood glucose, renal function indicators, ameliorated renal fibrosis and reduced fibrotic factor expression (p < 0.05) in the DN group, accompanied by elevated sirt1 levels and diminished acetylated FOXO1/FOXO3a (p < 0.05). However, RUNX3 knockdown combined with Apelin overexpression abrogated these beneficial effects, leading to impaired renal function, exacerbated fibrosis, increased fibrotic factor expression and acetylated FOXO1/FOXO3a versus Apelin overexpression alone (p < 0.05). In mesangial cells under high glucose, Apelin overexpression significantly inhibited cell proliferation and fibrotic factor production (p < 0.05). Conversely, RUNX3 interference enhanced cell proliferation and the secretion of fibrotic factors. (p < 0.05). Remarkably, combining Apelin overexpression with RUNX3 interference reversed the proliferation and fibrosis induced by RUNX3 interference (p < 0.05). Mechanistic studies revealed RUNX3 binds to the Apelin promoter, with the 467-489 bp site1 as the primary binding region, and SIRT1 physically interacts with FOXO1 and FOXO3a in mesangial cells. CONCLUSION: RUNX3 activated Apelin and regulated the SIRT1/FOXO signaling pathway, resulting in the suppressed cell proliferation and fibrosis in diabetic nephropathy. Apelin is a promising endogenous therapeutic target for anti-renal injury and anti-fibrosis in diabetic nephropathy. RUNX3 may serve as an endogenous intervention target for diseases related to Apelin deficiency.

7.
J Cardiovasc Aging ; 4(2)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39015481

RESUMEN

Aging represents a complex biological progression affecting the entire body, marked by a gradual decline in tissue function, rendering organs more susceptible to stress and diseases. The human heart holds significant importance in this context, as its aging process poses life-threatening risks. It entails macroscopic morphological shifts and biochemical changes that collectively contribute to diminished cardiac function. Among the numerous pivotal factors in aging, mitochondria play a critical role, intersecting with various molecular pathways and housing several aging-related agents. In this comprehensive review, we provide an updated overview of the functional role of mitochondria in cardiac aging.

8.
Open Respir Arch ; 6(3): 100334, 2024.
Artículo en Español | MEDLINE | ID: mdl-39021619

RESUMEN

Objective: The objective of the study was to analyze the diagnostic process and the time until the start of treatment of patients with idiopathic pulmonary fibrosis in relation to the publication of successive clinical practice guide. Material and methods: Multicenter, observational, ambispective study, in which patients includes in the idiopathic pulmonary fibrosis registry of the Spanish Society of Pulmonologist and Thoracic Surgery were analyzed. An electronic data collection notebook was enabled on the society's website. Sociodemographic and clinical variables were collected at diagnosis and follow-up of the patients. Results: From January 2012 to december 2019, 1064 patients were included in the registry, with 929 finally analyzed. The diagnosis process varied depending on the year in which it was performed, and the radiological pattern observed in the high-resolution computed tomography. Up to 26.3% of the cases (244) were diagnosed with chest high-resolution computed tomography and clinical evaluation. Surgical biopsy was used up to 50.2% of cases diagnosed before 2011, while it has been used in 14.2% since 2018. The median time from the onset of symptoms to diagnosis was 360 days (IQR 120-720), taking more than 2 years in the 21.0% of patients. A percentage of 79.4 of patients received antifibrotic treatment. The average time from diagnosis to the antifibrotic treatment has been 309 ± 596.5 days, with a median of 49 (IQR 0-307). Conclusions: The diagnostic process, including the time until diagnosis and the type of test used, has changed from 2011 to 2019, probably due to advances in clinical research and the publication of diagnostic-therapeutic consensus guidelines.

9.
Bioact Mater ; 40: 396-416, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39022185

RESUMEN

Frozen shoulder (FS) manifests as progressively worsening pain and a reduction in shoulder range of motion (ROM). Salvianolic acid B (SaB) is recently expected to be used in the treatment of fibrosis diseases including FS. We firstly demonstrate that SaB can effectively hinder the progression of oxidative stress, inflammation, and pathological fibrosis within the synovial tissue in FS, potentially leading to the reduction or reversal of capsule fibrosis and joint stiffness. For further clinical application, we design and synthesize a novel, superior, antioxidant and antibacterial CSMA-PBA/OD-DA (CPDA) hydrogel for the delivery of SaB. In vitro experiments demonstrate that the CPDA hydrogel exhibits excellent biocompatibility and rheological properties, rendering it suitable for intra-articular injections. Upon injection into the contracted joint cavity of FS model rat, the SaB-CPDA hydrogel accelerate the recovery of ROM and exhibit superior anti-fibrosis effect, presenting the promise for the treatment of FS in vivo.

10.
Euroasian J Hepatogastroenterol ; 14(1): 35-39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022213

RESUMEN

Background: In the 21st century, nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disorder. The prevalence of NAFLD within the general population in India ranges from 9 to 53%. The gold standard for assessing the severity of liver fibrosis is liver biopsy. However, due to various difficulties involved with liver biopsy, it is imperative to identify different non-invasive tools that can replace liver biopsy. Methodology: A prospective observational study of 130 patients meeting the inclusion criteria for NAFLD was done for a period of 18 months. We aimed to compare the performance characteristics of different noninvasive scores [fibrosis-4 (FIB-4) score, nonalcoholic fatty liver disease fibrosis score (NFS), and aspartate aminotransferase to platelet ratio index (APRI)] in predicting advanced fibrosis as assessed by FibroScan. Results: In the study, 76.9% of patients were male. Advanced fibrosis was seen in 12.3% of the patients. Majority of the patients with advanced fibrosis had metabolic syndrome. Based on the area under the receiver operating characteristic curve (AUROC), the new cut-off for ruling out advanced fibrosis for FIB-4, NFS, and APRI were 1.18, -0.9, and 0.65, respectively, and APRI had the best AUROC (0.768). Conclusion: Abnormal glycemic status and metabolic syndrome were risk factors for advanced fibrosis. The newly derived cut-offs for the FIB-4 score, NFS score, and APRI score had a better Negative predictive value compared to the original cut-offs. How to cite this article: Bhayani PD, Parameswaran SA, Palaniswamy KR, et al. Is Aspartate Aminotransferase to Platelet Ratio Index a Better Noninvasive Score for Predicting Advanced Fibrosis in Nonalcoholic Fatty Liver Disease Patients? Euroasian J Hepato-Gastroenterol 2024;14(1):35-39.

11.
Noncoding RNA Res ; 9(4): 1120-1132, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39022687

RESUMEN

Long non-coding RNA (lncRNA) H19 is an extensively studied lncRNA that is related to numerous pathological changes. Our previous findings have documented that serum lncRNA H19 levels are decreased in patients with chronic kidney disorder and lncRNA H19 reduction is closely correlated with renal tubulointerstitial fibrosis, an essential step in developing end-stage kidney disease. Nonetheless, the precise function and mechanism of lncRNA H19 in renal tubulointerstitial fibrosis are not fully comprehended. The present work utilized a mouse model of unilateral ureteral obstruction (UUO) and transforming growth factor-ß1 (TGF-ß1)-stimulated HK-2 cells to investigate the possible role and mechanism of lncRNA H19 in renal tubulointerstitial fibrosis were investigated. Levels of lncRNA H19 decreased in kidneys of mice with UUO and HK-2 cells stimulated with TGF-ß1. Up-regulation of lncRNA H19 in mouse kidneys remarkably relieved kidney injury, fibrosis and inflammation triggered by UUO. Moreover, the increase of lncRNA H19 in HK-2 cells reduced epithelial-to-mesenchymal transition (EMT) induced by TGF-ß1. Notably, up-regulation of lncRNA H19 reduced lipid accumulation and triacylglycerol content in kidneys of mice with UUO and TGF-ß1-stimulated HK-2 cells, accompanied by the up-regulation of long-chain acyl-CoA synthetase 1 (ACSL1). lncRNA H19 was identified as a sponge of microRNA-130a-3p, through which lncRNA H19 modulates the expression of ACSL1. The overexpression of microRNA-130a-3p reversed the lncRNA H19-induced increases in the expression of ACSL1. The suppressive effects of lncRNA H19 overexpression on the EMT, inflammation and lipid accumulation in HK-2 cells were diminished by ACSL1 silencing or microRNA-130a-3p overexpression. Overall, the findings showed that lncRNA H19 ameliorated renal tubulointerstitial fibrosis by reducing lipid deposition via modulation of the microRNA-130a-3p/ACSL1 axis.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39024029

RESUMEN

BACKGROUND: Circulating polymerized mutant Z-alpha-1 antitrypsin (Z-polymer) constitutes a characteristic feature in alpha-1 antitrypsin deficiency (AATD), but there is limited knowledge about its association with adverse clinical outcomes and liver fibrosis. We explored this association using data from a large cohort of adults with AATD. METHODS: A total of 836 (431 PiZZ, 405 PiMZ) adults with AATD and 312 controls (PiMM) from the European Alpha-1 Liver Cohort (2015-2020) were included. Time-to-event analyses were conducted for adults with the PiZZ genotype followed for adverse clinical outcomes (earliest occurrence of liver-related hospitalization, liver transplant or all-cause mortality). Cox proportional hazard models were used to describe the association between binary circulating Z-polymer levels and adverse clinical outcomes. Correlations between baseline circulating Z-polymer levels and baseline liver fibrosis (liver stiffness measurement [LSM] determined by transient elastography [FibroScan®]) were evaluated. The analyses were stratified by augmentation therapy status. RESULTS: Of 324 adults with the PiZZ genotype and longitudinal follow-up data, 28 reported adverse clinical outcomes. Higher baseline circulating Z-polymer levels were associated with an increased risk of adverse clinical outcomes in both crude (hazard ratio [95% confidence interval, CI], 2.88 [1.21, 6.87]) and age-adjusted (1.96 [0.78, 4.94]) analyses. In adults with the PiZZ genotype, circulating Z-polymer levels were weakly positively correlated with baseline LSM (Spearman's rho [95% CI]: 0.21 [0.11, 0.31]). Similar results were observed after stratification by augmentation therapy status. CONCLUSIONS: In adults with the PiZZ genotype, higher circulating Z-polymer levels were associated with a shorter time to adverse clinical outcome, and positively correlated with baseline LSM. Circulating Z-polymer levels may be a prognostic biomarker of clinically relevant disease in AATD.

13.
Scand Cardiovasc J ; 58(1): 2373083, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39024033

RESUMEN

OBJECTIVE: This paper was performed to decipher the serum microRNA (miR)-125b-5p expression in patients with dilated cardiomyopathy (DCM) combined with heart failure (HF) and its effect on myocardial fibrosis. METHODS: Serum miR-125b-5p expression, LVEDD, LVESD, LVEF, LVFS, and NT-proBNP levels were evaluated in clinical samples. A rat DCM model was established by continuous intraperitoneal injection of adriamycin and treated with miR-125b-5p agomir and its negative control. Cardiac function, serum TNF-α, hs-CRP, and NT-proBNP levels, pathological changes in myocardial tissues, cardiomyocyte apoptosis, and the expression levels of miR-125b-5p and fibrosis-related factors were detected in rats. RESULTS: In comparison to the control group, the case group had higher levels of LVEDD, LVESD, and NT-pro-BNP, and lower levels of LVEF, LVFS, and miR-125b-5p expression levels. Overexpression of miR-125b-5p effectively led to the improvement of cardiomyocyte hypertrophy and collagen arrangement disorder in DCM rats, the reduction of blue-stained collagen fibers in the interstitial myocardium, the reduction of the levels of TNF-α, hs-CRP, and NT-proBNP and the expression levels of TGF-1ß, Collagen I, and α-SMA, and the reduction of the number of apoptosis in cardiomyocytes. CONCLUSION: Overexpression of miR-125b-5p is effective in ameliorating myocardial fibrosis.


Asunto(s)
Apoptosis , Cardiomiopatía Dilatada , Modelos Animales de Enfermedad , Fibrosis , Insuficiencia Cardíaca , MicroARNs , Miocardio , Función Ventricular Izquierda , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/sangre , Cardiomiopatía Dilatada/patología , MicroARNs/sangre , MicroARNs/genética , MicroARNs/metabolismo , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Masculino , Humanos , Miocardio/patología , Miocardio/metabolismo , Persona de Mediana Edad , Femenino , Estudios de Casos y Controles , Ratas Sprague-Dawley , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/sangre , Péptido Natriurético Encefálico/genética , Remodelación Ventricular , Fragmentos de Péptidos/sangre , Adulto , MicroARN Circulante/sangre , MicroARN Circulante/genética , Anciano , Volumen Sistólico
14.
FASEB J ; 38(13): e23749, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38953707

RESUMEN

Pulmonary fibrosis is a formidable challenge in chronic and age-related lung diseases. Myofibroblasts secrete large amounts of extracellular matrix and induce pro-repair responses during normal wound healing. Successful tissue repair results in termination of myofibroblast activity via apoptosis; however, some myofibroblasts exhibit a senescent phenotype and escape apoptosis, causing over-repair that is characterized by pathological fibrotic scarring. Therefore, the removal of senescent myofibroblasts using senolytics is an important method for the treatment of pulmonary fibrosis. Procyanidin C1 (PCC1) has recently been discovered as a senolytic compound with very low toxicity and few side effects. This study aimed to determine whether PCC1 could improve lung fibrosis by promoting apoptosis in senescent myofibroblasts and to investigate the mechanisms involved. The results showed that PCC1 attenuates bleomycin (BLM)-induced pulmonary fibrosis in mice. In addition, we found that PCC1 inhibited extracellular matrix deposition and promoted the apoptosis of senescent myofibroblasts by increasing PUMA expression and activating the BAX signaling pathway. Our findings represent a new method of pulmonary fibrosis management and emphasize the potential of PCC1 as a senotherapeutic agent for the treatment of pulmonary fibrosis, providing hope for patients with pulmonary fibrosis worldwide. Our results advance our understanding of age-related diseases and highlight the importance of addressing cellular senescence in treatment.


Asunto(s)
Bleomicina , Catequina , Senescencia Celular , Ratones Endogámicos C57BL , Miofibroblastos , Fibrosis Pulmonar , Animales , Bleomicina/toxicidad , Miofibroblastos/metabolismo , Miofibroblastos/efectos de los fármacos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Ratones , Senescencia Celular/efectos de los fármacos , Catequina/farmacología , Catequina/análogos & derivados , Proantocianidinas/farmacología , Apoptosis/efectos de los fármacos , Masculino , Biflavonoides/farmacología , Transducción de Señal/efectos de los fármacos
15.
Physiol Rep ; 12(12): e16012, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38959068

RESUMEN

Pulmonary fibrosis is an interstitial scarring disease of the lung characterized by poor prognosis and limited treatment options. Tissue transglutaminase 2 (TG2) is believed to promote lung fibrosis by crosslinking extracellular matrix components and activating latent TGFß. This study assessed physiologic pulmonary function and metabolic alterations in the mouse bleomycin model with TG2 genetic deletion. TG2-deficient mice demonstrated attenuated the fibrosis and preservation of lung function, with significant reduction in elastance and increases in compliance and inspiratory capacity compared to control mice treated with bleomycin. Bleomycin induced metabolic changes in the mouse lung that were consistent with increased aerobic glycolysis, including increased expression of lactate dehydrogenase A and increased production of lactate, as well as increased glutamine, glutamate, and aspartate. TG2-deficient mice treated with bleomycin exhibited similar metabolic changes but with reduced magnitude. Our results demonstrate that TG2 is required for a typical fibrosis response to injury. In the absence of TG2, the fibrotic response is biochemically similar to wild-type, but lesions are smaller and lung function is preserved. We also show for the first time that profibrotic pathways of tissue stiffening and metabolic reprogramming are interconnected, and that metabolic disruptions in fibrosis go beyond glycolysis.


Asunto(s)
Bleomicina , Pulmón , Ratones Noqueados , Proteína Glutamina Gamma Glutamiltransferasa 2 , Fibrosis Pulmonar , Transglutaminasas , Animales , Bleomicina/toxicidad , Proteína Glutamina Gamma Glutamiltransferasa 2/metabolismo , Transglutaminasas/metabolismo , Transglutaminasas/genética , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología , Ratones , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Ratones Endogámicos C57BL , Glucólisis , Masculino
16.
Neurochem Int ; 178: 105805, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004102

RESUMEN

Dementia is a growing problem around the globe as the world's population continues to age. Multiple studies have identified potentially modifiable risk factors for the development of dementia suggesting that addressing some or all of these risk factors might have a significant impact on the aging population worldwide. However, this is not always as straightforward as it seems since many of these risk factors are currently treated with drugs specific to the risk factor. Moreover, since people can have multiple risk factors, addressing each of them individually could be highly problematic as it would likely lead to negative outcomes associated with polypharmacy and, in the long term, could do significant harm. A potential alternative is to identify compounds that have shown efficacy against a number of these different risk factors. As discussed in this review, there is strong evidence that the flavonol fisetin is one such compound. In animal studies it has shown efficacy against many of the risk factors that have been associated with an increased risk of developing dementia and also exhibits direct neuroprotective effects. Thus, further human research on fisetin in the context of dementia risk factors is clearly warranted.

17.
Pharmacol Res ; 207: 107301, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009291

RESUMEN

Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.

18.
Ren Fail ; 46(2): 2376929, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39022902

RESUMEN

The transient receptor potential canonical 6 (TRPC6) channel, a nonselective cation channel that allows the passage of Ca2+, plays an important role in renal diseases. TRPC6 is activated by Ca2+ influx, oxidative stress, and mechanical stress. Studies have shown that in addition to glomerular diseases, TRPC6 can contribute to renal tubular disorders, such as acute kidney injury, renal interstitial fibrosis, and renal cell carcinoma (RCC). However, the tubule-specific physiological functions of TRPC6 have not yet been elucidated. Its pathophysiological role in ischemia/reperfusion (I/R) injury is debatable. Thus, TRPC6 may have dual roles in I/R injury. TRPC6 induces renal fibrosis and immune cell infiltration in a unilateral ureteral obstruction (UUO) mouse model. Additionally, TRPC6 overexpression may modify G2 phase transition, thus altering the DNA damage checkpoint, which can cause genomic instability and RCC tumorigenesis and can control the proliferation of RCC cells. This review highlights the importance of TRPC6 in various conditions of the renal tubular system. To better understand certain renal disorders and ultimately identify new therapeutic targets to improve patient care, the pathophysiology of TRPC6 must be clarified.


Asunto(s)
Canal Catiónico TRPC6 , Humanos , Canal Catiónico TRPC6/metabolismo , Canal Catiónico TRPC6/genética , Animales , Túbulos Renales/patología , Túbulos Renales/metabolismo , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Daño por Reperfusión/metabolismo , Fibrosis , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Ratones , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPC/genética , Estrés Oxidativo , Enfermedades Renales/metabolismo , Enfermedades Renales/etiología
19.
Transl Res ; 273: 58-77, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025226

RESUMEN

Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive in vitro models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based in vitro reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology. Here, we devised a single-step decellularization protocol to obtain and thoroughly characterize the biochemical and micro-mechanical properties of the ECM secreted by activated cFbs differentiated from human induced pluripotent stem cells (iPSCs). We activated iPSC-derived cFbs to the myofibroblast phenotype by tuning basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-ß1) signalling and confirmed that activated cells acquired key features of myofibroblast phenotype, like SMAD2/3 nuclear shuttling, the formation of aligned alpha-smooth muscle actin (α-SMA)-rich stress fibres and increased focal adhesions (FAs) assembly. Next, we used Mass Spectrometry, nanoindentation, scanning electron and confocal microscopy to unveil the characteristic composition and the visco-elastic properties of the abundant, collagen-rich ECM deposited by cardiac myofibroblasts in vitro. Finally, we demonstrated that the fibrotic ECM activates mechanosensitive pathways in iPSC-derived cardiomyocytes, impacting on their shape, sarcomere assembly, phenotype, and calcium handling properties. We thus propose human bio-inspired decellularized matrices as animal-free, isogenic cardiomyocyte culture substrates recapitulating key pathophysiological changes occurring at the cellular level during cardiac fibrosis.

20.
Diagn Pathol ; 19(1): 99, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026319

RESUMEN

BACKGROUND: Bone marrow fibrosis (BMF) severely impacts both the quality of life and the efficacy of diagnostic procedures. However, the correlation between BMF and clinicopathological features, cytogenetic changes, and prognosis of newly diagnosed multiple myeloma (NDMM) remains unclear. This study determined the incidence, patient characteristics, and clinical outcomes of patients with NDMM with BMF. METHODS: The clinical data, histological features, and clinical outcomes of patients with NDMM were collected. Reticular fiber staining was performed on the enrolled cases, and the degree of reticular fiber overgrowth was graded. Patients with MF-2 and MF-3 were classified as the BMF+ group, and those with MF-0 and MF-1 were classified as the BMF- group, and BMF incidence was calculated. The differences in clinical data, histological features, and clinical outcomes between the BMF+ group and the BMF- group were compared. RESULTS: A consecutive series of 146 patients with NDMM were included. The incidence of MF-0, MF-1, MF-2, and MF-3 was 7.53% (11/146), 34.93% (51/146), 51.37% (75/146), and 6.16% (9/146), respectively. The incidence of BMF-MF-2 and MF-3-was 57.53% (84/146). A significant correlation was identified between the pattern of infiltration and BMF (P < 0.001). In the BMF- group, the distribution of cases with interstitial, nodular, and diffuse infiltration of plasma cells was 16 (25.8%), 21 (33.9%), and 25 (40.3%), respectively. Conversely, in the BMF+ group, these values for interstitial, nodular, and diffuse tumor cells were 9 (10.7%), 15 (17.9%), and 60 (71.4%). Furthermore, BMF was associated with a diffuse infiltration pattern. The overall survival (OS) of the BMF+ group (39.1 months; 95% confidence interval [CI]: 34.0-44.3) was lower than that of the BMF- group (45.4 months; 95% CI: 39.5-51.3), but there was no significant difference between the two groups (P = 0.221). Univariate and multivariate analyses showed that the BMF+ status was not associated with OS in patients with NDMM (P = 0.381 and P = 0.748, respectively). CONCLUSIONS: Our findings suggest that BMF is linked to a diffuse infiltration pattern, and its occurrence is not related to the prognosis of patients with NDMM, providing a basis for further exploring the BMF value in NDMM diagnosis and treatment.


Asunto(s)
Médula Ósea , Mieloma Múltiple , Mielofibrosis Primaria , Humanos , Mieloma Múltiple/patología , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Anciano , Mielofibrosis Primaria/patología , Mielofibrosis Primaria/diagnóstico , Médula Ósea/patología , Adulto , Pronóstico , Anciano de 80 o más Años , Estudios Retrospectivos , Incidencia , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...