Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 740: 140154, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32563883

RESUMEN

The development of heterogeneous Fenton-based electrochemical advanced oxidation processes is important for the removal of organic pollutants at industrial level in the near future. This work reports the application of heterogeneous photoelectro-Fenton (HPEF) with UVA light as an enhanced alternative to the more widespread heterogeneous electro-Fenton (HEF) process. The treatment of the antibiotic cephalexin using chalcopyrite as a sustainable catalyst was studied using an undivided IrO2/air-diffusion cell. XPS analysis showed the presence of Fe(III), Cu(I) and Cu(II) species on the surface. The amount of Fe2+ ions dissolved upon chalcopyrite exposure to continuous stirring and air bubbling was proportional to chalcopyrite content. In all cases, the occurrence of pH self-regulation to an optimum value near 3 was observed. The HEF and HPEF treatments of 100 mL of 50 mg L-1 cephalexin solutions with 0.050 M Na2SO4 have been studied with 1.0 g L-1 chalcopyrite at 50 mA cm-2. Comparative homogeneous EF and PEF with dissolved Fe2+ and Cu2+ catalysts were also performed. HPEF was the most effective process, which can be mainly explained by the larger production of homogeneous and heterogeneous OH and the photodegradation of the complexes formed between iron and organics. The effect of applied current and catalyst concentration on HPEF performance was assessed. Recycling experiments showed a long-term stability of chalcopyrite. Seven initial aromatics and six cyclic by-products of cephalexin were identified, and a plausible degradation route that also includes five final carboxylic acids is proposed.


Asunto(s)
Cefalexina , Contaminantes Químicos del Agua/análisis , Antibacterianos , Cobre , Técnicas Electroquímicas , Electrodos , Compuestos Férricos , Peróxido de Hidrógeno , Oxidación-Reducción
2.
Chemosphere ; 224: 698-706, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30851521

RESUMEN

Iron-supported catalyst on granular activated carbon was prepared for its use in heterogeneous Fenton reaction coupled to an in situ H2O2 electro-generation. For this process, an electrolysis cell was employed, using carbon felt as cathode and graphite as anode. A solution of H2O2 (electrogenerated at a rate of 30 mg L-1 h-1) was obtained using a current intensity of 12 mA. In order to promote the decomposition of H2O2 to OH, a Carbon-Fe catalyst was used. This catalyst was prepared by incipient wet impregnation using FeSO4 as precursor salt to obtain samples with 9% wt of iron. Samples were characterized by EDX, FTIR and XPS spectroscopy before and after wastewater treatment using phenol as model molecule. Two iron oxidation states on the samples were found, Fe2+ and Fe3+. The ratio between Fe2+/Fe3+ was 1.29 which was later reduced to 0.92 after Fenton process; this might be associated with the metal oxidation (Fe2+ to Fe+3) occurring during Fenton-reaction, thus indicating that H2O2 decomposition was carried out by Fe2+ on carbon surface. Detection and quantification of hydroxyl radical were carried out by fluorescence spectroscopy, obtaining a radical concentration of 3.5 µM in solution. Iron in solution were determined, showing a concentration of 0.1 mg L-1, making evident that the supported metal is stable and the reaction is carried out in a heterogeneous phase. Results showed an environmentally friendly process that can generate reagents in situ, with high efficiencies in the degradation of pollutants and minimizing the formation of toxic byproducts, which are common in conventional treatments.


Asunto(s)
Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Peróxido de Hidrógeno/química , Hierro/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Catálisis , Electrodos , Electrólisis , Compuestos Férricos/química , Compuestos Ferrosos/química , Grafito/química , Radical Hidroxilo/química , Oxidación-Reducción , Fenol
3.
Environ Technol ; 40(21): 2840-2852, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29577817

RESUMEN

Composite materials from PET and red mud (RM) wastes were used as catalysts for environmental application such as the wastewater treatment. The PET-RM catalysts were obtained by a mechanical mixture of the residues followed by thermal treatment under an N2 atmosphere (300°C/1 h). An additional activation of the composites with CO2 was investigated (at 800-900°C) to reduce the red mud basicity. The CO2 activation affected the composites surface area and reduced their carbon content. XRD revealed that the haematite (α-Fe2O3) and maghemite/magnetite are the main iron oxides present in the composites. Mössbauer characterization indicated the formation of reduced iron species (Fe2+), highly reactive, after the composites heat treatment. The materials were very active catalysts for methylene blue (MB) and paracetamol (PRC) removal from aqueous solution. The catalytic activity revealed to be dependent on the surface area and mainly of the presence of reduced iron species in the catalysts. The MB removal reached 97% for both PET-RM 800/2 h and PET-RM 800/5 h, after 1 h of reaction. In the case of PRC, the highest removal was also obtained for PET-RM 800/2 h and PET-RM 800/5 h, of ≈25% and 40%, respectively. The contaminants removal mechanism likely occurred through combined adsorption and Fenton-like oxidation processes.


Asunto(s)
Acetaminofén , Carbono , Magnetismo , Oxidación-Reducción , Aguas Residuales
4.
J Hazard Mater ; 359: 96-103, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30014919

RESUMEN

The aim of this work was to study the feasibility of textile sludge as a precursor to prepare catalysts for catalytic wet peroxide oxidation (CWPO) by chemical and thermal treatments. Textile sludge was characterized by physical-chemical and metal composition analyses. The chemical activation was evaluated using iron sulfate and the thermal treatment was carried out at 720 °C in a vacuum pyrolysis reactor. Two catalysts with iron contents of 1.5% and 5.6% were selected. Process parameters influence on CWPO of phenol were evaluated and a maximum removal of phenol and TOC was observed at pH 3 and 60 °C, using 3 g L-1 of the catalyst containing 5.6% of iron and 11.8 mmol L-1 of H2O2. Metal analysis indicated that the textile sludge is suitable to be employed as both iron catalyst and adsorbent. The catalysts characterization indicated a reasonable surface area with a well-developed microporosity and the presence of Hematite structures in the carbonaceous matrix. The degradation process achieved 98.2% of phenol conversion, 68.2% of mineralization and 2.11 mg L-1 of iron leaching in 150 min of reaction. The catalyst presented activity for up to 5 cycles of use, but with loss of efficiency.

5.
Environ Technol ; 39(21): 2822-2833, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28797210

RESUMEN

This study aims to prepare environmentally friendly iron catalysts supported on silica, using glycerol as green reducing and stabilizing agent, for application in heterogeneous Fenton degradation of the pollutant dye methyl orange (MO). The catalysts were characterized by X-ray powder diffraction, atomic absorption spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analyses, Mössbauer and Fourier transform infrared spectroscopies, which revealed the formation of iron(II)/(III) oxalates from the oxidation of glycerol by the iron(III) nitrate precursor. Besides, iron oxihydroxide nanoparticles with superparamagnetic behavior were also formed. Iron catalysts prepared in the presence of nickel(II) or zinc(II) nitrates lead to the formation of the corresponding oxalates. The catalysts were able to degrade MO, efficiently in 180 min of reaction. Fe/SiO2 furnished higher reaction rates, followed by Zn4Fe2/SiO2, which presented higher iron content as well as the smallest nanoparticles. Reaction parameters such as catalyst dosage, hydrogen peroxide concentration, pH and reaction temperature were investigated.


Asunto(s)
Glicerol , Sustancias Reductoras , Compuestos Azo , Compuestos Férricos , Peróxido de Hidrógeno , Dióxido de Silicio
6.
Environ Sci Pollut Res Int ; 24(7): 6135-6142, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27585587

RESUMEN

Fenton reactions driven by dihydroxybenzenes (DHBs) have been used for pollutant removal via advanced oxidation processes (AOPs), but such systems have the disadvantage of DHB release into the aqueous phase. In this work, insoluble tannins from bark can be used to drive Fenton reactions and as a heterogeneous support. This avoids the release of DHBs into the aqueous phase and can be used for AOPs. The production of ·OH was investigated using a spin-trapping electron paramagnetic resonance technique (5-dimethyl-1-pyrroline-N-oxide/·OH) in the first minute of the reaction and a high-performance liquid chromatography-fluorescence technique (coumarin/7-hydroxycoumarin) for 20 min. The ·OH yield achieved using insoluble tannins from Pinus radiata bark was higher than that achieved using catechin to drive the Fenton reaction. The Fenton-like system driven by insoluble tannins achieved 92.6 ± 0.3 % degradation of atrazine in 30 min. The degradation kinetics of atrazine was linearly correlated with ·OH production. The increased reactivity in ·OH production and insolubility of the ligand are promising for the development of a new technique for degradation of pollutants in wastewater using heterogeneous Fenton systems.


Asunto(s)
Derivados del Benceno , Contaminantes Ambientales , Radical Hidroxilo , Pinus/química , Taninos , Derivados del Benceno/análisis , Derivados del Benceno/química , Contaminantes Ambientales/análisis , Contaminantes Ambientales/química , Contaminantes Ambientales/aislamiento & purificación , Restauración y Remediación Ambiental , Radical Hidroxilo/análisis , Radical Hidroxilo/química , Solubilidad , Taninos/análisis , Taninos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA