Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Drug Chem Toxicol ; 41(2): 155-161, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28511592

RESUMEN

Gentisic acid (GA) exhibits antioxidant, anti-inflammatory, and antibiotic activities. This substance can be found in citrus fruits, grapes, olive oil, and peas. Considering that there are few studies in the literature on the toxicity of GA, the present work aimed to investigate its cytotoxic, mutagenic, and antimutagenic activities on HTC cells. GA was diluted in culture medium at the final concentration of 0.08, 0.16, 0.8, 1.6, and 8 µg/mL. The cytotoxicity was determined by the MTT assay and Trypan Blue exclusion method, with methyl methanesulfonate and doxorubicin as positive controls, respectively. The cytokinesis-block micronucleus assay determined the mutagenic/antimutagenic activity with benzo[a]pyrene as positive control. Negative control received culture medium only. GA (0.08-8 µg/mL) was not cytotoxic to HTC cells by the MTT assay nor the Trypan Blue exclusion method as no statistical difference was observed when compared to the control. Concentration of 0.08 and 0.8 µg/mL showed no mutagenic or clastogenic effects, as no significant micronuclei inductions were observed, different from 8 µg/mL, that was mutagenic. Furthermore, none of the concentrations presented an antiproliferative activity. The antimutagenic activity of GA (0.08 µg/mL) was observed at the simultaneous treatment, as it reduced the frequency of micronuclei by 76% (24 h) and 79% (48 h). Although pre- and post-treatments were not statistically different from the mutagen, they reduced the induced-damage by 11% and 21%, respectively. The present study indicated the absence of cytotoxicity and antiproliferative activities of GA, in addition to their antimutagenic/protective effects that may contribute to human health.


Asunto(s)
Antimutagênicos/farmacología , Gentisatos/farmacología , Hepatocitos/efectos de los fármacos , Mutágenos/farmacología , Animales , Antimutagênicos/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Gentisatos/toxicidad , Hepatocitos/metabolismo , Hepatocitos/patología , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos , Mutágenos/toxicidad , Ratas , Medición de Riesgo , Factores de Tiempo
2.
Genet Mol Biol ; 33(1): 169-75, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21637622

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN) testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus) hepatoma cells (HTC) were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa) and mammal (HTC) cells, for more accurately assessing genotoxicity in environmental samples.

3.
Genet. mol. biol ; Genet. mol. biol;33(1): 169-175, 2010. graf, tab
Artículo en Inglés | LILACS | ID: lil-566128

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN) testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus) hepatoma cells (HTC) were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa) and mammal (HTC) cells, for more accurately assessing genotoxicity in environmental samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA