Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.787
Filtrar
1.
Cureus ; 16(8): e68277, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39350814

RESUMEN

OBJECTIVE: To simulate the en masse traction technique with the integration (EMTI) of six maxillary anterior teeth using a finite element model (FEM) and explore various protocols for maxillary protrusion. The study aimed to investigate root displacement and stress distribution in the periodontal ligament (PDL) by varying the retraction position and direction of EMTI applied to the maxillary anterior teeth. No actual participants were involved. MATERIALS AND METHODS: The FEM model included six teeth (central and lateral incisors and canines) with a PDL thickness of 0.3 mm. The model encompassing the alveolar bone (ALB) and EMTI had 180,528 elements and 47,836 nodes. The EMTI integrated six anterior teeth via a 0.9-mm-diameter stainless steel lingual wire, equipped with three moment arms extending toward the root apex: one midline (central arm) and two distal to the canines (lateral arms). The position and direction of the traction force applied to the three moment arms of the EMTI were varied to assess crown and apex displacement, as well as PDL stress. RESULTS: Lingual tipping was consistent across all protocols, emphasizing controlled incisor tipping. The application of horizontal traction at 10 mm and traction at 7 mm from the central and lateral arms of the EMTI, respectively, demonstrated the most uniform stress distribution across the PDL of all six anterior teeth. CONCLUSIONS AND CLINICAL SIGNIFICANCE: The FEM analysis results suggest that the new EMTI method, which retracts the maxillary anterior teeth as a unit, is effective for tooth movement and PDL stress distribution. The EMTI technique, with its specific traction protocols and emphasis on controlled tipping, appears to be a promising approach for addressing maxillary protrusions.

2.
Comput Methods Programs Biomed ; 257: 108441, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39353220

RESUMEN

BACKGROUND AND OBJECTIVE: Brain tumors are one of the most common diseases and causes of death in humans. Since the growth of brain tumors has irreparable risks for the patient, predicting the growth of the tumor and knowing its effect on the brain tissue will increase the efficiency of treatment strategies. METHODS: This study examines brain tumor growth using mathematical modeling based on the Reaction-Diffusion equation and the biomechanical model based on continuum mechanics principles. With the help of the image threshold technique of magnetic resonance images, a heterogeneous and close-to-reality environment of the brain has been modeled and experimental data validated the results to achieve maximum accuracy in predicting growth. RESULTS: The obtained results have been compared with the reported conventional models to evaluate the presented model. In addition to incorporating the chemotherapy effects in governing equations, the real-time finite element analysis of the stress tensors of the surrounding tissue of tumor cells and considering its role in changing the shape and growth of the tumor has added to the importance and accuracy of the current model. CONCLUSIONS: The comparison of the obtained results with conventional models shows that the heterogeneous model has higher reliability due to the consideration of the appropriate properties for the different regions of the brain. The presented model can contribute to personalized medicine, aid in understanding the dynamics of tumor growth, optimize treatment regimens, and develop adaptive therapy strategies.

3.
Angew Chem Int Ed Engl ; : e202415259, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354328

RESUMEN

Electrochemical reduction of nitrate to ammonia (NRA) offers a sustainable approach for NH3 production and NO3- removal but suffers from low NH3 yield rate (<1.20 mmol h-1 cm-2). We present bimetallic Cu11Ag3 nanotips with tailored local environment and tip-enhanced effects, which achieve an ultrahigh NH3 yield rate of 2.36 mmol h-1 cm-2 at a low applied potential of -0.33 V vs. RHE, a high Faradic efficiency (FE) of 98.8%, and long-term operation stability at 1800 mg-N L-1 NO3-, outperforming most of the recently reported catalysts. At a NO3- concentration as low as 15 mg-N L-1, it still delivers a high FE of 86.9% and an NH3 selectivity of 93.8%. Operando ATR-FTIR spectra, finite-element method, and DFT calculations reveal that the Cu11Ag3 exhibits reduced adsorption energy barrier of *N intermediates, favorable water dissociation for *H generation and high energy barrier for H2 formation, while its tip-enhanced enrichment promoting NO3- accumulation.

4.
Ultramicroscopy ; 267: 114057, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39357240

RESUMEN

Electron holography is a powerful tool to investigate the properties of micro- and nanostructured electronic devices. A meaningful interpretation of the holographic data, however, requires an understanding of the 3D potential distribution inside and outside the sample. Standard approaches to resolve these potential distributions involve projective tilt series and their tomographic reconstruction, in addition to extensive simulations. Here, a simple and intuitive model for the approximation of such long-range potential distributions surrounding a nanostructured coplanar capacitor is presented. The model uses only independent convolutions of an initial potential distribution with a Gaussian kernel, allowing the reconstruction of the entire potential distribution from only one measured projection. By this, a significant reduction of the required computational power as well as a drastically simplified measurement process is achieved, paving the way towards quantitative electron holographic investigation of electrically biased nanostructures.

5.
J Stomatol Oral Maxillofac Surg ; : 102100, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357809

RESUMEN

PURPOSE: The aim of this study was to investigate the biomechanical effects of mandibular deviation on the TMJ in patients with mandibular prognathism before and after orthognathic surgery using three-dimensional finite element analysis. METHODS: Eight patients with mandibular prognathism without deviation, eight patients with mandibular prognathism with deviation and sixteen normal subjects were recruited. Three-dimensional models of the maxillofacial were reconstructed using MIMICS. Nine muscle forces were used to simulate incisal occlusion and contact was used to simulate fossa-disc-condyle interactions. RESULTS: Before surgery, the stress in the TMJ was generally greater in the Pre-MD&MP group than in the Pre-MD group; it was much greater in both groups than in the control group, ranging from about 2 to 12 times as great in the Pre-MD group and from about 5 to 64 times as great in the Pre-MD&MP group. After orthognathic surgeries, the stresses in the Post-MP&MD were significantly reduced by approximately 21.7% to 93.4%. And in the Post-MP group, the stresses were reduced by approximately 1.4% to 51.1%. CONCLUSION: Mandibular deviation exacerbated the abnormal stress distribution in the TMJ of patients with mandibular prognathism. Orthognathic surgeries could improve the stress distribution in patients with mandibular prognathism (with and without deviation). TMD was closely related to the stress levels of the TMJ.

6.
Sci Rep ; 14(1): 22903, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358401

RESUMEN

To prevent the early breakage of anchor cables under shear loads in support engineering, a combined structure of Anchor Cable with C-shaped Tube (ACC) has been proposed. The shear resistance enhancement mechanism of this structure and the mechanisms of various influencing factors have yet to be fully revealed. A refined nonlinear finite element model of ACC was original established using ABAQUS software, taking into account the actual structure of the steel strands and the interactions, such as contact and failure between the various components. Various anchor cable pretension forces and block strengths were set to investigate their effects on the shear mechanical response of ACC. The results successfully demonstrated a high correlation between peak shear load and pretension force. The results demonstrate that an increase in pretension force reduces the ACC's peak shear load and break displacement. Additionally, the structure exhibited higher flexural stiffness, the block strength was mobilized earlier, and the block failed locally more quickly. Under high pretension forces, the system exhibited higher shear stiffness in the early stages of shearing due to the influence of the axial force component. With low pretension forces, the ACC exhibited a larger break displacement due to the minor tensile deformation at the shear plane position for the same shear displacement. At low pretension forces, the structure's bending angle increased more rapidly during the middle and later stages of shearing, accompanied by a larger break displacement. Both of these factors led to a greater bending angle at the shear plane position at the point of failure. The results reveal the characteristic of the peak shear load initially increasing and then decreasing with the increase in test block strength, along with its underlying mechanism. As the block strength increased, the bending angle of the structure at the shear plane position increased more rapidly, resulting in higher shear stiffness. With high block strength, the combination of smaller break displacement and greater shear stiffness led to an initial increase followed by a decrease in peak shear load. A comprehensive RSSB (Relative Stiffness between Structure and Test Block) that considers both structural and test block stiffness was proposed. The deformation pattern of the structure was controlled by the RSSB. The higher the RSSB, the wider the plastic hinge extension range for the same shear displacement, the smaller the bending angle at the shear plane position, and the smaller the maximum curvature of the structure. The contact force of the C-shaped tube generally exhibited a "single peak" distribution. As the shear displacement increased, the peak position of the contact force moved away from the shear plane, and the maximum contact force increased rapidly and remained relatively stable. At the end of the shearing process, the contact force of the C-shaped tube exhibited a "double peak" distribution.

7.
Comput Part Mech ; 11(5): 2235-2243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39359910

RESUMEN

The Discrete element method (DEM) is a robust numerical tool for simulating crack propagation and wear in granular materials. However, the computational cost associated with DEM hinders its applicability to large domains. To address this limitation, we employ DEM to model regions experiencing crack propagation and wear, and utilize the finite element method (FEM) to model regions experiencing small deformation, thus reducing the computational burden. The two domains are linked using a FEM-DEM coupling, which considers an overlapping region where the deformation of the two domains is reconciled. We employ a "strong coupling" formulation, in which each DEM particle in the overlapping region is constrained to an equivalent position obtained by nodal interpolation in the finite element. While the coupling method has been proved capable of handling propagation of small-amplitude waves between domains, we examine in this paper its accuracy to efficiently model for material failure events. We investigate two cases of material failure in the DEM region: the first one involves mode I crack propagation, and the second one focuses on rough surfaces' shearing leading to debris creation. For each, we consider several DEM domain sizes, representing different distances between the coupling region and the DEM undergoing inelasticity and fracture. The accuracy of the coupling approach is evaluated by comparing it with a pure DEM simulation, and the results demonstrate its effectiveness in accurately capturing the behavior of the pure DEM, regardless of the placement of the coupling region. Supplementary Information: The online version contains supplementary material available at 10.1007/s40571-024-00788-x.

8.
Curr Res Neurobiol ; 7: 100139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39347540

RESUMEN

Laser thermal ablation has become a prominent neurosurgical treatment approach, but in epilepsy patients it cannot currently be safely implemented with intracranial recording electrodes that are used to study interictal or epileptiform activity. There is a pressing need for computational models of laser interstitial thermal therapy (LITT) with and without intracranial electrodes to enhance the efficacy and safety of optical neurotherapies. In this paper, we aimed to build a biophysical bioheat and ray optics model to study the effects of laser heating in the brain, with and without intracranial electrodes in the vicinity of the ablation zone during the LITT procedure. COMSOL Multiphysics finite element method (FEM) solver software was used to create a bioheat thermal model of brain tissue, with and without blood flow incorporation via Penne's model, to model neural tissue response to laser heating. We report that the close placement of intracranial electrodes can increase the maximum temperature of the brain tissue volume as well as impact the necrosis region volume if the electrodes are placed too closely to the laser coupled diffuse fiber tip. The model shows that an electrode displacement of 4 mm could be considered a safe distance of intracranial electrode placement away from the LITT probe treatment area. This work, for the first time, models the impact of intracranially implanted recording electrodes during LITT, which could improve the understanding of the LITT treatment procedure on the brain's neural networks a sufficient safe distance to the implanted intracranial recording electrodes. We recommend modeling safe distances for placing the electrodes with respect to the infrared laser coupled diffuse fiber tip.

9.
Comput Methods Programs Biomed ; 257: 108430, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39316957

RESUMEN

BACKGROUND AND OBJECTIVE: Spinal cord injuries can have a severe impact on athletes' or patients' lives. High axial impact scenarios like tackling and scrummaging can cause hyperflexion and buckling of the cervical spine, which is often connected with bilateral facet dislocation. Typically, finite-element (FE) or musculoskeletal models are applied to investigate these scenarios, however, they have the drawbacks of high computational cost and lack of soft tissue information, respectively. Moreover, material properties of the involved tissues are commonly tested in quasi-static conditions, which do not accurately capture the mechanical behavior during impact scenarios. Thus, the aim of this study was to develop, calibrate and validate an approach for the creation of impact-specific hybrid, rigid body - finite-element spine models for high-dynamic axial impact scenarios. METHODS: Five porcine cervical spine models were used to replicate in-vitro experiments to calibrate stiffness and damping parameters of the intervertebral joints by matching the kinematics of the in-vitro with the in-silico experiments. Afterwards, a five-fold cross-validation was conducted. Additionally, the von Mises stress of the lumped FE-discs was investigated during impact. RESULTS: The results of the calibration and validation of our hybrid approach agree well with the in-vitro experiments. The stress maps of the lumped FE-discs showed that the highest stress of the most superior lumped disc was located anterior while the remaining lumped discs had their maximum in the posterior portion. CONCLUSION: Our hybrid method demonstrated the importance of impact-specific modeling. Overall, our hybrid modeling approach enhances the possibilities of identifying spine injury mechanisms by facilitating dynamic, impact-specific computational models.

10.
Burns ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39317539

RESUMEN

This study aims to explore the potential of a scaffold composed of drug-chitosan-hydroxyapatite (HA) in improving tissue treatment. The focus of the investigation lies in analyzing the physical and biological properties of the scaffold and evaluating its mechanical characteristics through finite-element analysis. To synthesize microcapsules containing dextran-diclofenac sodium, the electrospraying method was employed. The drug-chitosan-HA scaffold with varying volume fractions (VF) of the synthesized microcapsules (10, 15, and 20) was fabricated using the freeze-drying technique. Microscopic and scanning electron microscopy (SEM) images were utilized to evaluate the morphology, shape, and size of the microcapsules, as well as the porosity of the scaffolds for wound healing purposes. The mechanical properties of the synthesized microcapsules were determined via a nanoindentation test, while the mechanical behavior of the fabricated scaffolds was assessed through compression testing. Additionally, a multiscale finite-element model was developed to predict the mechanical properties of tissue scaffolds containing pharmaceutical microcapsules. The findings indicate that the incorporation of drug-chitosan-hydroxyapatite into the tissue significantly enhances both mechanical and biological responses. The mechanical evaluations demonstrate that the drug-chitosan-hydroxyapatite tissue exhibits excellent resistance to pressure, making it a suitable protective covering for skin wounds. Moreover, biological evaluations reveal that an increase in scaffold porosity leads to higher swelling behavior. The scaffold containing 20 % pharmaceutical microcapsules demonstrated the greatest swelling and desirable antibacterial properties, thereby indicating its potential as an effective wound dressing. Furthermore, a multiscale finite-element model was developed to predict the mechanical properties of tissue containing pharmaceutical microcapsules. The results indicated that the average size of the microcapsules was in the range of 170 to 180 µm, and the porosity of the prepared tissue was between 52 % and 61 %. The experimental compressive properties revealed that an increase in the volume fraction of the embedded microcapsules led to an increase in the maximum compressive stress and compressive modulus of the scaffolds by up to 54.95 % and 53.18 %, respectively, for the scaffold containing 20 % VF of pharmaceutical microcapsules compared to the specimen containing 10 % VF. In conclusion, the developed scaffold has the potential to serve as an effective wound dressing, with the ability to provide structural support, facilitate controlled drug release, and promote wound healing.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39256142

RESUMEN

Reconstruction for large-scale temporomandibular joint (TMJ) defects can be challenging. Previously, we utilized the medial femoral condyle (MFC) flap for TMJ reconstruction. However, the optimal fixation method remains uncertain. In this study, finite element analysis was used to study the effects of three different fixation types of bone graft: overlap type, bevel type, and flush type. Models of different fixation types of MFC flap were reconstructed from CT images. A standard internal fixation model for extracapsular condylar fracture was also included as a control. Displacement of bone graft, deformation of plates and screws, and stress distribution of plates, screws, and cortical and cancellous of the bone graft were analyzed by finite element analysis to investigate their biomechanical features. The displacement of the bone graft and deformation of plates and screws in three different fixation types showed no significant difference. The overlap type and flush type of fixation displayed the lowest and highest stress respectively. All three fixation types could satisfy the mechanical requirement and face no risk of breakage and the major displacement of the MFC bone graft. These results provide insights into the optimal fixation approach for MFC bone grafts, offering valuable guidance and reference for clinical application.

12.
Ann Biomed Eng ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230788

RESUMEN

PURPOSE: Ultrasound imaging is key in the management of patients with an abdominal aortic aneurysm (AAA). It was recently shown that the cyclic diameter variations between diastole and systole, which can be quantified with US imaging, increase significantly with the strength of the applied probe pressure on the patient's abdomen. The goal of this study is to investigate this effect more thoroughly. METHODS: With finite-element modeling, pulsatile blood pressure and probe pressure are simulated in three patient-specific geometries. Two distinct models for the aortic wall were simulated: a nonlinear hyperelastic and a linear elastic model. In addition, varying stiffness was considered for the surrounding tissues. The effect of light, moderate, and firm probe pressure was quantified on the stresses and strains in the aortic wall, and on two in vivo stiffness measures. In addition, the Elasticity Loss Index was proposed to quantify the change in stiffness due to probe pressure. RESULTS: Firm probe pressure decreased the measured aortic stiffness, and material stiffness was affected only when the wall was modeled as nonlinear, suggesting a shift in the stress-strain curve. In addition, stiffer surrounding tissues and a more elongated aneurysm sac decreased the responsiveness to the probe pressure. CONCLUSION: The effect of probe pressure on the AAA wall stiffness was clarified. In particular, the AAA wall nonlinear behavior was found to be of primary importance in determining the probe pressure response. Thus, further work will intend to make use of this novel finding in a clinical context.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39289175

RESUMEN

Owing to its low incidence, small trauma, fast recovery, and high efficiency, left atrial appendage occlusion has become a new strategy for preventing stroke caused by atrial fibrillation. Due to a lack of relevant research information on this emerging technology, the effectiveness, stability, or related complications of occluders are mostly observed from a clinical perspective. However, there are fewer studies on the mechanical properties and safety of these occluders. In this study, a new left atrial appendage occluder is proposed, and a complete numerical simulation analysis framework is established through the finite element method to simulate the actual implantation and service process of the left atrial appendage occluder. Besides, the influence of the structural size and release scale of the occluder on its support performance, occluding effect, and safety is also explored. The results demonstrate that the structural size and release scale exert a significant impact on the support performance, occluding effect, and safety of the occluder. The structural optimization of the occluder contributes to enhancing its mechanical performance, thus ensuring its stability and effectiveness after implantation. Overall, these efforts may lay a scientific foundation for the structural optimization, safety evaluation, and effectiveness prediction of the occluder. Furthermore, these findings also provide effective reference for the application of numerical simulation technology in the research on the left atrial appendage occlusion.

14.
Sensors (Basel) ; 24(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39275732

RESUMEN

Recently, capacitive micromachined ultrasound transducers (CMUTs) with long rectangular membranes have demonstrated performance advantages over conventional piezoelectric transducers; however, modeling these CMUT geometries has been limited to computationally burdensome numerical methods. Improved fast modeling methods, such as equivalent circuit models, could help achieve designs with even better performance. The primary obstacle in developing such methods is the lack of tractable methods for computing the radiation impedance of clamped rectangular radiators. This paper presents a method that approximates the velocity profile using a polynomial shape model to rapidly and accurately estimate radiation impedance. The validity of the approximate velocity profile and corresponding radiation impedance calculation was assessed using finite element simulations for a variety of membrane aspect ratios and bias voltages. Our method was evaluated for rectangular radiators with width:length ratios from 1:1 up to 1:25. At all aspect ratios, the radiation resistance was closely modeled. However, when calculating the radiation reactance, our initial approach was only accurate for low aspect ratios. This motivated us to consider an alternative shape model for high aspect ratios, which was more accurate when compared with FEM. To facilitate the development of future rectangular CMUTs, we provide a MATLAB script that quickly calculates radiation impedance using both methods.

15.
Sci Rep ; 14(1): 20835, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242608

RESUMEN

This study investigates the impact of Al 2 O 3 particle volume fraction and distribution on the deformation and damage of particle-reinforced metal matrix composites, particularly in the context of functionally graded metal matrix composites. In this study, a two-dimensional nonlinear random microstructure-based finite element modeling approach implemented in ABAQUS/Explicit with a Python-generated script to analyze the deformation and damage mechanisms in AA 6061 - T 6 / Al 2 O 3 composites. The plastic deformation and ductile cracking of the matrix are captured using the Gurson-Tvergaard-Needleman model, whereas particle fracture is modelled using the Johnson-Holmquist II model. Matrix-particle interface decohesion is simulated using the surface-based cohesive zone method. The findings reveal that functionally graded metal matrix composites exhibit higher hardness values ( HRB ) than traditional metal matrix composites. The results highlight the importance of functionally graded metal matrix composites. Functionally graded metal matrix composites with a Gaussian distribution and a particle volume fraction of 10% achieve HRB values comparable to particle-reinforced metal matrix composites with a particle volume fraction of 20%, with only a 2% difference in HRB . Thus, HRB can be improved significantly by employing a low particle volume fraction and incorporating a Gaussian distribution across the material thickness. Furthermore, functionally graded metal matrix composites with a Gaussian distribution exhibit higher HRB values and better agreement with experimental distribution functions when compared to those with a power-law distribution.

16.
Materials (Basel) ; 17(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39274595

RESUMEN

The impact of perforation patterns on the compressive strength of cardboard packaging is a critical concern in the packaging industry, where optimizing material usage without compromising structural integrity is essential. This study aims to investigate how different perforation designs affect the load-bearing capacity of cardboard boxes. Utilizing finite element method (FEM) simulations, we assessed the compressive strength of packaging made of various types of corrugated cardboards, including E, B, C, EB, and BC flutes with different heights. Mechanical testing was conducted to obtain accurate material properties for the simulations. Packaging dimensions were varied to generalize the findings across different sizes. Results showed that perforation patterns significantly influenced the compressive strength, with reductions ranging from 14% to 43%, compared to non-perforated packaging. Notably, perforations on multiple walls resulted in the highest strength reductions. The study concludes that while perforations are necessary for functionality and aesthetics, their design must be carefully considered to minimize negative impacts on structural integrity. These findings provide valuable insights for designing more efficient and sustainable packaging solutions in the industry.

17.
Materials (Basel) ; 17(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39274600

RESUMEN

Solid-state shear milling (S3M) equipment is an evolution from traditional stone mills, enabling the processing of polymer materials and fillers through crushing, mixing, and mechanochemical reactions at ambient temperature. Due to the complex structure of the mill-pan, empirical data alone are insufficient to give a comprehensive understanding of the physicochemical interactions during the milling process. To provide an in-depth insight of the working effect and mechanism of S3M equipment, finite element method (FEM) analysis is employed to simulate the milling dynamics, which substantiates the correlation between numerical outcomes and experimental observations. A model simplification strategy is proposed to optimize calculation time without compromising accuracy. The findings in this work demonstrate the S-S bond breakage mechanism behind stress-induced devulcanization and suggest the structural optimizations for enhancing the devulcanization and pulverization efficiency of S3M equipment, thereby providing a theoretical foundation for its application in material processing.

18.
Materials (Basel) ; 17(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39274746

RESUMEN

Modeling the dynamic properties of wood and wood-based composites is a challenging task due to naturally growing structure and moisture-dependent material properties. This paper presents the finite element modeling of plywood panels' dynamic properties. Two panels differing in thickness were analyzed: (i) 18 mm and (ii) 27 mm. The developed models consisted of individual layers of wood, which were discretized using three-dimensional finite elements formulated using an orthotropic material model. The models were subjected to an updating procedure based on experimentally determined frequency response functions. As a result of a model updating relative errors for natural frequencies obtained numerically and experimentally were not exceeding 2.0%, on average 0.7% for 18 mm thick panel and not exceeding 2.6%, on average 1.5% for 27 mm thick panel. To prove the utility of the method and at the same time to validate it, a model of a cabinet was built, which was then subjected to experimental verification. In this case, average relative differences for natural frequencies of 6.6% were obtained.

19.
Int J Numer Method Biomed Eng ; : e3864, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250194

RESUMEN

Heat transfer in the human eyeball, a complex organ, is significantly influenced by various pathophysiological and external parameters. Particularly, heat transfer critically affects fluid behavior within the eye and ocular drug delivery processes. Overcoming the challenges of experimental analysis, this study introduces a comprehensive three-dimensional mathematical and computational model to simulate the heat transfer in a realistic geometry. Our work includes an extensive sensitivity analysis to address uncertainties and delineate the impact of different variables on heat distribution in ocular tissues. To manage the model's complexity, we employed a very fast model reduction technique with certified sharp error bounds, ensuring computational efficiency without compromising accuracy. Our results demonstrate remarkable consistency with experimental observations and align closely with existing numerical findings in the literature. Crucially, our findings underscore the significant role of blood flow and environmental conditions, particularly in the eye's internal tissues. Clinically, this model offers a promising tool for examining the temperature-related effects of various therapeutic interventions on the eye. Such insights are invaluable for optimizing treatment strategies in ophthalmology.

20.
Comput Biol Med ; 182: 109159, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39303394

RESUMEN

PURPOSE: The objective of this study is to validate a novel workflow for implementing patient-specific finite element (FE) simulations to virtually replicate the Transcatheter Aortic Valve Implantation (TAVI) procedure. METHODS: Seven patients undergoing TAVI were enrolled. Patient-specific anatomical models were reconstructed from pre-operative computed tomography (CT) scans and subsequentially discretized, considering the native aortic leaflets and calcifications. Moreover, high-fidelity models of CoreValve Evolut R and Acurate Neo2 valves were built. To determine the most suitable material properties for the two stents, an accurate calibration process was undertaken. This involved conducting crimping simulations and fine-tuning Nitinol parameters to fit experimental force-diameter curves. Subsequently, FE simulations of TAVI procedures were conducted. To validate the reliability of the implemented implantation simulations, qualitative and quantitative comparisons with post-operative clinical data, such as angiographies and CT scans, were performed. RESULTS: For both devices, the simulation curves closely matched the experimental data, indicating successful validation of the valves mechanical behaviour. An accurate qualitative superimposition with both angiographies and CTs was evident, proving the reliability of the simulated implantation. Furthermore, a mean percentage difference of 1,79 ± 0,93 % and 3,67 ± 2,73 % between the simulated and segmented final configurations of the stents was calculated in terms of orifice area and eccentricity, respectively. CONCLUSION: This study shows the successful validation of TAVI simulations in patient-specific anatomies, offering a valuable tool to optimize patients care through personalized pre-operative planning. A systematic approach for the validation is presented, laying the groundwork for enhanced predictive modeling in clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA