Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.021
Filtrar
1.
J Environ Sci (China) ; 147: 414-423, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003059

RESUMEN

The anaerobic acid production experiments were conducted with the pretreated kitchen waste under pH adjustment. The results showed that pH 8 was considered to be the most suitable condition for acid production, especially for the formation of acetic acid and propionic acid. The average value of total volatile fatty acid at pH 8 was 8814 mg COD/L, 1.5 times of that under blank condition. The average yield of acetic acid and propionic acid was 3302 mg COD/L and 2891 mg COD/L, respectively. The activities of key functional enzymes such as phosphotransacetylase, acetokinase, oxaloacetate transcarboxylase and succinyl-coA transferase were all enhanced. To further explore the regulatory mechanisms within the system, the distribution of microorganisms at different levels in the fermentation system was obtained by microbial sequencing, results indicating that the relative abundances of Clostridiales, Bacteroidales, Chloroflexi, Clostridium, Bacteroidetes and Propionibacteriales, which were great contributors for the hydrolysis and acidification, increased rapidly at pH 8 compared with the blank group. Besides, the proportion of genes encoding key enzymes was generally increased, which further verified the mechanism of hydrolytic acidification and acetic acid production of organic matter under pH regulation.


Asunto(s)
Ácidos Grasos Volátiles , Concentración de Iones de Hidrógeno , Ácidos Grasos Volátiles/metabolismo , Fermentación , Ácido Acético/metabolismo , Reactores Biológicos
2.
J Environ Sci (China) ; 147: 582-596, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003073

RESUMEN

As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.


Asunto(s)
Agua Potable , Farmacorresistencia Microbiana , Metagenómica , Farmacorresistencia Microbiana/genética , Agua Potable/microbiología , China , Monitoreo del Ambiente , Antibacterianos/farmacología , Microbiología del Agua
3.
Rev. biol. trop ; 72(1): e49359, ene.-dic. 2024. graf
Artículo en Inglés | LILACS, SaludCR | ID: biblio-1559319

RESUMEN

Abstract Introduction: A recent revision of the generic classification of the Trochilidae based on DNA sequences revealed many inconsistencies with the current generic classification, largely based on plumage characters subject to homoplasy, especially in the Trochilini, the largest tribe. A thorough generic reorganization brought the classification into accord with the phylogeny, but due to lack of genetic data, two species remained unclassified. One of these was the Mangrove Hummingbird, "Amazilia" boucardi, endemic to Costa Rica and included in the IUCN red list of threatened species. Objective: To obtain molecular evidence to clarify the generic relationships of "A." boucardi. Methods: We isolated DNA from tissues of this species and amplified 4 nuclear and 4 mitochondrial fragments and compared these with homologous fragments from 56 species in the Trochilini, constructing phylogenetic trees with maximum likelihood and Bayesian methods. Results: Our phylogenetic analyses confirmed the placement of boucardi in the Trochilini and definitely excluded it from Amazilia but placed it with high confidence in the genus Chrysuronia Bonaparte, 1850, within which its closest relative is C. coeruleogularis, which also inhabits mangroves. Conclusions: Our genetic data based on nuclear and mitochondrial regions clearly indicate the relationship of A. boucardi and L. coeruleogularis. Moreover, it is also supported by their habitat distribution in the mangroves of the Pacific coast of Costa Rica and Western Panama. Therefore, we suggested to exclude A. boucardi as "incertae sedis".


Resumen Introducción: Una revisión reciente de la clasificación de la familia Trochilidae con base en secuencias de ADN demostró muchas incongruencias con la clasificación genérica previa, que había sido hecho con base en caracteres del plumaje muy sujetos a homoplasia, especialmente en la tribu más grande, Trochillini. Una reorganización de los géneros logró llevar su clasificación genérica a la concordancia con la filogenia, pero debido a la ausencia de datos genéticos, dos especies permanecieron sin clasificar. Una de estas fue el colibrí de manglar Amazilia boucardi, una especie endémica de Costa Rica, considerada como amenazada en la lista roja de la UICN. Objetivo: Obtener evidencia molecular para esclarecer las relaciones genéricas de A. boucardi. Métodos: Se aisló ADN de tejidos de esta especie y se amplificaron 4 fragmentos de ADN del núcleo y 5 de la mitocondria, y se compararon con fragmentos homólogos de 56 especies en la tribu Trochillini, generando árboles filogenéticos con métodos de máxima verosimilitud y bayesiano. Resultados: Los análisis filogénticos obtenidos confirmaron la ubicación de boucardi en Trochilini y definitivamente la excluyó del género Amazilia, pero la ubicó con un alto grado de confianza en el género Chrysuronia Bonaparte, 1850, dentro los cuales su pariente más cercano es C. coeruleogularis, que también habita manglares. Conclusiones: Nuestros datos genéticos basados en regiones nucleares y mitocondriales indican claramente la relación entre A. boucardi and L. coeruleogularis. Es más, lo anterior se sustenta por su distribución en los manglares de la costa Pacífica de Costa Rica y oeste de Panamá. Por lo tanto, sugerimos excluir a A. boucardi como "incertae sedis".


Asunto(s)
Animales , Aves/clasificación , ADN/análisis , Filogenia , Costa Rica , Genes Mitocondriales
4.
Discov Oncol ; 15(1): 258, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960931

RESUMEN

PURPOSE: Hepatocellular carcinoma (HCC) is the most prevalent malignancies worldwide. Recently, oxidative phosphorylation (OXPHOS) has received extensive concern as an emerging target in antitumor therapy. However, the OXPHOS-involved underlying genes and clinical utilization in HCC remain worth exploring. The present research aimed to create an OXPHOS-relevant signature in HCC. PATIENTS AND METHODS: In this study, the prognostic signature genes linked with OXPHOS were identified, and prognostic models were built using least absolute shrinkage and selection operator (LASSO) cox regression analysis. Furthermore, the combination study of immune microenvironment and signature genes looked into the involvement of immune cells in signature-based genes in HCC. Following that, chemotherapeutic drug sensitivity and immunotherapy analysis was implemented to predict clinical efficacy in HCC patients. Finally, clinical samples were collected to measure the expression of OXPHOS-related signature genes. RESULTS: Following a series of screens, six prognostic signature genes related with OXPHOS were identified: MRPS23, MPV17, MAPK3, IGF2BP2, CDK5, and IDH2, on which a risk model was built. The findings revealed a significant drop in the survival rate of HCC patients as their risk score increased. Meanwhile, independent prognostic study demonstrated that the risk score could accurately identify HCC patients. Immuno-microenvironmental correlation research suggested that the prognostic characteristics could serve as a reference index for both immunotherapy and chemotherapy. Finally, RT-qPCR exhibited a trend in signature gene expression that was consistent with the results. CONCLUSION: In this study, a total of six prognostic genes associated with OXPHOS were selected and a prognostic model was constructed, providing an essential reference for the study of OXPHOS in HCC.

5.
BMC Genomics ; 25(1): 665, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961324

RESUMEN

Indoor residual spraying (IRS) and insecticide-treated nets (ITNs) are the main methods used to control mosquito populations for malaria prevention. The efficacy of these strategies is threatened by the spread of insecticide resistance (IR), limiting the success of malaria control. Studies of the genetic evolution leading to insecticide resistance could enable the identification of molecular markers that can be used for IR surveillance and an improved understanding of the molecular mechanisms associated with IR. This study used a weighted gene co-expression network analysis (WGCNA) algorithm, a systems biology approach, to identify genes with similar co-expression patterns (modules) and hub genes that are potential molecular markers for insecticide resistance surveillance in Kenya and Benin. A total of 20 and 26 gene co-expression modules were identified via average linkage hierarchical clustering from Anopheles arabiensis and An. gambiae, respectively, and hub genes (highly connected genes) were identified within each module. Three specific genes stood out: serine protease, E3 ubiquitin-protein ligase, and cuticular proteins, which were top hub genes in both species and could serve as potential markers and targets for monitoring IR in these malaria vectors. In addition to the identified markers, we explored molecular mechanisms using enrichment maps that revealed a complex process involving multiple steps, from odorant binding and neuronal signaling to cellular responses, immune modulation, cellular metabolism, and gene regulation. Incorporation of these dynamics into the development of new insecticides and the tracking of insecticide resistance could improve the sustainable and cost-effective deployment of interventions.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Piretrinas , Biología de Sistemas , Anopheles/genética , Anopheles/efectos de los fármacos , Animales , Resistencia a los Insecticidas/genética , Piretrinas/farmacología , Insecticidas/farmacología , Redes Reguladoras de Genes , Organofosfatos/farmacología , Mosquitos Vectores/genética , Mosquitos Vectores/efectos de los fármacos , Kenia , Perfilación de la Expresión Génica
6.
BMC Microbiol ; 24(1): 241, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961344

RESUMEN

BACKGROUND: Staphylococcus aureus, a commensal bacterium, colonizes the skin and mucous membranes of approximately 30% of the human population. Apart from conventional resistance mechanisms, one of the pathogenic features of S. aureus is its ability to survive in a biofilm state on both biotic and abiotic surfaces. Due to this characteristic, S. aureus is a major cause of human infections, with Methicillin-Resistant Staphylococcus aureus (MRSA) being a significant contributor to both community-acquired and hospital-acquired infections. RESULTS: Analyzing non-repetitive clinical isolates of MRSA collected from seven provinces and cities in China between 2014 and 2020, it was observed that 53.2% of the MRSA isolates exhibited varying degrees of ability to produce biofilm. The biofilm positivity rate was notably high in MRSA isolates from Guangdong, Jiangxi, and Hubei. The predominant MRSA strains collected in this study were of sequence types ST59, ST5, and ST239, with the biofilm-producing capability mainly distributed among moderate and weak biofilm producers within these ST types. Notably, certain sequence types, such as ST88, exhibited a high prevalence of strong biofilm-producing strains. The study found that SCCmec IV was the predominant type among biofilm-positive MRSA, followed by SCCmec II. Comparing strains with weak and strong biofilm production capabilities, the positive rates of the sdrD and sdrE were higher in strong biofilm producers. The genetic determinants ebp, icaA, icaB, icaC, icaD, icaR, and sdrE were associated with strong biofilm production in MRSA. Additionally, biofilm-negative MRSA isolates showed higher sensitivity rates to cefalotin (94.8%), daptomycin (94.5%), mupirocin (86.5%), teicoplanin (94.5%), fusidic acid (81.0%), and dalbavancin (94.5%) compared to biofilm-positive MRSA isolates. The biofilm positivity rate was consistently above 50% in all collected specimen types. CONCLUSIONS: MRSA strains with biofilm production capability warrant increased vigilance.


Asunto(s)
Biopelículas , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/fisiología , China/epidemiología , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Genes Bacterianos/genética , Humanos
7.
Arh Hig Rada Toksikol ; 75(2): 102-109, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963144

RESUMEN

COVID-19 can cause a range of complications, including cardiovascular, renal, and/or respiratory insufficiencies, yet little is known of its potential effects in persons exposed to toxic metals. The aim of this study was to answer this question with in silico toxicogenomic methods that can provide molecular insights into COVID-19 complications owed to exposure to arsenic, cadmium, lead, mercury, nickel, and chromium. For this purpose we relied on the Comparative Toxicogenomic Database (CTD), GeneMANIA, and ToppGene Suite portal and identified a set of five common genes (IL1B, CXCL8, IL6, IL10, TNF) for the six metals and COVID-19, all of which code for pro-inflammatory and anti-inflammatory cytokines. The list was expanded with additional 20 related genes. Physical interactions are the most common between the genes affected by the six metals (77.64 %), while the dominant interaction between the genes affected by each metal separately is co-expression (As 56.35 %, Cd 64.07 %, Pb 71.5 %, Hg 81.91 %, Ni 64.28 %, Cr 88.51 %). Biological processes, molecular functions, and pathways in which these 25 genes participate are closely related to cytokines and cytokine storm implicated in the development of COVID-19 complications. In other words, our findings confirm that exposure to toxic metals, alone or in combinations, might escalate COVID-19 severity.


Asunto(s)
COVID-19 , Cadmio , Mercurio , Humanos , Cadmio/toxicidad , Mercurio/toxicidad , Plomo/toxicidad , Simulación por Computador , SARS-CoV-2 , Arsénico/toxicidad , Níquel/toxicidad , Metales Pesados/toxicidad , Cromo/toxicidad , Citocinas , Interleucina-1beta/genética , Interleucina-8/genética , Toxicogenética , Interleucina-6/genética , Interleucina-10/genética , Factor de Necrosis Tumoral alfa/genética
8.
Environ Res ; 259: 119554, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964571

RESUMEN

Hospital wastewaters (HWWs) serve as critical reservoirs for disseminating antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). However, the dynamics and noteworthy shifts of ARGs and their associated pathogenicity, mobility, and resistome risks during HWWs treatment processes remain poorly understood. Utilizing metagenomic sequencing and assembly, we identified 817 ARG subtypes conferring resistance to 20 classes of antibiotics across 18 HWW samples from influent to effluent. Genes encoding resistance to multidrug, aminoglycoside and beta_lactam were the most prevalent ARG types, reflecting patterns observed in clinical settings. On-site treatment efforts decreased the relative abundance of ARGs by 77.4% from influent to secondary sedimentation, whereas chlorine disinfection significantly increased their abundance in the final effluent. Deterministic processes primarily drove the taxonomic assembly, with Proteobacteria being the most abundant phylum and serving as the primary host for 15 ARG types. Contig-based analysis further revealed 114 pathogenic ARB, with Escherichia coli, Pseudomonas alcaligenes, and Pseudomonas aeruginosa exhibiting multidrug-resistant. The contributions of host bacteria and pathogenic ARB varied throughout wastewater treatment. In addition, 7.10%-31.0 % ARGs were flanked by mobile genetic elements (MGEs), predominantly mediated by transposase (74.1%). Notably, tnpA exhibited the highest potential for ARG dissemination, frequently co-occurring with beta-lactam resistance genes (35.2%). Considering ARG profiles, pathogenic hosts, and transferability, raw influent exhibited the highest antibiotic resistome risk index (ARRI), followed by the final effluent. Chlorine disinfection exacerbated resistome risks by inducing potential pathogenic ARB and mobile ARGs, posing threats to the receiving environment. This study delineates ARG occurrence patterns, highlights mechanisms of ARG carriage and horizontal gene transfer, and provides insights for assessing resistance risks and prioritizing interventions in clinical settings.

9.
Front Neurol ; 15: 1416648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966089

RESUMEN

Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy syndrome characterized by a variable age of onset and heterogeneous etiology. Current literature suggests a prevalence rate of approximately 1.8 per 100,000 persons. The discovery of additional pathogenic genes associated with SHE in recent years has significantly expanded the knowledge and understanding of its pathophysiological mechanisms. Identified SHE pathogenic genes include those related to neuronal ligand- and ion-gated channels (CHRNA4, CHRNB2, CHRNA2, GABRG2, and KCNT1), genes upstream of the mammalian target of rapamycin complex 1 signal transduction pathway (DEPDC5, NPRL2, NPRL3, TSC1, and TSC2), and other genes (CRH, CaBP4, STX1B, and PRIMA1). These genes encode proteins associated with ion channels, neurotransmitter receptors, cell signal transduction, and synaptic transmission. Mutations in these genes can result in the dysregulation of encoded cellular functional proteins and downstream neuronal dysfunction, ultimately leading to epileptic seizures. However, the associations between most genes and the SHE phenotype remain unclear. This article presents a literature review on the research progress of SHE-related pathogenic genes to contribute evidence to genotype-phenotype correlations in SHE and establish the necessary theoretical basis for future SHE treatments.

10.
Front Plant Sci ; 15: 1421734, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966146

RESUMEN

Citrus is commercially propagated via grafting, which ensures trees have consistent fruit traits combined with favorable traits from the rootstock such as soil adaptability, vigor, and resistance to soil pathogens. Graft incompatibility can occur when the scion and rootstock are not able to form a permanent, healthy union. Understanding and preventing graft incompatibility is of great importance in the breeding of new fruit cultivars and in the choice of scion and rootstock by growers. The rootstock US-1283, a citrandarin generated from a cross of "Ninkat" mandarin (Citrus reticulata) and "Gotha Road" #6 trifoliate orange (Poncirus trifoliata), was released after years of field evaluation because of its superior productivity and good fruit quality on "Hamlin" sweet orange (C. sinensis) under Florida's growing conditions. Subsequently, it was observed that trees of "Bearss" lemon (C. limon) and "Valencia" sweet orange (C. sinensis) grafted onto US-1283 exhibited unhealthy growth near the graft union. The incompatibility manifested as stem grooving and necrosis underneath the bark on the rootstock side of the graft. Another citrandarin rootstock, US-812 (C. reticulata "Sunki" × P. trifoliata "Benecke"), is fully graft compatible with the same scions. Transcriptome analysis was performed on the vascular tissues above and below the graft union of US-812 and US-1283 graft combinations with "Bearss" and "Valencia" to identify expression networks associated with incompatibility and help understand the processes and potential causes of incompatibility. Transcriptional reprogramming was stronger in the incompatible rootstock than in the grafted scions. Differentially expressed genes (DEGs) in US-1283, but not the scions, were associated with oxidative stress and plant defense, among others, similar to a pathogen-induced immune response localized to the rootstock; however, no pathogen infection was detected. Therefore, it is hypothesized that this response could have been triggered by signaling miscommunications between rootstock and scion either through (1) unknown molecules from the scion that were perceived as danger signals by the rootstock, (2) missing signals from the scion or missing receptors in the rootstock necessary for the formation of a healthy graft union, (3) the overall perception of the scion by the rootstock as non-self, or (4) a combination of the above.

11.
Data Brief ; 55: 110557, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38966666

RESUMEN

Whole genome sequencing (WGS) and data concerning identity and safety for Saccharomyces cerevisiae CBS 493.94 are reported. This strain was isolated from a British brewery in 1958 and deposited at the CBS culture collection Westerdijk Fungal Biodiversity Institute under the accession number CBS 493.94. The long-reads sequencing data, obtained via PacBio Sequel, and short-reads data, via Illumina NovaSeq 6000, were deposited at NCBI under accession number PRJNA1044661. The hybrid assembly was made publicly available via Zenodo and NCBI. For strain identification, data from 18S rRNA, ANI dendrogram and Core Genome single nucleotide polymorphism (SNP) Tree showed that the present isolate belongs to the genus Saccharomyces, species cerevisiae. The potential genes of concern, e.g. antimycotic resestance genes, were not detected. This strain is commonly used as a feed additive for animal health improvement and the present data summarise the unambiguous identity and strain's FKS1 gene does not code for any amino acid variants of concern.

12.
Water Res ; 261: 122005, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38968733

RESUMEN

Organic loading rate (OLR) is crucial for determining the stability of dry anaerobic digestion (AD). Digestate recirculation contributes to reactor stability and enhances methane production. Nevertheless, the understanding of how OLR and digestate recirculation affect the abundance and diversity of antibiotics and antibiotic resistance genes (ARGs), as well as the mechanisms involved in the dissemination of ARGs, remains limited. This study thoroughly investigated this critical issue through a long-term pilot-scale experiment. The metabolome analyses revealed the enrichment of various antibiotics, such as aminoglycoside, tetracycline, and macrolide, under low OLR conditions (OLR ≤ 4.0 g·VS/L·d) and the reactor instability. Antibiotics abundance decreased by approximately 19.66-31.69 % during high OLR operation (OLR ≥ 6.0 g·VS/L·d) with digestate recirculation. The metagenome analyses demonstrated that although low OLR promoted reactor stability, it facilitated the proliferation of antibiotic-resistant bacteria, such as Pseudomonas, and triggered functional profiles related to ATP generation, oxidative stress response, EPS secretion, and cell membrane permeability, thereby facilitating horizontal gene transfer (HGT) of ARGs. However, under stable operation at an OLR of 6.0 g·VS/L·d, there was a decrease in ARGs abundance but a notable increase in human pathogenic bacteria (HPB) and mobile genetic elements (MGEs). Subsequently, during reactor instability, the abundance of ARGs and HPB increased. Notably, during digestate recirculation at OLR levels of 6.0 and 7.0 g·VS/L·d, the process attenuated the risk of ARGs spread by reducing the diversity of ARGs hosts, minimizing interactions among ARGs hosts, ARGs, and MGEs, and weakening functional profiles associated with HGT of ARGs. Overall, digestate recirculation aids in reducing the abundance of antibiotics and ARGs under high OLR conditions. These findings provide advanced insights into how OLR and digestate recirculation affect the occurrence patterns of antibiotics and ARGs in dry AD.

13.
J Environ Sci (China) ; 146: 176-185, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969446

RESUMEN

Microplastics (MPs) are commonly found with hydrophobic contaminants in the water column and pose a serious threat to aquatic organisms. The effects of polystyrene microplastics of different particle sizes on the accumulation of triclosan in the gut of Xenopus tropicalis, its toxic effects, and the transmission of resistance genes were evaluated. The results showed that co-exposure to polystyrene (PS-MPs) adsorbed with triclosan (TCS) caused the accumulation of triclosan in the intestine with the following accumulation capacity: TCS + 5 µm PS group > TCS group > TCS + 20 µm PS group > TCS + 0.1 µm PS group. All experimental groups showed increased intestinal inflammation and antioxidant enzyme activity after 28 days of exposure to PS-MPs and TCS of different particle sizes. The TCS + 20 µm PS group exhibited the highest upregulated expression of pro-inflammatory factors (IL-10, IL-1ß). The TCS + 20 µm group showed the highest increase in enzyme activity compared to the control group. PS-MPs and TCS, either alone or together, altered the composition of the intestinal microbial community. In addition, the presence of more antibiotic resistance genes than triclosan resistance genes significantly increased the expression of tetracycline resistance and sulfonamide resistance genes, which may be associated with the development of intestinal inflammation and oxidative stress. This study refines the aquatic ecotoxicity assessment of TCS adsorbed by MPs and provides informative information for the management and control of microplastics and non-antibiotic bacterial inhibitors.


Asunto(s)
Microplásticos , Tamaño de la Partícula , Poliestirenos , Triclosán , Contaminantes Químicos del Agua , Xenopus , Animales , Triclosán/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Intestinos/efectos de los fármacos , Adsorción , Expresión Génica/efectos de los fármacos
14.
Front Med (Lausanne) ; 11: 1380210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962732

RESUMEN

Sarcopenia, a geriatric syndrome characterized by progressive loss of muscle mass and strength, and osteoarthritis, a common degenerative joint disease, are both prevalent in elderly individuals. However, the relationship and molecular mechanisms underlying these two diseases have not been fully elucidated. In this study, we screened microarray data from the Gene Expression Omnibus to identify associations between sarcopenia and osteoarthritis. We employed multiple statistical methods and bioinformatics tools to analyze the shared DEGs (differentially expressed genes). Additionally, we identified 8 hub genes through functional enrichment analysis, protein-protein interaction analysis, transcription factor-gene interaction network analysis, and TF-miRNA coregulatory network analysis. We also discovered potential shared pathways between the two diseases, such as transcriptional misregulation in cancer, the FOXO signalling pathway, and endometrial cancer. Furthermore, based on common DEGs, we found that strophanthidin may be an optimal drug for treating sarcopenia and osteoarthritis, as indicated by the Drug Signatures database. Immune infiltration analysis was also performed on the sarcopenia and osteoarthritis datasets. Finally, receiver operating characteristic (ROC) curves were plotted to verify the reliability of our results. Our findings provide a theoretical foundation for future research on the potential common pathogenesis and molecular mechanisms of sarcopenia and osteoarthritis.

15.
Antonie Van Leeuwenhoek ; 117(1): 95, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967683

RESUMEN

The decline of new antibiotics and the emergence of multidrug resistance in pathogens necessitates a revisit of strategies used for lead compound discovery. This study proposes to induce the production of bioactive compounds with sub-lethal concentrations of silver nanoparticles (Ag-NPs). A total of Forty-two Actinobacteria isolates from four Saudi soil samples were grown with and without sub-lethal concentration of Ag-NPs (50 µg ml-1). The spent broth grown with Ag-NPs, or without Ag-NPs were screened for antimicrobial activity against four bacteria. Interestingly, out of 42 strains, broths of three strains grown with sub-lethal concentration of Ag-NPs exhibit antimicrobial activity against Staphylococcus aureus and Micrococcus luteus. Among these, two strains S4-4 and S4-21 identified as Streptomyces labedae and Streptomyces tirandamycinicus based on 16S rRNA gene sequence were selected for detailed study. The change in the secondary metabolites profile in the presence of Ag-NPs was evaluated using GC-MS and LC-MS analyses. Butanol extracts of spent broth grown with Ag-NPs exhibit strong antimicrobial activity against M. luteus and S. aureus. While the extracts of the controls with the same concentration of Ag-NPs do not show any activity. GC-analysis revealed a clear change in the secondary metabolite profile when grown with Ag-NPs. Similarly, the LC-MS patterns also differ significantly. Results of this study, strongly suggest that sub-lethal concentrations of Ag-NPs influence the production of secondary metabolites by Streptomyces. Besides, LC-MS results identified possible secondary metabolites, associated with oxidative stress and antimicrobial activities. This strategy can be used to possibly induce cryptic biosynthetic gene clusters for the discovery of new lead compounds.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , ARN Ribosómico 16S , Plata , Staphylococcus aureus , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Plata/farmacología , Plata/química , Plata/metabolismo , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , ARN Ribosómico 16S/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Microbiología del Suelo , Metabolismo Secundario , Micrococcus luteus/efectos de los fármacos , Micrococcus luteus/crecimiento & desarrollo , Descubrimiento de Drogas
16.
Virol J ; 21(1): 152, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970084

RESUMEN

BACKGROUND: High-risk human papillomavirus (HR-HPV) infection is an important factor for the development of cervical cancer. HPV18 is the second most common HR-HPV after HPV16. METHODS: In this study, MEGA11 software was used to analyze the variation and phylogenetic tree of HPV18 E6-E7 and L1 genes. The selective pressure to E6, E7 and L1 genes was estimated using pamlX. In addition, the B cell epitopes of L1 amino acid sequences and T cell epitopes of E6-E7 amino acid sequences in HPV18 were predicted by ABCpred server and IEDB website, respectively. RESULTS: A total of 9 single nucleotide variants were found in E6-E7 sequences, of which 2 were nonsynonymous variants and 7 were synonymous variants. Twenty single nucleotide variants were identified in L1 sequence, including 11 nonsynonymous variants and 9 synonymous variants. Phylogenetic analysis showed that E6-E7 and L1 sequences were all distributed in A lineage. In HPV18 E6, E7 and L1 sequences, no positively selected site was found. The nonconservative substitution R545C in L1 affected hypothetical B cell epitope. Two nonconservative substitutions, S82A in E6, and R53Q in E7, impacted multiple hypothetical T cell epitopes. CONCLUSION: The sequence variation data of HPV18 may lay a foundation for the virus diagnosis, further study of cervical cancer and vaccine design in central China.


Asunto(s)
Variación Genética , Papillomavirus Humano 18 , Proteínas Oncogénicas Virales , Proteínas E7 de Papillomavirus , Filogenia , Proteínas Oncogénicas Virales/genética , China , Humanos , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/clasificación , Proteínas E7 de Papillomavirus/genética , Proteínas de la Cápside/genética , Femenino , Epítopos de Linfocito T/genética , Infecciones por Papillomavirus/virología , Proteínas Represoras/genética , Epítopos de Linfocito B/genética , Proteínas de Unión al ADN
17.
Plant J ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972042

RESUMEN

Nucleotide-binding leucine-rich repeat (NLR) proteins are crucial intracellular immune receptors in plants, responsible for detecting invading pathogens and initiating defense responses. While previous studies on the evolution and function of NLR genes were mainly limited to land plants, the evolutionary trajectory and immune-activating character of NLR genes in algae remain less explored. In this study, genome-wide NLR gene analysis was conducted on 44 chlorophyte species across seven classes and seven charophyte species across five classes. A few but variable number of NLR genes, ranging from one to 20, were identified in five chlorophytes and three charophytes, whereas no NLR gene was identified from the remaining algal genomes. Compared with land plants, algal genomes possess fewer or usually no NLR genes, implying that the expansion of NLR genes in land plants can be attributed to their adaptation to the more complex terrestrial pathogen environments. Through phylogenetic analysis, domain composition analysis, and conserved motifs profiling of the NBS domain, we detected shared and lineage-specific features between NLR genes in algae and land plants, supporting the common origin and continuous evolution of green plant NLR genes. Immune-activation assays revealed that both TNL and RNL proteins from green algae can elicit hypersensitive responses in Nicotiana benthamiana, indicating the molecular basis for immune activation has emerged in the early evolutionary stage of different types of NLR proteins. In summary, the results from this study suggest that NLR proteins may have taken a role as intracellular immune receptors in the common ancestor of green plants.

18.
J Environ Manage ; 366: 121763, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972194

RESUMEN

The mechanisms of biochar supported nano zero-valent iron (BC/nZVI) on two-phase anaerobic digestion of food waste were investigated. Results indicated that the performance of both acidogenic phase and methanogenic phase was effectively facilitated. BC/nZVI with the amount of 120 mg/L increased methane production by 32.21%. In addition, BC/nZVI facilitated direct interspecies electron transfer (DIET) between Geobacter and methanogens. Further analysis showed that BC/nZVI increased the abundance of most CAZymes in acidogenic phase. The study also found that BC/nZVI had positive effects on metabolic pathways and related functional genes. The abundances of acdA and ackA in acidogenic phase were increased by 151.75% and 36.26%, respectively, and the abundances of pilA and TorZ associated with DIET were also increased. Furthermore, BC/nZVI mainly removed IMP-12, CAU-1, cmeB, ErmR, MexW, ErmG, Bla2, vgaD, MuxA, and cpxA from this system, and reduced the antibiotic resistance genes for antibiotic inactivation resistance mechanisms.

19.
Hand Clin ; 40(3): 337-345, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972678

RESUMEN

Functional recovery after peripheral nerve injuries is disappointing despite surgical advances in nerve repair. This review summarizes the relatively short window of opportunity for successful nerve regeneration due to the decline in the expression of growth-associated genes and in turn, the decline in regenerative capacity of the injured neurons and the support provided by the denervated Schwann cells, and the atrophy of denervated muscles. Brief, low-frequency electrical stimulation and post-injury exercise regimes ameliorate these deficits in animal models and patients, but the misdirection of regenerating nerve fibers compromises functional recovery and remains an important area of future research.


Asunto(s)
Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Regeneración Nerviosa/fisiología , Humanos , Traumatismos de los Nervios Periféricos/fisiopatología , Traumatismos de los Nervios Periféricos/cirugía , Animales , Células de Schwann/fisiología , Recuperación de la Función
20.
Plant Cell Environ ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973616

RESUMEN

Plant resistance (R) genes play a crucial role in the detection of effector proteins secreted by pathogens, either directly or indirectly, as well as in the subsequent activation of downstream defence mechanisms. However, little is known about how R genes regulate the defence responses of conifers, particularly Pinus massoniana, against the destructive pine wood nematode (PWN; Bursaphelenchus xylophilus). Here, we isolated and characterised PmHs1pro-1, a nematode-resistance gene of P. massoniana, using bioinformatics, molecular biology, histochemistry and transgenesis. Tissue-specific expressional pattern and localisation of PmHs1pro-1 suggested that it was a crucial positive regulator in response to PWN attack in resistant P. massoniana. Meanwhile, overexpression of PmHs1pro-1 was found to activate reactive oxygen species (ROS) metabolism-related enzymes and the expressional level of their key genes, including superoxide dismutase, peroxidase and catalase. In addition, we showed that PmHs1pro-1 directly recognised the effector protein BxSCD1of PWN, and induced the ROS burst responding to PWN invasion in resistant P. massoniana. Our findings illustrated the molecular framework of R genes directly recognising the effector protein of pathology in pine, which offered a novel insight into the plant-pathogen arms race.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...