Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Virol J ; 21(1): 186, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135075

RESUMEN

BACKGROUND: The global outbreak of COVID-19 caused by the SARS-CoV-2 has led to millions of deaths. This unanticipated emergency has prompted virologists across the globe to delve deeper into the intricate dynamicity of the host-virus interface with an aim to identify antiviral targets and elucidate host and viral determinants of severe disease. AIM: The present study was undertaken to analyse the role of histone deacetylase 6 (HDAC6) in regulating SARS-CoV-2 infection. RESULTS: Gradual increase in HDAC6 expression was observed in different SARS-CoV-2-permissive cell lines following SARS-CoV-2 infection. The SARS-CoV-2 nucleocapsid protein (N protein) was identified as the primary viral factor responsible for upregulating HDAC6 expression. Downregulation of HDAC6 using shRNA or a specific inhibitor tubacin resulted in reduced viral replication suggesting proviral role of its deacetylase activity. Further investigations uncovered the interaction of HDAC6 with stress granule protein G3BP1 and N protein during infection. HDAC6-mediated deacetylation of SARS-CoV-2 N protein was found to be crucial for its association with G3BP1. CONCLUSION: This study provides valuable insights into the molecular mechanisms underlying the disruption of cytoplasmic stress granules during SARS-CoV-2 infection and highlights the significance of HDAC6 in the process.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Histona Desacetilasa 6 , SARS-CoV-2 , Replicación Viral , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/genética , Humanos , SARS-CoV-2/fisiología , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/genética , COVID-19/virología , COVID-19/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Acetilación , Línea Celular , Chlorocebus aethiops , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Células Vero , Animales , Interacciones Huésped-Patógeno , Proteínas de Unión a Poli-ADP-Ribosa , ADN Helicasas , ARN Helicasas
2.
Cell Rep ; 43(8): 114617, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39120973

RESUMEN

Liquid-liquid phase separation (LLPS) mediated by G3BP1/2 proteins and non-translating mRNAs mediates stress granule (SG) assembly. We investigated the phylogenetic evolution of G3BP orthologs from unicellular yeast to mammals and identified both conserved and divergent features. The modular domain organization of G3BP orthologs is generally conserved. However, invertebrate orthologs displayed reduced capacity for SG assembly in human cells compared to vertebrate orthologs. We demonstrated that the protein-interaction network facilitated by the NTF2L domain is a crucial determinant of this specificity. The evolution of the G3BP1 network coincided with its exploitation by certain viruses, as evident from the interaction between viral proteins and G3BP orthologs in insects and vertebrates. We revealed the importance and divergence of the G3BP interaction network in human SG formation. Leveraging this network, we established a 7-component in vitro SG reconstitution system for quantitative studies. These findings highlight the significance of G3BP network divergence in the evolution of biological processes.


Asunto(s)
ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , Mapas de Interacción de Proteínas , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Humanos , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , Gránulos de Estrés/metabolismo , Animales , ADN Helicasas/metabolismo , ADN Helicasas/genética , Filogenia , Células HeLa , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Proteínas de Unión al ARN , Proteínas Adaptadoras Transductoras de Señales
3.
Protein J ; 43(4): 834-841, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39009911

RESUMEN

Coiled-coil domain-containing 124 protein is a multifunctional RNA-binding factor, and it was previously reported to interact with various biomolecular complexes localized at diverse subcellular locations, such as the ribosome, centrosome, midbody, and nucleoli. We aimed to better characterize the subcellular CCDC124 translocation by labelling this protein with a fluorescent tag, followed by laser scanning confocal microscopy methods. As traditional GFP-tagging of small proteins such as CCDC124 often faces limitations like potential structural perturbations of labeled proteins, and interference of the fluorescent-tag with their endogenous cellular functions, we aimed to label CCDC124 with the smallest possible split-GFP associated protein-tagging system (GFP11/GFP1-10) for better characterization of its subcellular localizations and its translocation dynamics. By recombinant DNA techniques we generated CCDC124-constructs labelled with either single of four tandem copies of GFP11 (GFP11 × 1::CCDC124, GFP11 × 4::CCDC124, or CCDC124::GFP11 × 4). We then cotransfected U2OS cells with these split-GFP constructs (GFP11 × 1(or X4)::CCDC124/GFP1-10) and analyzed subcellular localization of CCDC124 protein by laser scanning confocal microscopy. Tagging CCDC124 with four tandem copies of a 16-amino acid short GFP-derived peptide-tag (GFP11 × 4::CCDC124) allowed better characterization of the subcellular localization of CCDC124 protein in our model human bone osteosarcoma (U2OS) cells. Thus, by this novel methodology we successfully identified GFP11 × 4::CCDC124 molecules in G3BP1-overexpression induced stress-granules by live cell protein imaging for the first time. Our findings propose CCDC124 as a novel component of the stress granule which is a membraneless organelle involved in translational shut-down in response to cellular stress.


Asunto(s)
Gránulos Citoplasmáticos , Proteínas Fluorescentes Verdes , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas con Motivos de Reconocimiento de ARN , Humanos , Línea Celular Tumoral , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/química , ADN Helicasas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/química , Microscopía Confocal/métodos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química
4.
Anim Cells Syst (Seoul) ; 28(1): 315-325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895161

RESUMEN

Exposure to toxic molecules from food or oral medications induces toxicity in colon cells that cause various human diseases; however, in vitro monitoring systems for colon cell toxicity are not well established. Stress granules are nonmembranous foci that form in cells exposed to cellular stress. When cells sense toxic environments, they acutely and systemically promote stress granule formation, with Ras GTPase-activating protein-binding protein 1 (G3BP1) acting as a core component to protect their mRNA from abnormal degradation. Here, we knocked in green fluorescent protein (GFP)-coding sequences into the C-terminal region of the G3BP1 gene in a human colon cell line through CRISPR-Cas9-mediated homologous recombination and confirmed the formation of stress granules with the G3BP1-GFP protein in these cells under cellular stress exposure. We demonstrated the formation and dissociation of stress granules in G3BP1-GFP expressing colon cells through real-time monitoring using a fluorescence microscope. Furthermore, we validated the toxicity monitoring system in the established colon cell line by observing stress granule formation following exposure to dihydrocapsaicin, bisphenol A, and sorbitol. Taken together, we established a stress granule reporter system in a colon cell line, providing a novel assessment for the real-time monitoring of colon toxicity in response to various chemicals.

5.
Biochem Soc Trans ; 52(3): 1393-1404, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38778761

RESUMEN

Several biomolecular condensates assemble in mammalian cells in response to viral infection. The most studied of these are stress granules (SGs), which have been proposed to promote antiviral innate immune signaling pathways, including the RLR-MAVS, the protein kinase R (PKR), and the OAS-RNase L pathways. However, recent studies have demonstrated that SGs either negatively regulate or do not impact antiviral signaling. Instead, the SG-nucleating protein, G3BP1, may function to perturb viral RNA biology by condensing viral RNA into viral-aggregated RNA condensates, thus explaining why viruses often antagonize G3BP1 or hijack its RNA condensing function. However, a recently identified condensate, termed double-stranded RNA-induced foci, promotes the activation of the PKR and OAS-RNase L antiviral pathways. In addition, SG-like condensates known as an RNase L-induced bodies (RLBs) have been observed during many viral infections, including SARS-CoV-2 and several flaviviruses. RLBs may function in promoting decay of cellular and viral RNA, as well as promoting ribosome-associated signaling pathways. Herein, we review these recent advances in the field of antiviral biomolecular condensates, and we provide perspective on the role of canonical SGs and G3BP1 during the antiviral response.


Asunto(s)
ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , ARN Viral , Gránulos de Estrés , Humanos , Animales , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Helicasas/metabolismo , ARN Viral/metabolismo , Gránulos de Estrés/metabolismo , SARS-CoV-2/fisiología , Inmunidad Innata , Transducción de Señal , Condensados Biomoleculares/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Virosis/tratamiento farmacológico , Virosis/metabolismo , ADN Helicasas/metabolismo , eIF-2 Quinasa/metabolismo , Endorribonucleasas/metabolismo , COVID-19/virología , COVID-19/inmunología
6.
Chemosphere ; 361: 142485, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821132

RESUMEN

Acute stress caused by short-term exposure to deleterious chemicals can induce the aggregation of RNA-binding proteins (RBPs) in the cytosol and the formation of stress granules (SGs). The cytoplasmic RBP, Ras GTPase-activating protein-binding protein 1 (G3BP1) is a critical organizer of SG, and its aggregation is considered a hallmark of cellular stress. However, assembly of SG is a highly dynamic process that involves RBPs; hence, existing methods based on fixation processes or overexpression of RBPs exhibit limited efficacy in detecting the assembly of SG under stress conditions. In this study, we established a G3BP1- Green fluorescent protein (GFP) reporter protein in a human neuroblastoma cell line to overcome these limitations. GFP was introduced into the G3BP1 genomic sequence via homologous recombination to generate a G3BP1-GFP fusion protein and further analyze the aggregation processes. We validated the assembly of SG under stress conditions using the G3BP1-GFP reporter system. Additionally, this system supported the evaluation of bisphenol A-induced SG response in the established human neuroblastoma cell line. In conclusion, the established G3BP1-GFP reporter system enables us to monitor the assembly of the SG complex in a human neuroblastoma cell line in real time and can serve as an efficient tool for assessing potential neurotoxicity associated with short-term exposure to chemicals.


Asunto(s)
ADN Helicasas , Proteínas Fluorescentes Verdes , Neuroblastoma , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Humanos , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Línea Celular Tumoral , ARN Helicasas/genética , ARN Helicasas/metabolismo , Neuroblastoma/patología , ADN Helicasas/metabolismo , Gránulos de Estrés , Estrés Fisiológico , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
7.
Toxicol Lett ; 397: 48-54, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734221

RESUMEN

The skin, the organ with the largest surface area in the body, is the most susceptible to chemical exposure from the external environment. In this study, we aimed to establish an in vitro skin toxicity monitoring system that utilizes the mechanism of stress granule (SG) formation induced by various cellular stresses. In HaCaT cells, a keratinocyte cell line that comprises the human skin, a green fluorescent protein (GFP) was knocked in at the C-terminal genomic locus of Ras GTPase-activating protein-binding protein 1 (G3BP1), a representative component of SGs. The G3BP1-GFP knock-in HaCaT cells and wild-type (WT) HaCaT cells formed SGs containing G3BP1-GFP upon exposure to arsenite and household chemicals, such as bisphenol A (BPA) and benzalkonium chloride (BAC), in real-time. In addition, the exposure of G3BP1-GFP knock-in HaCaT cells to BPA and BAC promoted the phosphorylation of eukaryotic initiation factor 2 alpha and protein kinase R-like endoplasmic reticulum kinase, which are cell signaling factors involved in SG formation, similar to WT HaCaT cells. In conclusion, this novel G3BP1-GFP knock-in human skin cell system can monitor SG formation in real-time and be utilized to assess skin toxicity to various substances.


Asunto(s)
Gránulos Citoplasmáticos , ADN Helicasas , Proteínas Fluorescentes Verdes , Queratinocitos , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Humanos , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Arsenitos/toxicidad , Piel/efectos de los fármacos , Piel/metabolismo , Técnicas de Sustitución del Gen , Genes Reporteros/efectos de los fármacos , Fenoles/toxicidad , Células HaCaT , Fosforilación , Compuestos de Bencidrilo/toxicidad , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Pruebas de Toxicidad/métodos
8.
Front Immunol ; 15: 1358036, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690262

RESUMEN

Background: It remains unclear whether BPIV3 infection leads to stress granules formation and whether G3BP1 plays a role in this process and in viral replication. This study aims to clarify the association between BPIV3 and stress granules, explore the effect of G3BP1 on BPIV3 replication, and provide significant insights into the mechanisms by which BPIV3 evades the host's antiviral immunity to support its own survival. Methods: Here, we use Immunofluorescence staining to observe the effect of BPIV3 infection on the assembly of stress granules. Meanwhile, the expression changes of eIF2α and G3BP1 were determined. Overexpression or siRNA silencing of intracellular G3BP1 levels was examined for its regulatory control of BPIV3 replication. Results: We identify that the BPIV3 infection elicited phosphorylation of the eIF2α protein. However, it did not induce the assembly of stress granules; rather, it inhibited the formation of stress granules and downregulated the expression of G3BP1. G3BP1 overexpression facilitated the formation of stress granules within cells and hindered viral replication, while G3BP1 knockdown enhanced BPIV3 expression. Conclusion: This study suggest that G3BP1 plays a crucial role in BPIV3 suppressing stress granule formation and viral replication.


Asunto(s)
ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Replicación Viral , Animales , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , Gránulos de Estrés/metabolismo , Bovinos , Factor 2 Eucariótico de Iniciación/metabolismo , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/metabolismo , Interacciones Huésped-Patógeno/inmunología , Fosforilación , Línea Celular , Gránulos Citoplasmáticos/metabolismo
9.
Molecules ; 29(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38731625

RESUMEN

Upon a variety of environmental stresses, eukaryotic cells usually recruit translational stalled mRNAs and RNA-binding proteins to form cytoplasmic condensates known as stress granules (SGs), which minimize stress-induced damage and promote stress adaptation and cell survival. SGs are hijacked by cancer cells to promote cell survival and are consequently involved in the development of anticancer drug resistance. However, the design and application of chemical compounds targeting SGs to improve anticancer drug efficacy have rarely been studied. Here, we developed two types of SG inhibitory peptides (SIPs) derived from SG core proteins Caprin1 and USP10 and fused with cell-penetrating peptides to generate TAT-SIP-C1/2 and SIP-U1-Antp, respectively. We obtained 11 SG-inducing anticancer compounds from cell-based screens and explored the potential application of SIPs in overcoming resistance to the SG-inducing anticancer drug sorafenib. We found that SIPs increased the sensitivity of HeLa cells to sorafenib via the disruption of SGs. Therefore, anticancer drugs which are competent to induce SGs could be combined with SIPs to sensitize cancer cells, which might provide a novel therapeutic strategy to alleviate anticancer drug resistance.


Asunto(s)
Antineoplásicos , Sorafenib , Gránulos de Estrés , Humanos , Sorafenib/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Gránulos de Estrés/metabolismo , Células HeLa , Resistencia a Antineoplásicos/efectos de los fármacos , Péptidos/farmacología , Péptidos/química , Supervivencia Celular/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Línea Celular Tumoral , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/química
10.
Cancer Sci ; 115(6): 1851-1865, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581120

RESUMEN

Aberrant expression of forkhead box transcription factor 1 (FOXM1) plays critical roles in a variety of human malignancies and predicts poor prognosis. However, little is known about the crosstalk between FOXM1 and long noncoding RNAs (lncRNAs) in tumorigenesis. The present study identifies a previously uncharacterized lncRNA XLOC_008672 in gastric cancer (GC), which is regulated by FOXM1 and possesses multiple copies of tandem repetitive sequences. LncRNA microarrays are used to screen differentially expressed lncRNAs in FOXM1 knockdown GC cells, and then the highest fold downregulation lncRNA XLOC_008672 is screened out. Sequence analysis reveals that the new lncRNA contains 62 copies of 37-bp tandem repeats. It is transcriptionally activated by FOXM1 and functions as a downstream effector of FOXM1 in GC cells through in vitro and in vivo functional assays. Elevated expression of XLOC_008672 is found in GC tissues and indicates worse prognosis. Mechanistically, XLOC_008672 can bind to small nuclear ribonucleoprotein polypeptide A (SNRPA), thereby enhancing mRNA stability of Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) and, consequently, facilitating GC cell proliferation and migration. Our study discovers a new uncharacterized lncRNA XLOC_008672 involved in GC carcinogenesis and progression. Targeting FOXM1/XLOC_008672/SNRPA/G3BP1 signaling axis might be a promising therapeutic strategy for GC.


Asunto(s)
Carcinogénesis , Proliferación Celular , Proteína Forkhead Box M1 , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante , Neoplasias Gástricas , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , ADN Helicasas , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Ratones Desnudos , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Pronóstico , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Secuencias Repetidas en Tándem/genética
11.
Vet Microbiol ; 293: 110070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593624

RESUMEN

Stress granules (SGs), the main component is GTPase-activating protein-binding protein 1 (G3BP1), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. In this study, we found that porcine deltacoronavirus (PDCoV) infection induced stable formation of robust SGs in cells through a PERK (protein kinase R-like endoplasmic reticulum kinase)-dependent mechanism. Overexpression of SGs marker proteins G3BP1 significantly reduced PDCoV replication in vitro, while inhibition of endogenous G3BP1 enhanced PDCoV replication. Moreover, PDCoV infected LLC-PK1 cells raise the phosphorylation level of G3BP1. By overexpression of the G3BP1 phosphorylated protein or the G3BP1 dephosphorylated protein, we found that phosphorylation of G3BP1 is involved in the regulation of PDCoV-induced inflammatory response. Taken together, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets for antiviral target.


Asunto(s)
ADN Helicasas , Inflamación , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Animales , Porcinos , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Replicación Viral , Coronavirus/inmunología , Coronavirus/fisiología , Línea Celular , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/genética , Inmunidad Innata
12.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572740

RESUMEN

The herpes simplex virus 1 (HSV1) virion host shutoff (vhs) protein is an endoribonuclease that regulates the translational environment of the infected cell, by inducing the degradation of host mRNA via cellular exonuclease activity. To further understand the relationship between translational shutoff and mRNA decay, we have used ectopic expression to compare HSV1 vhs (vhsH) to its homologues from four other alphaherpesviruses - varicella zoster virus (vhsV), bovine herpesvirus 1 (vhsB), equine herpesvirus 1 (vhsE) and Marek's disease virus (vhsM). Only vhsH, vhsB and vhsE induced degradation of a reporter luciferase mRNA, with poly(A)+ in situ hybridization indicating a global depletion of cytoplasmic poly(A)+ RNA and a concomitant increase in nuclear poly(A)+ RNA and the polyA tail binding protein PABPC1 in cells expressing these variants. By contrast, vhsV and vhsM failed to induce reporter mRNA decay and poly(A)+ depletion, but rather, induced cytoplasmic G3BP1 and poly(A)+ mRNA- containing granules and phosphorylation of the stress response proteins eIF2α and protein kinase R. Intriguingly, regardless of their apparent endoribonuclease activity, all vhs homologues induced an equivalent general blockade to translation as measured by single-cell puromycin incorporation. Taken together, these data suggest that the activities of translational arrest and mRNA decay induced by vhs are separable and we propose that they represent sequential steps of the vhs host interaction pathway.


Asunto(s)
Herpesvirus Humano 1 , Proteínas Virales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ribonucleasas , ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Herpesvirus Humano 1/genética , Endorribonucleasas/metabolismo , Estabilidad del ARN , Virión/genética , Virión/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
World J Hepatol ; 16(2): 251-263, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38495274

RESUMEN

BACKGROUND: The increased expression of G3BP1 was positively correlated with the prognosis of liver failure. AIM: To investigate the effect of G3BP1 on the prognosis of acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) after the treatment of artificial liver support system (ALSS). METHODS: A total of 244 patients with ALF and ACLF were enrolled in this study. The levels of G3BP1 on admission and at discharge were detected. The validation set of 514 patients was collected to verify the predicted effect of G3BP1 and the viability of prognosis. RESULTS: This study was shown that lactate dehydrogenase (LDH), alpha-fetoprotein (AFP) and prothrombin time were closely related to the prognosis of patients. After the ALSS treatment, the patient' amount of decreased G3BP1 index in difference of G3BP1 between the value of discharge and admission (difG3BP1) < 0 group had a nearly 10-fold increased risk of progression compared with the amount of increased G3BP1 index. The subgroup analysis showed that the difG3BP1 < 0 group had a higher risk of progression, regardless of model for end-stage liver disease high-risk or low-risk group. At the same time, compared with the inflammatory marks [tumor necrosis factor-α, interleukin (IL)-1ß and IL-18], G3BP1 had higher discrimination and was more stable in the model analysis and validation set. When combined with AFP and LDH, concordance index was respectively 0.84 and 0.8 in training and validation cohorts. CONCLUSION: This study indicated that G3BP1 could predict the prognosis of ALF or ACLF patients treated with ALSS. The combination of G3BP1, AFP and LDH could accurately evaluate the disease condition and predict the clinical endpoint of patients.

14.
Cell Rep ; 43(2): 113769, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363675

RESUMEN

Although the composition and assembly of stress granules (SGs) are well understood, the molecular mechanisms underlying SG disassembly remain unclear. Here, we identify that heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) is associated with SGs and that its absence specifically enhances the disassembly of arsenite-induced SGs depending on the ubiquitination-proteasome system but not the autophagy pathway. hnRNPA2B1 interacts with many core SG proteins, including G3BP1, G3BP2, USP10, and Caprin-1; USP10 can deubiquitinate G3BP1; and hnRNPA2B1 depletion attenuates the G3BP1-USP10/Caprin-1 interaction but elevates the G3BP1 ubiquitination level under arsenite treatment. Moreover, the disease-causing mutation FUSR521C also disassembles faster from SGs in HNRNPA2B1 mutant cells. Furthermore, knockout of hnRNPA2B1 in mice leads to Sertoli cell-only syndrome (SCOS), causing complete male infertility. Consistent with this, arsenite-induced SGs disassemble faster in Hnrnpa2b1 knockout (KO) mouse Sertoli cells as well. These findings reveal the essential roles of hnRNPA2B1 in regulating SG disassembly and male mouse fertility.


Asunto(s)
Arsenitos , Masculino , Animales , Ratones , Arsenitos/toxicidad , ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Fertilidad
15.
Biochem Biophys Res Commun ; 697: 149497, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38262290

RESUMEN

Stress granule (SG) is a temporary cellular structure that plays a crucial role in the regulation of mRNA and protein sequestration during various cellular stress conditions. SG enables cells to cope with stress more effectively, conserving vital energy and resources. Focusing on the NTF2-like domain of G3BP1, a key protein in SG dynamics, we explore to identify and characterize novel small molecules involved in SG modulation without external stressors. Through in silico molecular docking approach to simulate the interaction between various compounds and the NTF2-like domain of G3BP1, we identified three compounds as potential candidates that could bind to the NTF2-like domain of G3BP1. Subsequent immunofluorescence experiments demonstrated that these compounds induce the formation of SG-like, G3BP1-positive granules. Importantly, the granule formation by these compounds occurs independent from the phosphorylation of eIF2α, a common mechanism in SG formation, suggesting that it might offer a new strategy for influencing SG dynamics implicated in various diseases.


Asunto(s)
ADN Helicasas , ARN Helicasas , ADN Helicasas/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Simulación del Acoplamiento Molecular , Gránulos Citoplasmáticos/metabolismo
16.
J Mol Biol ; 436(3): 168452, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246410

RESUMEN

Protein clustering is a powerful form of optogenetic control, yet remarkably few proteins are known to oligomerize with light. Recently, the photoreceptor BcLOV4 was found to form protein clusters in mammalian cells in response to blue light, although clustering coincided with its translocation to the plasma membrane, potentially constraining its application as an optogenetic clustering module. Herein we identify key amino acids that couple BcLOV4 clustering to membrane binding, allowing us to engineer a variant that clusters in the cytoplasm and does not associate with the membrane in response to blue light. This variant-called BcLOVclust-clustered over many cycles with substantially faster clustering and de-clustering kinetics compared to the widely used optogenetic clustering protein Cry2. The magnitude of clustering could be strengthened by appending an intrinsically disordered region from the fused in sarcoma (FUS) protein, or by selecting the appropriate fluorescent protein to which it was fused. Like wt BcLOV4, BcLOVclust activity was sensitive to temperature: light-induced clusters spontaneously dissolved at a rate that increased with temperature despite constant illumination. At low temperatures, BcLOVclust and Cry2 could be multiplexed in the same cells, allowing light control of independent protein condensates. BcLOVclust could also be applied to control signaling proteins and stress granules in mammalian cells. While its usage is currently best suited in cells and organisms that can be cultured below ∼30 °C, a deeper understanding of BcLOVclust thermal response will further enable its use at physiological mammalian temperatures.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Criptocromos , Proteínas de la Matriz de Golgi , Optogenética , Animales , Membrana Celular/química , Membrana Celular/efectos de la radiación , Análisis por Conglomerados , Citoplasma/química , Citoplasma/efectos de la radiación , Luz , Criptocromos/química , Criptocromos/efectos de la radiación , Proteínas de la Matriz de Golgi/química , Proteínas de la Matriz de Golgi/efectos de la radiación , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/efectos de la radiación , Multimerización de Proteína
17.
Int J Biol Sci ; 20(1): 94-112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164170

RESUMEN

Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) is an RNA-binding protein implicated in various malignancies. However, its role in nasopharyngeal carcinoma (NPC) remains elusive. This study elucidates the potential regulation mechanisms of G3BP1 and its significance in NPC advancement. Through knockdown and overexpression approaches, we validate G3BP1's oncogenic role by promoting proliferation, migration, and invasion in vitro and in vivo. Moreover, G3BP1 emerges as a key regulator of the JAK2/STAT3 signaling pathway, augmenting JAK2 expression via mRNA binding. Notably, epigallocatechin gallate (EGCG), a green tea-derived antioxidant, counteracts G3BP1-mediated pathway activation. Clinical analysis reveals heightened G3BP1, JAK2, and p-STAT3 as powerful prognostic markers, with G3BP1's expression standing as an independent indicator of poorer outcomes for NPC patients. In conclusion, the study unveils the oncogenic prowess of G3BP1, its orchestration of the JAK2/STAT3 signaling pathway, and its pivotal role in NPC progression.


Asunto(s)
ADN Helicasas , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , ADN Helicasas/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Línea Celular Tumoral , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Transducción de Señal/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Proliferación Celular/genética , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo
18.
J Clin Transl Hepatol ; 12(1): 1-14, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38250470

RESUMEN

Background and Aims: Stress granules (SGs) as membrane-less cytoplasmic foci formed in response to unfavorable external stimuli could promote cancer cells to adapt to hostile environments. Hepatocellular carcinoma (HCC) is prone to be highly aggressive once diagnosed, which markedly reduces patient survival time. Therefore, it is crucial to develop valid diagnostic markers to prognosticate HCC patient prognosis, which promotes individualized precision therapeutics in HCC. Considering the pro-tumorigenic activity of SGs, it is of great potential value to construct a prognostic tool for HCC based on the expression profiles of SG-related genes (SGGs). Methods: Bioinformatic analysis was employed to establish an SGG-based prognostic signature. Western blotting and real-time polymerase chain reaction assays were used to assess the expression patterns of the related SGGs. Loss-of-function experiments were performed to analyze the effect of the SGGs on SG formation and cell survival. Results: A four-SGG signature (KPNA2, MEX3A, WDR62, and SFN) targeting HCC was established and validated to exhibit a robust performance in predicting HCC prognosis. Consistently, all four genes were further found to be highly expressed in human HCC tissues. More important, we demonstrated that individually knocking down the four SGGs significantly reduced HCC cell proliferation and metastasis by compromising the SG formation process. Conclusions: We developed an SGG-based predictive signature that can be used as an independent prognostic tool for HCC. The strong predictive power of this signature was further elucidated by the carcinogenic activity of KPNA2, MEX3A, WDR62, and SFN in HCC cells by regulating SG formation.

19.
Ecotoxicol Environ Saf ; 269: 115755, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039847

RESUMEN

Under various cellular stress conditions, including exposure to toxic chemicals, RNA-binding proteins (RBPs), including Ras GTPase-activating protein-binding protein 1 (G3BP1), aggregate and form stress granule complexes, which serve as hallmarks of cellular stress. The existing methods for analyzing stress granule assembly have limitations in the rapid detection of dynamic cellular stress and ignore the effects of constitutively overexpressed RBP on cellular stress and stress-related processes. Therefore, to overcome these limitations, we established a G3BP1-GFP reporter in a human lung epithelial cell line using CRISPR/Cas9-based knock-in as an alternative system for stress granule analysis. We showed that the G3BP1-GFP reporter system responds to stress conditions and forms a stress granule complex similar to that of native G3BP1. Furthermore, we validated the stress granule response of an established cell line under exposure to various household chemicals. Overall, this novel G3BP1-GFP reporter human lung cell system is capable of monitoring stress granule dynamics in real time and can be used for assessing the lung toxicity of various substances in vitro.


Asunto(s)
ADN Helicasas , Pulmón , ARN Helicasas , Gránulos de Estrés , Humanos , ADN Helicasas/metabolismo , Pulmón/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Gránulos de Estrés/metabolismo , Proteínas Fluorescentes Verdes , Genes Reporteros
20.
J Hazard Mater ; 465: 133038, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38118197

RESUMEN

Arsenic contamination is extremely threatening to the global public health. It was reported that sodium arsenite exposure induces serious kidney injury. However, the underlying mechanism is unclear. Ferroptosis is a newly characterized form of iron-dependent programmed cell death, which is implicated in the pathogenesis of various human diseases, including kidney injury. The lethal accumulation of iron-catalyzed lipid peroxidation is the fundamental biochemical characteristic of ferroptosis. Herein we report that sodium arsenite exposure initiates ferroptosis in mammalian HEK293, MEF and HT1080 cells, and induces ferroptosis-associated acute kidney injury in mice. RNA-binding protein G3BP1, the switch component of stress granules, is indispensable for sodium arsenite-induced ferroptosis in a stress granule-independent manner. Mechanistically, G3BP1 stabilizes IRP2, the master regulator of cellular iron homeostasis, through binding to and suppressing the translation of FBXL5 mRNA, which encodes the E3 ligase component to mediate IRP2 ubiquitination and proteasomal degradation. Sodium arsenite intoxication expedites this G3BP1-FBXL5-IRP2 axis and elevates cellular labile free iron, which is responsible for sodium arsenite exposure-induced lipid peroxidation and ferroptotic cell death. In summary, this study highlights a regulatory module comprising G3BP1-FBXL5-IRP2 axis in determining sodium arsenite-induced ferroptosis and ferroptosis-associated acute kidney injury in mice.


Asunto(s)
Lesión Renal Aguda , Arsenitos , Proteínas F-Box , Ferroptosis , Compuestos de Sodio , Humanos , Ratones , Animales , ADN Helicasas , Células HEK293 , Proteína 2 Reguladora de Hierro/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN , Hierro/metabolismo , Mamíferos/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas F-Box/química , Proteínas F-Box/genética , Proteínas F-Box/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA