Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 264(Pt 1): 130501, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442831

RESUMEN

Low-molecular-weight heparins (LMWHs), especially the specific-sized heparin oligosaccharides, are attractive for the therapeutic applications, while their synthesis remains challenging. In the present study, unsaturated even-numbered heparosan oligosaccharides were firstly prepared by cleaving high-molecular-weight heparosan using recombinant heparinase III (HepIII). The conversion rates of the unsaturated disaccharides, tetrasaccharides, hexasaccharides, octasaccharides, and decasaccharides were 33.9 %, 47.9 %, 78.7 %, 71.8 %, and 53.4 %, respectively. After processing the aforementioned heparosan oligosaccharides with the Δ4,5 unsaturated glycuronidase, saturated odd-numbered heparosan trisaccharides, pentasaccharides, heptasaccharides, and nonasaccharides were produced. It was observed that among them, the pentasaccharides were the smallest units of saturated odd-numbered oligosaccharides recognized by HepIII. These oligosaccharides were further catalyzed with bifunctional heparan sulfate N-deacetylase/N-sulfotransferase (NDST) under optimized reaction conditions. It was found that the tetrasaccharide was defined as the smallest recognition unit for NDST, obtaining the N-sulfonated heparosan tetrasaccharides, pentasaccharides, and hexasaccharides with a single sulfonate group, as well as N-sulfonated heparosan heptasaccharides, octasaccharides, and nonasaccharides with multiple sulfonate groups. These results provide an easy pathway for constructing a library of specific-sized N-sulfonated heparosan oligosaccharides that can be used as the substrates for the enzymatic synthesis of LMWHs and heparin oligosaccharides, shedding new light on the substrate preference of NDST.


Asunto(s)
Disacáridos , Oligosacáridos , Disacáridos/metabolismo , Oligosacáridos/metabolismo , Heparina , Heparina de Bajo-Peso-Molecular
2.
AMB Express ; 11(1): 94, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34165649

RESUMEN

Carbohydrate-Active enZYme (CAZY) GH89 family enzymes catalyze the cleavage of terminal α-N-acetylglucosamine from glycans and glycoconjugates. Although structurally and mechanistically similar to the human lysosomal α-N-acetylglucosaminidase (hNAGLU) in GH89 which is involved in the degradation of heparan sulfate in the lysosome, the reported bacterial GH89 enzymes characterized so far have no or low activity toward α-N-acetylglucosamine-terminated heparosan oligosaccharides, the preferred substrates of hNAGLU. We cloned and expressed several soluble and active recombinant bacterial GH89 enzymes in Escherichia coli. Among these enzymes, a truncated recombinant α-N-acetylglucosaminidase from gut symbiotic bacterium Bacteroides thetaiotaomicron ∆22Bt3590 was found to catalyze the cleavage of the terminal α1-4-linked N-acetylglucosamine (GlcNAc) from a heparosan disaccharide with high efficiency. Heparosan oligosaccharides with lengths up to decasaccharide were also suitable substrates. This bacterial α-N-acetylglucosaminidase could be a useful catalyst for heparan sulfate analysis.

3.
Carbohydr Polym ; 152: 337-342, 2016 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-27516280

RESUMEN

Uncovering the biological roles of heparosan oligosaccharides requires a simple and robust method for their separation and identification. We reported on systematic investigations of the retention behaviors of synthetic heparosan oligosaccharides on porous graphitic carbon (PGC) column by HPLC with charged aerosol detection. Oligosaccharides were strongly retained by PGC material in water-acetonitrile mobile phase, and eluted by trifluoroacetic acid occurring as narrow peaks. Addition of small fraction of methanol led to better selectivity of PGC to oligosaccharides than acetonitrile modifier alone, presumably, resulting from displacement of methanol to give different chemical environment at the PGC surface. Van't-Hoff plots demonstrated that retention behaviors highly depended on the column temperature and oligosaccharide moieties. By implementing the optimal MeOH content and temperature, a novel isocratic elution method was successfully developed for baseline resolution and identification of seven heparosan oligosaccharides using PGC-HPLC-CAD/MS. This approach allows for rapid analysis of heparosan oligosaccharides from various sources.


Asunto(s)
Disacáridos/análisis , Espectrometría de Masas/métodos , Oligosacáridos/análisis , Aerosoles/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA