Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.059
Filtrar
1.
Cell Struct Funct ; 49(2): 67-81, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39245571

RESUMEN

Collagen is the most abundant protein in the extracellular matrix of animals, and 28 types of collagen have been reported in humans. We previously analyzed the endoplasmic reticulum (ER)-to-Golgi transport of fibril-forming type III collagen (Hirata et al., 2022) and network-forming type IV collagen (Matsui et al., 2020), both of which have long collagenous triple-helical regions. To understand the ER-to-Golgi trafficking of various types of collagens, we analyzed the transport of short-chain type X collagen in this study. We fused cysteine-free GFP to the N-telopeptide region of procollagen X (GFP-COL10A1), as employed in our previous analysis of procollagens III and IV, and analyzed its transport by live-cell imaging. Procollagen X was transported to the Golgi apparatus via vesicular and tubular carriers containing ERGIC53 and RAB1B, similar to those used for procollagen III. Carriers containing procollagen X probably used the same transport processes as those containing conventional cargoes such as α1-antitrypsin. SAR1, TANGO1, SLY1/SCFD1, and BET3/TRAPPC3 were required for trafficking of procollagen X, which are different from the factors required for trafficking of procollagens III (SAR1, TANGO1, and CUL3) and IV (SAR1 and SLY1/SCFD1). These findings reveal that accommodation of various types of collagens with different shapes into carriers may require fine-tuning of the ER-to-Golgi transport machinery.Key words: collagen, GFP-procollagen X, ER-to-Golgi trafficking, export from ER, TANGO1.


Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , Transporte de Proteínas , Aparato de Golgi/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Procolágeno/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Animales
2.
Plants (Basel) ; 13(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39339543

RESUMEN

Passion fruit is a valued tropical fruit crop that faces environment-related growth strains. TCP genes are important for both growth modulation and stress prevention in plants. Herein, we systematically analyzed the TCP gene family in passion fruit, recognizing 30 members. Genes exhibiting closer phylogenetic relationships exhibited similar protein and gene structures. Gene members of the TCP family showed developmental-stage- or tissue-specific expression profiles during the passion fruit life cycle. Transcriptome data also demonstrated that many PeTCPs showed induced expression in response to hormonal treatments and cold, heat, and salt stress. Based on transcriptomics data, eight candidate genes were chosen for preferential gene expression confirmation under cold stress conditions. The qRT-PCR assays suggested PeTCP15/16/17/19/23 upregulation, while PeTCP1/11/25 downregulation after cold stress. Additionally, TCP19/20/29/30 exhibited in silico binding with cold-stress-related miRNA319s. GFP subcellular localization assays exhibited PeTCP19/1 were localized at the nucleus. This study will aid in the establishment of novel germplasm, as well as the further investigation of the roles of PeTCPs and their cold stress resistance characteristics.

3.
Cancer Diagn Progn ; 4(5): 544-557, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238629

RESUMEN

The field of experimental microsurgery was pioneered by the great microsurgeon Sun Lee, who developed the foundation of transplant surgery in the clinic. Dr Lee also played a seminal role in introducing microsurgery to establish mouse models of cancer. In 1990, at the age of 70, Dr Lee demonstrated microsurgery techniques to the mouse-model team at AntiCancer Inc., leading to the development of the surgical orthotopic implant (SOI) technique and the first orthotopic mouse models of cancer that metastasized in a pattern similar to clinical cancer. At the beginning of the present century, one of us (NY) from Kanazawa University School of Medicine became a visiting scientist at AntiCancer to learn SOI and develop mouse models of cancer using cancer cells expressing fluorescent reporter genes, such as green fluorescent protein (GFP) and red fluorescent protein (RFP), in order to image metastatic cancer cells trafficking in real time. Since then, a total of eight young surgeons from Kanazawa University have been visiting researchers at AntiCancer, developing SOI mouse models of cancer to visualize cancer cells in vivo, tracking all stages of metastasis in real time. The present perspective review summarizes this seminal work, which has revolutionized the field of metastasis research.

4.
Cancer Diagn Progn ; 4(5): 563-566, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238628

RESUMEN

Background/Aim: Transgenic nude mice expressing green fluorescent protein (GFP), red fluorescent protein (RFP), or cyan fluorescent protein (CFP) were previously developed by our laboratory, AntiCancer Inc. In the present study, we demonstrate imaging of the GFP, RFP, or CFP nude mice with single-nanometer-tuning laser fluorescence excitation with a single instrument. Materials and Methods: Female transgenic C57/B6 nude GFP, RFP, and CFP mice aged six weeks were used. The images were obtained using the UVP Biospectrum Advanced system (Analytik Jena US LLC) with excitation at 480 nm and peak emission at 513 nm for GFP; 520 nm and 605 nm, respectively, for RFP; and 405 nm and 480 nm, respectively, for CFP. Results: For each color transgenic fluorescent mouse, images without background could be obtained individually with the UVP Biospectrum Advanced system. Conclusion: Using a single instrument, brilliant and well-defined images of GFP, RFP, and CFP mice were obtained with single-nanometer-tuning laser fluorescence excitation. This imaging system will be used in future studies to analyze cancer cells in the colored mice that are spectrally distinct in order to determine how stromal cells and cancer interact in the tumor microenvironment.

5.
Antib Ther ; 7(3): 233-248, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39262442

RESUMEN

Despite their triumph in treating human diseases, antibody therapies for animals have gained momentum more slowly. However, the first approvals of animal antibodies for osteoarthritic pain in cats and dogs may herald the dawn of a new era. For example, goats are vital to economies around the world for their milk, meat, and hide products. It is therefore imperative to develop therapies to safeguard goats-with antibodies at the forefront. Goat antibodies will be crucial in the development of therapeutic antibodies, for example, as tracers to study antibody distribution in vivo, reagents to develop other therapeutic antibodies, and therapeutic agents themselves (e.g., antibody-drug conjugates). Hamstringing this effort is a still-burgeoning understanding of goat antibodies and their derivatization. Historically, goat antibody conjugates were generated through stochastic chemical modifications, producing numerous attachment sites and modification ratios, thereby deleteriously impacting antigen binding. Site-specific methods exist but often require substantial engineering and have not been demonstrated with goat antibodies. Nevertheless, we present herein a novel method to site-specifically conjugate native goat antibodies: chemo-enzymatic remodeling of the native Fc N-glycan introduces a reactive azide handle, after which click chemistry with strained alkyne partners affords homogeneous conjugates labeled only on the Fc domain. This process is robust, and resulting conjugates retain their antigen binding and specificity. To our knowledge, our report is the first for site-specific conjugation of native goat antibodies. Furthermore, our approach should be applicable to other animal antibodies-even with limited structural information-with similar success.

6.
mBio ; : e0145424, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248563

RESUMEN

Periodic reactivation of herpes simplex virus type 1 (HSV-1) triggers immune responses that result in corneal scarring (CS), known as herpes stromal keratitis (HSK). Despite considerable research, fully understanding HSK and eliminating it remains challenging due to a lack of comprehensive analysis of HSV-1-infected immune cells in both corneas and trigeminal ganglia (TG). We engineered a recombinant HSV-1 expressing green fluorescent protein (GFP) in the virulent McKrae virus strain that does not require corneal scarification for efficient virus replication (GFP-McKrae). Next-generation sequencing (NGS) analysis, along with in vitro and in vivo assays, showed that GFP-McKrae virus was similar to WT-McKrae virus. Furthermore, corneal cells infected with GFP-McKrae were quantitatively analyzed using image mass cytometry (IMC). The single-cell reconstruction data generated cellular maps of corneas based on the expression of 25 immune cell markers in GFP-McKrae-infected mice. Corneas from mock control mice showed the presence of T cells and macrophages, whereas corneas from GFP-McKrae-infected mice on days 3 and 5 post-infection (PI) exhibited increased immune cells. Notably, on day 3 PI, increased GFP expression was observed in closely situated clusters of DCs, macrophages, and epithelial cells. By day 5 PI, macrophages and T cells became prominent. Finally, immunostaining methods detected HSV-1 or GFP and gD proteins in latently infected TG. This study presents a valuable strategy for identifying cellular spatial associations in viral pathogenesis and holds promise for future therapeutic applications.IMPORTANCEThe goal of this study was to establish quantitative approaches to analyze immune cell markers in HSV-1-infected intact corneas and trigeminal ganglia from primary and latently infected mice. This allowed us to define spatial and temporal interactions between specific immune cells and their potential roles in virus replication and latency. To accomplish this important goal, we took advantage of the utility of GFP-McKrae virus as a valuable research tool while also highlighting its potential to uncover previously unrecognized cell types that play pivotal roles in HSV-1 replication and latency. Such insights will pave the way for developing targeted therapeutic approaches to tackle HSV-1 infections more effectively.

7.
ACS Synth Biol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292739

RESUMEN

Cell-free transcription-translation (TXTL) systems expressing genes from linear dsDNA enable the rapid prototyping of genetic devices while avoiding cloning steps. However, repetitive inclusion of a reporter gene is an incompressible cost and sometimes accounts for most of the synthesized DNA length. Here we present reporter systems based on split-GFP systems that reassemble into functional fluorescent proteins and can be used to monitor gene expression in E. coli TXTL. The 135 bp GFP10-11 fragment produces a fluorescent signal comparable to its full-length GFP counterpart when reassembling with its complementary protein synthesized from the 535 bp fragment expressed in TXTL. We show that split reporters can be used to characterize promoter libraries, with data qualitatively comparable to full-length GFP and matching in vivo expression measurements. We also use split reporters as small fusion tags to measure the TXTL protein and peptide production yield. Finally, we generalize our concept by providing a luminescent split reporter based on split-nanoluciferase. The ∼80% gene sequence length reduction afforded by split reporters lowers synthesis costs and liberates space for testing larger devices while producing a reliable output. In the peptide production context, the small size of split reporters compared with full-length GFP is less likely to bias peptide solubility assays. We anticipate that split reporters will facilitate rapid and cost-efficient genetic device prototyping, protein production, and interaction assays.

8.
Curr Issues Mol Biol ; 46(9): 10618-10632, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39329981

RESUMEN

Ophiocordyceps sinensis (Berk.) is a complex is formed by Hepialidae larvae and Hirsutella sinensis. Infestation by H. sinensis, interaction with host larvae, and fruiting body development are three crucial processes affecting the formation of O. sinensis. However, research on the molecular mechanism of O. sinensis formation has been hindered by the lack of effective genetic transformation protocols. Therefore, Agrobacterium tumefaciens-mediated transformation (ATMT) was adopted to genetically transform two H. sinensis strains and optimize the transformation conditions. The results revealed that the most suitable Agrobacterium strain for H. sinensis transformation was AGL1, and that the surfactant Triton X-100 could also induce ATMT, although less effectively than acetosyringone (AS). In addition, the endogenous promoters of H. sinensis genes had a stronger ability to drive the expression of the target gene than did the exogenous promoter. The optimal transformation conditions were as follows: AS and hygromycin B concentrations of 100 µM and 50 µg/mL, respectively; A. tumefaciens OD600 of 0.4; cocultivation at 18 °C for 24 h; and H. sinensis used within three passages. The results lay a foundation for the functional study of key regulatory genes involved in the formation of O. sinensis.

9.
Methods Mol Biol ; 2828: 147-157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39147976

RESUMEN

Normal-sized cells of Dictyostelium build up a front-tail polarity when they respond to a gradient of chemoattractant. To challenge the polarity-generating system, cells are fused to study the chemotactic response of oversized cells that extend multiple fronts toward the source of attractant. An aspect that can be explored in these cells is the relationship of spontaneously generated actin waves to actin reorganization in response to chemoattractant.


Asunto(s)
Quimiotaxis , Dictyostelium , Dictyostelium/fisiología , Dictyostelium/citología , Factores Quimiotácticos/farmacología , Factores Quimiotácticos/metabolismo , Actinas/metabolismo , Fusión Celular/métodos , Células Gigantes/citología , Células Gigantes/metabolismo , Polaridad Celular
10.
Biotechniques ; 76(7): 343-351, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185783

RESUMEN

O6-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that is overexpressed in certain tumors and is associated with resistance to the DNA alkylating agent temozolomide. MGMT inhibitors show potential in combating temozolomide resistance, but current assays for MGMT enzyme activity and inhibition, primarily oligonucleotide-based and fluorescent probe-based, are laborious and costly. The clinical relevance of temozolomide therapy calls for more convenient methodologies to study MGMT inhibition. Here, we extended the application of SNAP-Capture magnetic beads to develop a novel MGMT inhibition assay that demonstrated efficacy not only with known MGMT inhibitors, but also with the aldehyde dehydrogenase inhibitor, disulfiram. The assay uses standard fluorescence microscopy as a simple and reliable detection method, and is translationally applicable in drug discovery programs.


A cell line expressing MGMT-GFP fusion protein was generated. After harvesting the cells, the cell lysate was prepared and combined with SNAP-Capture magnetic beads and incubated at room temperature. Successful immobilization of MGMT-GFP on SNAP-Capture magnetic beads was verified by fluorescence microscopy. For the MGMT inhibition assay, the cell lysate underwent pre-treatment with established MGMT inhibitors before interaction with SNAP-capture magnetic beads and then underwent immobilization and fluorescence microscopy.


Asunto(s)
Inhibidores Enzimáticos , O(6)-Metilguanina-ADN Metiltransferasa , Humanos , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Inhibidores Enzimáticos/farmacología , Disulfiram/farmacología , Temozolomida/farmacología , Microscopía Fluorescente/métodos
11.
Biotechniques ; 76(7): 299-309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185782

RESUMEN

Epitope tagging represents a powerful strategy for expedited identification, isolation, and characterization of proteins in molecular biological studies, including protein-protein interactions. We aimed to improve the reproducibility of epitope-tagged protein expression and detection by developing a range of plasmids as positive controls. The pJoseph2 family of expression plasmids functions in diverse cellular environments and cell types to enable the evaluation of transfection efficiency and antibody staining for epitope detection. The expressed green fluorescent proteins harbor five unique epitope tags, and their efficient expression in Escherichia coli, Drosophila Schneider's line 2 cells, and human SKOV3 and HEK293T cells was demonstrated by fluorescence microscopy and western blotting. The pJoseph2 plasmids provide versatile and valuable positive controls for numerous experimental applications.


Epitope tagging, a fundamental technique in molecular biology, involves attaching short amino acid sequences (epitope tags) to target proteins for their efficient identification and study. This technique has evolved since its inception, enabling diverse applications in protein research. Notably, CRISPR/Cas9 gene editing has enhanced epitope tagging by enabling the tagging of endogenous genes, expanding its versatility. However, reproducibility challenges exist, demanding positive controls for troubleshooting. The pJoseph2 family of plasmids was developed to address this need, providing robust positive controls for various epitope-based experiments, from bacterial expression to Drosophila and mammalian cell studies. This resource enhances the reliability and accuracy of epitope tagging, benefiting researchers across disciplines.


Asunto(s)
Western Blotting , Escherichia coli , Proteínas Fluorescentes Verdes , Plásmidos , Transfección , Humanos , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Animales , Células HEK293 , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Epítopos/genética , Línea Celular
12.
J Cell Sci ; 137(16)2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39092499

RESUMEN

Lamins are intermediate filament proteins that contribute to numerous cellular functions, including nuclear morphology and mechanical stability. The N-terminal head domain of lamin is crucial for higher order filament assembly and function, yet the effects of commonly used N-terminal tags on lamin function remain largely unexplored. Here, we systematically studied the effect of two differently sized tags on lamin A (LaA) function in a mammalian cell model engineered to allow for precise control of expression of tagged lamin proteins. Untagged, FLAG-tagged and GFP-tagged LaA completely rescued nuclear shape defects when expressed at similar levels in lamin A/C-deficient (Lmna-/-) MEFs, and all LaA constructs prevented increased nuclear envelope ruptures in these cells. N-terminal tags, however, altered the nuclear localization of LaA and impaired the ability of LaA to restore nuclear deformability and to recruit emerin to the nuclear membrane in Lmna-/- MEFs. Our finding that tags impede some LaA functions but not others might explain the partial loss of function phenotypes when tagged lamins are expressed in model organisms and should caution researchers using tagged lamins to study the nucleus.


Asunto(s)
Núcleo Celular , Lamina Tipo A , Membrana Nuclear , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Animales , Ratones , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-39136873

RESUMEN

In this study, an in silico screening approach was employed to mine potential bacteriocin clusters in genome-sequenced isolates of Lacticaseibacillus zeae UD 2202 and Lacticaseibacillus casei UD 1001. Two putative undescribed bacteriocin gene clusters (Cas1 and Cas2) closely related to genes encoding class IIa bacteriocins were identified. No bacteriocin activity was recorded when cell-free supernatants of strains UD 2202 and UD 1001 were tested against Listeria monocytogenes. Genes encoding caseicin A1 (casA1) and caseicin A2 (casA2) were heterologously expressed in Escherichia coli BL21 (DE3) using the nisin leader peptide cloned in-frame to the C-terminal of the green fluorescent gene (mgfp5). Nisin protease (NisP) was used to cleave caseicin A1 (casA1) and caseicin A2 (casA2) from GFP-Nisin leader fusion proteins. Both heterologously expressed peptides (casA1 and casA2) inhibited the growth of L. monocytogenes, suggesting that casA1 and casA2 are either silent in the wild-type strains or are not secreted in an active form. The minimum inhibitory concentration (MIC) of casA1 and casA2, determined using HPLC-purified peptides, ranged from < 0.2 µg/mL to 12.5 µg/mL when tested against Listeria ivanovii, Listeria monocytogenes, and Listeria innocua, respectively. A higher MIC value (25 µg/mL) was recorded for casA1 and casA2 when Enterococcus faecium HKLHS was used as the target. The molecular weight of heterologously expressed casA1 and casA2 is 5.1 and 5.2 kDa, respectively, as determined with tricine-SDS-PAGE. Further research is required to determine if genes within Cas1 and Cas2 render immunity to other class IIa bacteriocins.

14.
Mol Microbiol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115038

RESUMEN

The recently discovered methodologies to cultivate and genetically manipulate Treponema pallidum subsp. pallidum (T. pallidum) have significantly helped syphilis research, allowing the in vitro evaluation of antibiotic efficacy, performance of controlled studies to assess differential treponemal gene expression, and generation of loss-of-function mutants to evaluate the contribution of specific genetic loci to T. pallidum virulence. Building on this progress, we engineered the T. pallidum SS14 strain to express a red-shifted green fluorescent protein (GFP) and Sf1Ep cells to express mCherry and blue fluorescent protein (BFP) for enhanced visualization. These new resources improve microscopy- and cell sorting-based applications for T. pallidum, better capturing the physical interaction between the host and pathogen, among other possibilities. Continued efforts to develop and share new tools and resources are required to help our overall knowledge of T. pallidum biology and syphilis pathogenesis reach that of other bacterial pathogens, including spirochetes.

15.
J Chromatogr A ; 1733: 465216, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39154493

RESUMEN

Bio-separation is a crucial process in biotechnology and biochemical engineering for separating biological macromolecules, and the field has long relied on bead-based and expanded bed chromatography. Printed monolith adsorption (PMA) is a new alternative to which uses a 3D-printed monolithic structure containing self-supporting, ordered flow channels. PMA allows for direct purification of biological molecules from crude cell lysates and cell cultures, and like the other technologies, can functionalized to specifically target a molecule and enable affinity chromatography. Here we have combined PMA technology with an immobilized metal affinity ligand (iminodiacetic acid) to provide selectivity of binding to polyhistidine-tagged proteins during PMA chromatography. Two different PMA structures were created and tested for both static and dynamic protein-binding capacity. At comparative linear flow rates, the dynamic binding capacity of both columns was ≈3 mg/mL, while static capacity was shown to differentiate based on column voidage. We show that a polyhistidine-tagged protein can be directly purified from crude lysate with comparable results to the available commercial providers of IMAC, and with a substantially reduced purification time.


Asunto(s)
Cromatografía de Afinidad , Histidina , Histidina/química , Cromatografía de Afinidad/métodos , Adsorción , Iminoácidos/química , Proteínas/aislamiento & purificación , Proteínas/química , Impresión Tridimensional , Unión Proteica
16.
ACS Appl Mater Interfaces ; 16(33): 43171-43179, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39135392

RESUMEN

The development of highly active, durable, and low-cost metal-free catalysts for the photocatalytic CO2 reduction reaction (CO2RR) is an efficient and environmentally friendly solution to address significant problems like global warming and high energy demand. In the present study, we have demonstrated the design and synthesis of a donor-acceptor based conjugated microporous polymer (CMP), TPA-GFP, by integrating an electron donor, tris(4-ethynylphenyl)amine (TPA), with a green fluorescent protein chromophore analogue (Z)-4-(2-hydroxy-3,5-diiodobenzylidene)-1-(4-iodophenyl)-2-methyl-1H-imidazol-5(4H)-one (o-HBDI-I3) (GFP). In comparison to nondonor 1,3,5-triethynylbenzene (TEB) based TEB-GFP CMP, photocatalytic CO2 reduction using donor-acceptor based TPA-GFP CMP displays a 3-fold increment of CO production yield with a maximum CO yield of 1666 µmol g-1 at 12 h. Further, the CO selectivity increases significantly from a mere 54% in TEB-GFP to an impressive 95% in TPA-GFP. The impressive CO2 reduction efficiency and selectivity for TPA-GFP can be attributed to the efficient light-harvesting capability and facile charge separation and migration through donor-acceptor building units of the CMP. The mechanistic aspect of the photocatalytic CO2 reduction process is explored using in situ DRIFTS and DFT calculation, and a plausible photocatalytic mechanism is proposed.

17.
Bioresour Bioprocess ; 11(1): 83, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190215

RESUMEN

The human insulin gene modified with a C-peptide was synthesized according to the plant-preferred codon, and a fusion gene expression vector of insulin combined with green fluorescent protein (GFP) was constructed. The optimization of the flax callus culturing was undertaken, and a more efficient Agrobacterium-mediated genetic transformation of the flax hypocotyls was achieved. The critical concentration values of hygromycin on the flax hypocotyl development, as well as on its differentiated callus, were explored by the method of antibiotic gradient addition, and the application of antibiotic screening for the verification of positive calluses was assessed. The fusion gene of insulin and GFP was successfully inserted into the flax genome and expressed, as confirmed through polymerase chain reaction and Western blotting. In conclusion, we have established a flax callus culture system suitable for insulin expression. By optimizing the conditions of the flax callus induction, transformation, screening, and verification of a transgenic callus, we have provided an effective way to obtain insulin. Moreover, the herein-employed flax callus culture system could provide a feasible, cheap, and environmentally friendly platform for producing bioactive proteins.

18.
3 Biotech ; 14(9): 193, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39131177

RESUMEN

Komagataella phaffii (previously described as Pichia pastoris) is a yeast that produces high-level heterologous proteins with a wide range of applications in medicine and industry. The methanol-induced alcohol oxidase I promoter (PAOX1) is frequently used for protein expression in this yeast. However, limitations on the use of methanol have been observed in large-scale production, including its flammability, toxicity, and need for special handling. Here, we propose to develop a system using recombinant cells constitutively expressing pectinmethyl esterase for expression of two reporter proteins, GFP and azurin, under the control of PAOX1 using pectin in production medium. So, this system is coherent with yeast culture medium containing pectin and heterologous gene inserted downstream of PAOX1 can be successfully expressed without the addition of methanol. Therefore, this novel Self-inducibLe heterologous protein EXpression (SILEX) system, which does not require the addition of methanol, can be used for the production of any protein. It can also be adapted for large-scale production. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04039-x.

19.
Autophagy ; : 1-2, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991544

RESUMEN

In the budding yeast Saccharomyces cerevisiae, macroautophagy/autophagy can be induced by various types of starvation. It is thought that potential autophagic substrates vary to meet specific nutritional demands under different starvation conditions. In a recent study, Gross et al. found that autophagy induced by phosphate starvation includes many selective aspects. For example, this work identified Pho81 as a regulator of pexophagy under conditions of phosphate starvation. Pho81 senses phosphate metabolites and directly interacts with Atg11 to promote Atg1-mediated Atg11 phosphorylation. This finding provides an example of how modulation of the Atg1/ULK kinase complex can convey specific metabolic information to regulate autophagic substrates.Abbreviation: AKC: Atg1/ULK kinase complex.

20.
Anticancer Res ; 44(8): 3307-3315, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39060068

RESUMEN

BACKGROUND/AIM: Exosome exchange between cancer cells or between cancer and stromal cells is involved in cancer metastasis. We have previously developed in vivo color-coded labeling of cancer cells and stromal cells with spectrally-distinct fluorescent genetic reporters to demonstrate the role of exosomes in metastasis. In the present study, we studied exosome transfer between different pancreatic-cancer cell lines in vivo and in vitro and its potential role in metastasis. MATERIALS AND METHODS: Human pancreatic-cancer cell lines AsPC-1 and MiaPaCa-2 were used in the present study. AsPC-1 cells contain a genetic exosome reporter gene labeled with green fluorescent protein (pCT-CD63-GFP) and MiaPaCa-2 cells express red fluorescent protein (RFP). Both cell lines were co-injected into the spleen of nude mice (n=5) to further study the role of exosome exchange in metastasis. Three weeks later mice were sacrificed and tumors at the primary and metastatic sites were cultured and observed by confocal fluorescence microscopy for exosome transfer. RESULTS: The primary tumor formed in the spleen and metastasized to the liver, as observed macroscopically. Cells were cultured from the spleen, liver, lung, bone marrow and ascites. Transfer of exosomes from AsPC-1 to MiaPaCa-2 was demonstrated in the cultured cells by confocal fluorescence microscopy. Moreover, cell fusion was also observed along with exosome transfer. Exosome transfer did not occur during in vitro co-culture between the two pancreatic-cancer cell lines, suggesting a role of the tumor microenvironment (TME) in exosome transfer. CONCLUSION: The transfer of exosomes between different pancreatic-cancer cell lines was observed during primary-tumor and metastatic growth in nude mice. This cell-cell communication might be a trigger of cell fusion and promotion of cancer metastasis. Exosome transfer between the two pancreatic-cancer cell lines appears to be facilitated by the TME, as it did not occur during in vitro co-culture.


Asunto(s)
Técnicas de Cocultivo , Exosomas , Ratones Desnudos , Neoplasias Pancreáticas , Exosomas/metabolismo , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Humanos , Línea Celular Tumoral , Ratones , Metástasis de la Neoplasia , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Proteína Fluorescente Roja , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA