Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 287(Pt 2): 132191, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34509021

RESUMEN

As the presence of emergent contaminants in wastewater, such as antibiotics, has become a threat for public health, the evaluation of strategies to treat them has been gaining importance. A critical example of this situation can be found in wastewaters coming from the pharmaceutical industry, where high concentrations of antibiotics are sometimes accompanied by high organic contents. Even the agroindustry can be affected by a similar problem when cattle infections are treated with antibiotics and part of the antibiotic-contaminated milk has to be wasted. With these situations in mind, in the present study we evaluated a progressive acclimation strategy for a granular sludge in a UASB reactor treating a high organic-content synthetic wastewater contaminated with azithromycin. In parallel, we tested a previously reported low-cost method for azithromycin determination by spectrophotometry, obtaining results comparable with liquid chromatography coupled to mass spectrometry. Although azithromycin has been reported as recalcitrant and resistant to biological degradation, the antibiotic was removed with efficiencies over 50% for wastewater with 10 mg L-1 of azithromycin and a COD of more than 4000 mgO2 L-1. Furthermore, efficiencies over 40% were achieved for wastewater with higher azithromycin concentrations (80 mg L-1) and a COD of 20,000 mgO2 L-1. A careful acclimation strategy permitted the partial removal of azithromycin from wastewater when treating concentrations comparable and higher than what would be expected for domestic and hospital wastewaters, even when its chemical oxygen demand is considerably higher than the average maximum of around 1000 mgO2 L-1.


Asunto(s)
Azitromicina , Aguas Residuales , Anaerobiosis , Animales , Reactores Biológicos , Bovinos , Laboratorios , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
2.
Sci Total Environ ; 584-585: 642-650, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28161045

RESUMEN

The dynamics of the active microbial populations involved in nitrogen transformation in a vertical subsurface flow constructed wetland (VF) treating urban wastewater was assessed. The wetland (1.5m2) operated under average loads of 130gCODm-2d-1 and 17gTNm-2d-1 in Period I, and 80gCODm-2d-1 and 19gTNm-2d-1 in Period II. The hydraulic loading rate (HLR) was 375mmd-1 and C/N ratio was 2 in both periods. Samples for microbial characterization were collected from the filter medium (top and bottom layers) of the wetland, water influent and effluent at the end of Periods I (Jun-Oct) and II (Nov-Jan). The combination of qPCR and high-throughput sequencing (NGS, MiSeq) assessment at DNA and RNA level of 16S rRNA genes and nitrogen-based functional genes (amoA and nosZ-clade I) revealed that nitrification was associated both with ammonia-oxidizing bacteria (AOB) (Nitrosospira) and ammonia-oxidizing archaea (AOA) (Nitrososphaeraceae), and nitrite-oxidizing bacteria (NOB) such as Nitrobacter. Considering the active abundance (based in amoA transcripts), the AOA population revealed to be more stable than AOB in both periods and depths of the wetland, being less affected by the organic loading rate (OLR). Although denitrifying bacteria (nosZ copies and transcripts) were actively detected in all depths, the denitrification process was low (removal of 2gTNm-2d-1 for both periods) concomitant with NOx-N accumulation in the effluent. Overall, AOA, AOB and denitrifying bacteria (nosZ) were observed to be more active in bottom than in top layer at lower OLR (Period II). A proper design of OLR and HLR seems to be crucial to control the activity of microbial biofilms in VF wetlands on the basis of oxygen, organic-carbon and NOx-N forms, to improve their capacity for total nitrogen removal.


Asunto(s)
Nitrógeno/metabolismo , Aguas Residuales , Microbiología del Agua , Humedales , Amoníaco , Archaea/metabolismo , Bacterias/metabolismo , Genes Arqueales , Genes Bacterianos , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA