Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 831
Filtrar
1.
Med Phys ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284344

RESUMEN

BACKGROUND: Ultra-high dose rate irradiation (≥40 Gy/s, FLASH) has been shown to reduce normal tissue toxicity, while maintaining tumor control compared to conventional dose-rate radiotherapy. The radiolytic oxygen (O2) depletion (ROD) resulting from FLASH has been proposed to explain the normal tissue protection effect; however, in vivo experiments have not confirmed that FLASH induced global tissue hypoxia. Nonetheless, the experiments reported are based on volume-averaged measurement, which have inherent limitations in detecting microscopic phenomena, including the potential preservation of stem cells niches due to local FLASH-induced O2 depletion. Computational modeling offers a complementary approach to understand the ROD caused by FLASH at the microscopic level. PURPOSE: We developed a comprehensive model to describe the spatial and temporal dynamics of O2 consumption and transport in response to irradiation in vivo. The change of oxygen enhancement ratio (OER) was used to quantify and investigate the FLASH effect as a function of physiological and radiation parameters at microscopic scale. METHODS: We considered time-dependent O2 supply and consumption in a 3D cylindrical geometry, incorporating blood flow linking the O2 concentration ([O2]) in the capillary to that within the tissue through the Hill equation, radial and axial diffusion of O2, metabolic and zero-order radiolytic O2 consumption, and a pulsed radiation structure. Time-evolved distributions of [O2] were obtained by numerically solving perfusion-diffusion equations. The model enables the computation of dynamic O2 distribution and the relative change of OER (δROD) under various physiological and radiation conditions in vivo. RESULTS: Initial [O2] level and the subsequent changes during irradiation determined δROD distribution, which strongly depends on physiological parameters, i.e., intercapillary spacing, ultimately determining the tissue area with enhanced radioresistance. We observed that the δROD/FLASH effect is affected by and sensitive to the interplay effect among physiological and radiation parameters. It renders that the FLASH effect can be tissue environment dependent. The saturation of FLASH normal tissue protection upon dose and dose rate was shown. Beyond ∼60 Gy/s, no significant decrease in radiosensitivity within tissue region was observed. In turn, for a given dose rate, the change of radiosensitivity became saturated after a certain dose level. Pulse structures with the same dose and instantaneous dose rate but with different delivery times were shown to have distinguishable δROD thus tissue sparing, suggesting the average dose rate could be a metric assessing the FLASH effect and demonstrating the capability of our model to support experimental findings. CONCLUSION: On a macroscopic scale, the modeling results align with the experimental findings in terms of dose and dose rate thresholds, and it also indicates that pulse structure can vary the FLASH effect. At the microscopic level, this model enables us to examine the spatially resolved FLASH effect based on physiological and irradiation parameters. Our model thus provides a complementary approach to experimental methods for understanding the underlying mechanism of FLASH radiotherapy. Our results show that physiological conditions can potentially determine the FLASH efficacy in tissue protection. The FLASH effect may be observed under optimal combination of physiological parameters, not limited to radiation conditions alone.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39218741

RESUMEN

OBJECTIVES: Image-guided adaptive brachytherapy (IGABT) is the standard of care for patients with cervical cancer. The objective of this study was to compare the treatment outcomes and adverse effects of computed tomography (CT)-guided and magnetic resonance imaging (MRI)-guided scenarios. MATERIALS AND METHODS: Data of patients with cervical cancer treated using external beam radiotherapy followed by IGABT from 2012 to 2016 were retrospectively reviewed. CT-guided IGABT was compared with the three modes of MRI-guided IGABT: pre-brachytherapy (MRI Pre-BT) without applicator insertion for fusion, planning MRI with applicator in-place in at least 1 fraction (MRI ≥1Fx), and MRI in every fraction (MRI EveryFx). Patient characteristics, oncologic outcomes, and late radiation toxicity were analyzed using descriptive, survival, and correlation statistics. RESULTS: Overall, 354 patients were evaluated with a median follow-up of 60 months. The 5-year overall survival (OS) rates were 61.5%, 65.2%, 54.4%, and 63.7% with CT-guided, MRI PreBT, MRI ≥1Fx, and MRI EveryFx IGABT, respectively with no significant differences (p = 0.522). The 5-year local control (LC) rates were 92.1%, 87.8%, 80.7%, and 76.5% (p = 0.133), respectively, with a significant difference observed between the CT-guided and MRI ≥1Fx (p = 0.018). The grade 3-4 late gastrointestinal toxicity rates were 6% in the CT-guided, MRI ≥1Fx, and MRI EveryFx, and 8% in MRI PreBT. The grade 3-4 late genitourinary toxicity rates were 4% in the CT-guided, 2% in MRI PreBT, 1% in MRI ≥1Fx, and none in MRI EveryFx. No significant differences were observed in the oncologic and toxicity outcomes among MRI PreBT, MRI ≥1Fx, and MRI EveryFx. CONCLUSIONS: CT-guided IGABT yielded an acceptable 5-year OS, LC, and toxicity profile compared with all MRI scenarios and is a potentially feasible option in resource-limited settings.

3.
Med Phys ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39293487

RESUMEN

BACKGROUND: Achieving a clinically acceptable dose distribution with commercial vaginal applicators for brachytherapy of recurrent parauterine tumors is challenging. However, the application of three-dimensional (3D) printing technology in brachytherapy has been widely acknowledged and can improve clinical treatment outcomes. PURPOSE: This study aimed to introduce an individual curved-needle interstitial template (ICIT) created using 3D printing technology for high-dose-rate (HDR) brachytherapy with interstitial treatment to provide a clinically feasible approach to distal parauterine and vaginal cuff tumors. The entire workflow, including the design, optimization, and application, is presented. METHODS: Ten patients with pelvic cancer recurrence were examined at our center. The vaginal topography was filled with gauze strips soaked in developer solution, and images were obtained using computed tomography (CT) and magnetic resonance imaging (MRI). Curved needle paths were designed, and ICITs were 3D-printed according to the high-risk clinical target volume (HRCTV) and vaginal filling model. The dose and volume histogram parameters of the HRCTV (V100, V200, D90, and D98) and organs at risk (OARs) (D2cc) were recorded. RESULTS: All patients completed interstitial brachytherapy treatment with the 3D-printed ICIT. One patient experienced vaginal cuff tumor recurrence, and nine patients experienced parametrial tumor recurrence (four on the left and five on the right). We used two to five interstitial needles, and the maximum angle of the curved needle was 40°. No source obstruction events occurred during treatment of these 10 patients. The doses delivered to the targets and OARs of all patients were within the dose limits and based on clinical experience at our center. CONCLUSION: The ICIT is a treatment option for patients with distal parauterine tumor recurrence. This method addresses the limitations of vaginal intracavitary and standard interstitial applicators. The ICIT has the advantages of biocompatibility, personalization, and magnetic resonance imaging compatibility.

4.
World J Urol ; 42(1): 520, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264453

RESUMEN

PURPOSE: Intraprostatic recurrence (IRR) of prostate cancer after radiation therapy is increasingly identified. Our objective was to review the literature to determine the optimal workup for identifying IRR, the management options, and practical considerations for the delivery of re-irradiation as salvage local therapy. METHODS: We performed a systematic review of available publications and ongoing studies on the topics of IRR, with a focus on salvage re-irradiation. RESULTS: Work up of biochemically recurrent prostate cancer includes PSMA PET/CT and multiparametric MRI, followed by biopsy to confirm IRR. Management options include continued surveillance, palliative hormonal therapy, and salvage local therapy. Salvage local therapy can be delivered using re-irradiation with low dose rate brachytherapy, high dose rate (HDR) brachytherapy, and stereotactic body radiotherapy (SBRT), as well as non-radiation modalities, such as cryotherapy, high-intensity focused ultrasound, irreversible electroporation and radical prostatectomy. Data demonstrate that HDR brachytherapy and SBRT have similar efficacy compared to the other salvage local therapy modalities, while having more favorable side effect profiles. Recommendations for radiation therapy planning and delivery using HDR and SBRT based on the available literature are discussed. CONCLUSION: Salvage re-irradiation is safe and effective and should be considered in patients with IRR.


Asunto(s)
Recurrencia Local de Neoplasia , Neoplasias de la Próstata , Reirradiación , Terapia Recuperativa , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Recurrencia Local de Neoplasia/radioterapia , Reirradiación/métodos , Terapia Recuperativa/métodos , Braquiterapia/métodos , Radiocirugia/métodos , Guías de Práctica Clínica como Asunto
5.
Cureus ; 16(8): e66702, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39262551

RESUMEN

Purpose This study evaluates the therapeutic outcomes and practical application of high-dose-rate (HDR) brachytherapy in managing cervical and endometrial cancers at a tertiary hospital in the UAE, focusing on treatment efficacy, safety, and patient-reported outcomes. Methods A retrospective analysis was conducted on 368 female patients treated between January 2008 and January 2022. Data included demographic information, cancer type, histopathology, treatment details, and survival outcomes. Statistical analyses were performed using descriptive and inferential statistics. Results The cohort comprised 275 cervical cancer patients (74.73%) and 93 endometrial cancer patients (25.27%). The majority were non-nationals (79.62%). The mean age was 57 years. Squamous cell carcinoma was the most common histopathological type (63.59%). HDR brachytherapy was administered to 290 patients (79.89%). The 12-month survival probability was significantly higher in the HDR-Brachy group (75%, 95% CI: 60% to 85%) compared to the noHDR-Brachy group (50%, 95% CI: 35% to 65%), with a hazard ratio of 0.953 (p=0.0035). At the last review, 86.68% of patients were alive, and disease progression was observed in 37.88% of patients. Conclusion HDR brachytherapy significantly improves survival outcomes in cervical and endometrial cancer patients. Continued efforts to enhance access and standardize brachytherapy protocols are essential to optimize treatment efficacy and patient outcomes in similar healthcare settings.

6.
Cancer Radiother ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39304401

RESUMEN

Ultra-high dose rate external beam radiotherapy (UHDR-RT) uses dose rates of several tens to thousands of Gy/s, compared with the dose rate of the order of a few Gy/min for conventional radiotherapy techniques, currently used in clinical practice. The use of such dose rate is likely to improve the therapeutic index by obtaining a radiobiological effect, known as the "FLASH" effect. This would maintain tumor control while enhancing tissues protection. To date, this effect has been achieved using beams of electrons, photons, protons, and heavy ions. However, the conditions required to achieve this "FLASH" effect are not well defined, and raise several questions, particularly with regard to the definition of the prescription, including dose fractionation, irradiated volume and the temporal structure of the pulsed beam. In addition, the dose delivered over a very short period induces technical challenges, particularly in terms of detectors, which must be mastered to guarantee safe clinical implementation. IRSN has carried out an in-depth literature review of the UHDR-RT technique, covering various aspects relating to patient radiation protection: the radiobiological mechanisms associated with the FLASH effect, the used temporal structure of the UHDR beams, accelerators and dose control, the properties of detectors to be used with UHDR beams, planning, clinical implementation, and clinical studies already carried out or in progress.

7.
Med Phys ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331834

RESUMEN

BACKGROUND: FLASH radiation therapy (RT) offers a promising avenue for the broadening of the therapeutic index. However, to leverage the full potential of FLASH in the clinical setting, an improved understanding of the biological principles involved is critical. This requires the availability of specialized equipment optimized for the delivery of conventional (CONV) and ultra-high dose rate (UHDR) irradiation for preclinical studies. One method to conduct such preclinical radiobiological research involves adapting a clinical linear accelerator configured to deliver both CONV and UHDR irradiation. PURPOSE: We characterized the dosimetric properties of a clinical linear accelerator configured to deliver ultra-high dose rate irradiation to two anatomic sites in mice and for cell-culture FLASH radiobiology experiments. METHODS: Delivered doses of UHDR electron beams were controlled by a microcontroller and relay interfaced with the respiratory gating system. We also produced beam collimators with indexed stereotactic mouse positioning devices to provide anatomically specific preclinical treatments. Treatment delivery was monitored directly with an ionization chamber, and charge measurements were correlated with radiochromic film measurements at the entry surface of the mice. The setup for conventional dose rate irradiation utilized the same collimation system but at increased source-to-surface distance. Monte Carlo simulations and film dosimetry were used to characterize beam properties and dose distributions. RESULTS: The mean electron beam energies before the flattening filter were 18.8 MeV (UHDR) and 17.7 MeV (CONV), with corresponding values at the mouse surface of 17.2 and 16.2 MeV. The charges measured with an external ion chamber were linearly correlated with the mouse entrance dose. The use of relay gating for pulse control initially led to a delivery failure rate of 20% (± 1 pulse); adjustments to account for the linac latency improved this rate to < 1/20. Beam field sizes for two anatomically specific mouse collimators (4 × 4 cm2 for whole-abdomen and 1.5 × 1.5 cm2 for unilateral lung irradiation) were accurate within < 5% and had low radiation leakage (< 4%). Normalizing the dose at the center of the mouse (∼0.75 cm depth) produced UHDR and CONV doses to the irradiated volumes with > 95% agreement. CONCLUSION: We successfully configured a clinical linear accelerator for increased output and developed a robust preclinical platform for anatomically specific irradiation, with highly accurate and precise temporal and spatial dose delivery, for both CONV and UHDR irradiation applications.

8.
Anticancer Res ; 44(10): 4251-4260, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39348953

RESUMEN

BACKGROUND/AIM: The purpose of this study was to evaluate whether the sparing effect on cell survival is observed under normoxia. MATERIALS AND METHODS: A superconducting spiral sector-type azimuthally varying field (AVF) cyclotron produced 230 MeV proton beams at 250 Gy/s as ultra-high dose rate (uHDR) and 1 Gy/s as normal dose rate (NDR) to irradiate tumor and normal cell lines (HSGc-c5 and HDF up to 24 Gy at the center of spread-out Bragg peak (SOBP). The Advanced Markus chamber and Gafchromic film were used to measure the examined absolute dose and field sizes. Colony formation assay and immunofluorescence staining were conducted to evaluate the sparing effect. RESULTS: A homogeneous field was achieved at the center of the SOBP for both uHDR and NDR scanned proton beams, and dose reproducibility and linearity were adequate for experiments. There were significant differences in cell surviving fractions of HSGc-C5 and HDF cells irradiated at uHDRs compared to NDRs at 20 Gy and 24 Gy. Increasing γ-H2AX foci were observed for both cell lines at NDR. CONCLUSION: The sparing effect on cell survival was first observed under normoxic conditions for tumor and normal cells with doses exceeding 20 Gy, using proton irradiation at 250 Gy/s extracted from a superconducting AVF cyclotron. This study marks a significant milestone in advancing our understanding of the underlying mechanism behind the sparing effect.


Asunto(s)
Supervivencia Celular , Ciclotrones , Terapia de Protones , Humanos , Supervivencia Celular/efectos de la radiación , Terapia de Protones/métodos , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Protones , Dosificación Radioterapéutica
9.
ArXiv ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39314510

RESUMEN

Previously, a synchrotron-based horizontal proton beamline (87.2 MeV) was successfully commissioned to deliver radiation doses in FLASH and conventional dose rate modes to small fields and volumes. In this study, we developed a strategy to increase the effective radiation field size using a custom robotic motion platform to automatically shift the positions of biological samples. The beam was first broadened with a thin tungsten scatterer and shaped by customized brass collimators for irradiating cell/organoid cultures in 96-well plates (a 7-mm-diameter circle) or for irradiating mice (1-cm2 square). Motion patterns of the robotic platform were written in G-code, with 9-mm spot spacing used for the 96-well plates and 10.6-mm spacing for the mice. The accuracy of target positioning was verified with a self-leveling laser system. The dose delivered in the experimental conditions was validated with EBT-XD film attached to the 96-well plate or the back of the mouse. Our film-measured dose profiles matched Monte Carlo calculations well (1D gamma pass rate >95%). The FLASH dose rates were 113.7 Gy/s for cell/organoid irradiation and 191.3 Gy/s for mouse irradiation. These promising results indicate that this robotic platform can be used to effectively increase the field size for preclinical experiments with proton FLASH.

10.
Radiother Oncol ; 200: 110507, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39245070

RESUMEN

Treatments at ultra-high dose rate (UHDR) have the potential to improve the therapeutic index of radiation therapy (RT) by sparing normal tissues compared to conventional dose rate irradiations. Insufficient and inconsistent reporting in physics and dosimetry of preclinical and translational studies may have contributed to a reproducibility crisis of radiobiological data in the field. Consequently, the development of a common terminology, as well as common recording, reporting, dosimetry, and metrology standards is required. In the context of UHDR irradiations, the temporal dose delivery parameters are of importance, and under-reporting of these parameters is also a concern.This work proposes a standardization of terminology, recording, and reporting to enhance comparability of both preclinical and clinical UHDR studies and and to allow retrospective analyses to aid the understanding of the conditions which give rise to the FLASH effect.


Asunto(s)
Dosificación Radioterapéutica , Humanos , Animales , Neoplasias/radioterapia
11.
Cancer Radiother ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39343695

RESUMEN

The delivery of ultra-high dose rates of radiation, called FLASH irradiation or FLASH-RT, has emerged as a new modality of radiotherapy shaking up the paradigm of proportionality of effect and dose whatever the method of delivery of the radiation. The hallmark of FLASH-RT is healthy tissue sparing from the side effects of radiation without decrease of the antitumor efficiency in animal models. In this review we will define its specificities, the molecular mechanisms underlying the FLASH effect and the ongoing developments to bring this new modality to patient treatment.

12.
J Pers Med ; 14(8)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39202044

RESUMEN

Background. Peri-operative interventional radiotherapy (POIRT) entails tumor resection, catheter implantation in the same surgery, and irradiation within the peri-operative period. It allows for maximal tumor burden reduction, better tumor bed identification, more flexible implant geometry, highly conformal irradiation, and treatment delay minimization. We reviewed the published local control, survival, toxicity, and quality of life (QOL) outcomes with POIRT for head and neck cancers (HNCs) in primary and re-irradiation settings. Materials and Methods. A systematic search of PubMed, Scopus, Science Direct, and other databases, supplemented by bibliography scanning and hand-searching, yielded 107 titles. Fifteen unique articles were eligible, five of which were merged with more updated studies. Of the ten remaining studies, four reported on primary POIRT, and seven reported on reirradiation POIRT. Given data heterogeneity, only qualitative synthesis was performed. Results. Primary POIRT in early tongue cancer results in 6-year recurrence-free (RFS) and overall survival (OS) of 92% for both; in advanced HNCs, the 9-year RFS and OS rates are 52% and 55%. Grade 1-2 toxicity is very common; grade 3-4 toxicity is rare, but grade 5 toxicity has been reported. POIRT re-irradiation for recurrent HNCs results in 5y RFS and OS rates of 37-55% and 17-50%; better outcomes are achieved with gross total resection (GTR). QOL data are lacking. Conclusions. Primary POIRT is safe and effective in early tongue cancers; its use in other HNC sites, especially in advanced disease, requires careful consideration. Re-irradiation POIRT is most effective and safe when combined with GTR; toxicity is significant and may be limited by careful case selection, implant planning and execution, use of smaller fraction sizes, and adherence to homogeneity constraints. Study Registration Number. PROSPERO Registry Number CRD42024548294.

13.
Strahlenther Onkol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095649

RESUMEN

OBJECTIVE: There are numerous curative treatment possibilities for prostate cancer. In patients who have undergone rectal extirpation for rectal cancer treatment, curative options are limited due to anatomic changes and previous irradiation of the pelvis. In this analysis, we validate the feasibility of CT-guided transperineal interstitial brachytherapy for this specific scenario. PATIENTS AND METHODS: We analyzed the treatment procedures and outcomes of 5 patients with metachronic nonmetastatic prostate cancer. Ultrasound-guided brachytherapy was not possible in any of the patients. Of these 5 patients, 3 were treated for prostate cancer using temporary brachytherapy with Ir-192 only, and 2 were treated with external-beam radiation therapy and temporary brachytherapy as a boost. CT-guided brachytherapy was performed in all patients. We analyzed the feasibility, efficacy, treatment-related toxicity, and quality of life (EORTC-30, IEFF, IPSS, and ICIQ questionnaires) of the treatments. RESULTS: Median follow-up was 35 months. Two out of five patients received boost irradiation (HDR 2â€¯× 9 Gy, PDR 30 Gy). Three out of five patients were treated with PDR brachytherapy in two sessions up to a total dose of 60 Gy. Dosimetric parameters were documented as median values as follows: V100 94.7% (94.5-98.4%), D2bladder 64.3% (50.9-78.3%), D10urethra 131.05% (123.2%-141.2%), and D30urethra 122.45% (116.2%-129.5%). At the time of analysis, no biochemical recurrence had been documented. Furthermore, neither early nor late side effects exceeding CTCAE grade 2 were documented. CONCLUSION: CT-guided transperineal brachytherapy of the prostate in patients with previous rectal surgery and radiation therapy is safe and represents a possible curative treatment option. Brachytherapy can be considered for patients with metachronic prostate cancer in this specific scenario, albeit preferably in experienced high-volume centers.

14.
Brachytherapy ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39112321

RESUMEN

BACKGROUND AND PURPOSE: The upgrade of major equipment can be disruptive to clinical operations and introduce risk as policy and procedures need to adapt to new technical possibilities and constraints. We describe here the transition from GammaMedPlus-iX to Bravos in a busy brachytherapy clinic, involving four afterloaders across two sites. MATERIAL AND METHODS: Our clinic employs three high-dose-rate remote afterloaders in four dedicated treatment vaults at the main site and a fourth afterloader at a regional location. Of more than 600 new HDR treatment plans performed annually, most are planned and treated intraoperatively. Most treatments are for prostate cancer, followed by GYN, intraoperative brachytherapy, GI, and other sites. Applicators used include vendor-provided applicators as well as third party applicators and in-house 3D-printed devices to provide interstitial, intracavitary, intraluminal, and surface treatments. All applicators were commissioned according to recommended guidelines. The choice of tolerances and the design of new procedures were informed by current guidelines and leveraged new HDR afterloader functionalities. A review of clinical operations in the 4 months postupgrade was conducted to evaluate the feasibility of new tolerances and the effectiveness of new procedures. RESULTS: The procedures outlined improved and standardized afterloader QA and treatment protocols with clear actionable steps for staff to follow to ensure treatments are delivered as planned. Re-commissioning of applicators yielded results similar to those previously reported by other investigators. A review of initial treatment data revealed that in one case, due to the implementation of tight tolerances, obstruction near the tip of the channel was detected and corrected prior to treatment. It confirms that the implementation of the tolerances adopted is feasible and effective in flagging treatment deviations. CONCLUSION: Enhanced procedures and QA processes were implemented successfully. We established clear actionable steps to follow by staff to ensure that treatments are delivered accurately.

15.
Front Oncol ; 14: 1425240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39077466

RESUMEN

Introduction: FLASH radiotherapy (RT) has emerged as a promising modality, demonstrating both a normal tissue sparing effect and anticancer efficacy. We have previously reported on the safety and efficacy of single fraction FLASH RT in the treatment of oral tumors in canine cancer patients, showing tumor response but also a risk of radiation-induced severe late adverse effects (osteoradionecrosis) for doses ≥35 Gy. Accordingly, the objective in this study was to investigate if single fraction high dose FLASH RT is safe for treating non-oral tumors. Methods: Privately-owned dogs with superficial tumors or microscopic residual disease were included. Treatment was generally delivered as a single fraction of 15-35 Gy 10 MeV electron FLASH RT, although two dogs were re-irradiated at a later timepoint. Follow-up visits were conducted up to 12 months post-treatment to evaluate treatment efficiency and adverse effects. Results: Fourteen dogs with 16 tumors were included, of which nine tumors were treated for gross disease whilst seven tumors were treated post-surgery for microscopic residual disease. Four treatment sites treated with 35 Gy had ulceration post irradiation, which was graded as severe adverse effect. Only mild adverse effects were observed for the remaining treatment sites. None of the patients with microscopic disease experienced recurrence (0/7), and all patients with macroscopic disease showed either a complete (5/9) or a partial response (4/9). Five dogs were euthanized due to clinical disease progression. Discussion: Our study demonstrates that single fraction high dose FLASH RT is generally safe, with few severe adverse effects, particularly in areas less susceptible to radiation-induced damage. In addition, our study indicates that FLASH has anti-tumor efficacy in a clinical setting. No osteoradionecrosis was observed in this study, although other types of high-grade adverse effects including ulcer-formations were observed for the highest delivered dose (35 Gy). Overall, we conclude that osteoradionecrosis following single fraction, high dose FLASH does not appear to be a general problem for non-oral tumor locations. Also, as has been shown previously for oral tumors, 30 Gy appeared to be the maximum safe dose to deliver with single fraction FLASH RT.

16.
Brachytherapy ; 23(5): 549-558, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38964977

RESUMEN

PURPOSE: High dose-rate (HDR) brachytherapy is integral for the treatment of numerous cancers. Preclinical studies involving HDR brachytherapy are limited. We aimed to describe a novel platform allowing multi-modality studies with clinical HDR brachytherapy and external beam irradiators, establish baseline dosimetry standard of a preclinical orthovoltage irradiator, to determine accurate dosimetric methods. METHODS: A dosimetric assessment of a commercial preclinical irradiator was performed establishing the baseline dosimetry goals for clinical irradiators. A 3D printed platform was then constructed with 14 brachytherapy channels at 1cm spacing to accommodate a standard tissue culture plate at a source-to-cell distance (SCD) of 1 cm or 0.4 cm. 4-Gy CT-based treatment plans were created in clinical treatment planning software and delivered to 96-well tissue culture plates using an Ir192 source or a clinical linear accelerator. Standard calculation models for HDR brachytherapy and external beam were compared to corresponding deterministic model-based dose calculation algorithms (MBDCAs). Agreement between predicted and measured dose was assessed with 2D-gamma passing rates to determine the best planning methodology. RESULTS: Mean (±standard deviation) and median dose measured across the plate for the preclinical irradiator was 423.7 ± 8.5 cGy and 430.0 cGy. Mean percentage differences between standard and MBDCA dose calculations were 9.4% (HDR, 1 cm SCD), 0.43% (HDR, 0.4 cm SCD), and 2.4% (EBRT). Predicted and measured dose agreement was highest for MBDCAs for all modalities. CONCLUSION: A 3D-printed tissue culture platform can be used for multi-modality irradiation studies with great accuracy. This tool will facilitate preclinical studies to reveal biologic differences between clinically relevant radiation modalities.


Asunto(s)
Braquiterapia , Radiometría , Dosificación Radioterapéutica , Braquiterapia/instrumentación , Braquiterapia/métodos , Humanos , Radiometría/instrumentación , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Impresión Tridimensional , Diseño de Equipo , Algoritmos
17.
J Appl Clin Med Phys ; 25(8): e14451, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38952057

RESUMEN

PURPOSE: This study investigated the potential of a commercially available plastic scintillator, the Exradin W2, as a real-time dosimeter for ultra-high-dose-rate (UHDR) electron beams. This work aimed to characterize this system's performance under UHDR conditions and addressed limitations inherent to other conventional dosimetry systems. METHODS AND MATERIALS: We assessed the W2's performance as a UHDR electron dosimeter using a 16 MeV UHDR electron beam from the FLASH research extension (FLEX) system. Additionally, the vendor provided a beta firmware upgrade to better handle the processing of the high signal generated in the UHDR environment. We evaluated the W2 regarding dose-per-pulse, pulse repetition rate, charge versus distance, and pulse linearity. Absorbed dose measurements were compared against those from a plane-parallel ionization chamber, optically stimulated luminescent dosimeters and radiochromic film. RESULTS: We observed that the 1 × 1 mm W2 scintillator with the MAX SD was more suitable for UHDR dosimetry compared to the 1 × 3 mm W2 scintillator, capable of matching film measurements within 2% accuracy for dose-per-pulse up to 3.6 Gy/pulse. The W2 accurately ascertained the inverse square relationship regarding charge versus virtual source distance with R2 of ∼1.00 for all channels. Pulse linearity was accurately measured with the W2, demonstrating a proportional response to the delivered pulse number. There was no discernible impact on the measured charge of the W2 when switching between the available repetition rates of the FLEX system (18-180 pulses/s), solidifying consistent beam output across pulse frequencies. CONCLUSIONS: This study tested a commercial plastic scintillator detector in a UHDR electron beam, paving the way for its potential use as a real-time, patient-specific dosimetry tool for future FLASH radiotherapy treatments. Further research is warranted to test and improve the signal processing of the W2 dosimetry system to accurately measure in UHDR environments using exceedingly high dose-per-pulse and pulse numbers.


Asunto(s)
Electrones , Plásticos , Conteo por Cintilación , Plásticos/química , Conteo por Cintilación/instrumentación , Conteo por Cintilación/métodos , Humanos , Radiometría/métodos , Radiometría/instrumentación , Dosificación Radioterapéutica , Fantasmas de Imagen , Aceleradores de Partículas/instrumentación
18.
Jpn J Radiol ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951462

RESUMEN

PURPOSE: Until March 2018, patients with high-risk localized prostate cancer had been administered high-dose-rate brachytherapy (HDR-BT) combined with external beam radiotherapy (EBRT) without additional hormone therapy (HT) at our institution. In this study, we aimed to evaluate long-term outcomes of this treatment. MATERIALS AND METHODS: Patients with prostate cancer who received HDR-BT and EBRT between April 1997 and March 2021 and who were followed up for at least 6 months were included in the study. High-risk groups were classified into five levels according to the National Comprehensive Cancer Network guidelines. The EBRT and HDR-BT doses were 39-45 Gy/13-25 fractions. and 16.5-22 Gy/2-4 fractions, respectively. None of the patients received HT during initial treatment. The Kaplan-Meier method was used to estimate biochemical freedom from failure (bFFF), cause-specific survival (CSS), and overall survival (OS) rates. Biochemical failure was also determined. RESULTS: Seventy-two patients were enrolled in the study, with a median follow-up of 91.9 months. The median age and initial prostate-specific antigen (iPSA) level were 71 years and 10.95 ng/mL, respectively. The median biologically effective dose for HDR-BT plus EBRT was 270.3 Gy. The 5- and 7-year bFFF, CSS, and OS rates were 85.2 and 74.2%, 100 and 100%, and 95.7 and 91.9%, respectively. Only the iPSA ≤ 20 group was associated with the higher bFFF rate. The 7-year bFFF rates in the groups with iPSA ≤ 20 and iPSA > 20 were 86.6 and 48.6%, respectively. CONCLUSION: HDR-BT plus EBRT without HT might be an alternative treatment option for patients with high-risk localized prostate cancer and iPSA levels ≤ 20. Further studies are required to validate the efficacy of this treatment strategy.

19.
Radiat Oncol J ; 42(2): 154-159, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38946078

RESUMEN

Surface mould brachytherapy is a conformal radiotherapy technique that can deliver high dose to the target while sparing nearby normal structures, Here, we aim to describe the procedurals details for high-dose rate (HDR) surface mould brachytherapy in sebaceous carcinoma of eyelid in a 54-year old lady. She was hesitant for surgery and any form of invasive intervention like interstitial brachytherapy. So, she was treated with surface mould HDR brachytherapy to a total dose of 52 Gy in 13 fractions at a dose of 4 Gy per fraction delivered twice daily using Iridium-192 isotope with no acute side effects. She was evaluated on a weekly basis for any radiation side effects and now she is disease-free for 6 months post-treatment with only mild dry eye. A detailed step-by-step procedure of surface mould technique, simulation procedure, dose prescription, planning, plan evaluation and treatment has been described in this paper. Surface mould HDR brachytherapy can be safely used as organ preserving modality of treatment for eyelid carcinoma.

20.
Cureus ; 16(6): e61544, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38962615

RESUMEN

Locally advanced cervical cancers are often treated with palliative intent due to concerns that the tumor is too far advanced or too large to be treated curatively. Also, patients greater than 65 years of age with cervical cancer are sometimes regarded as being too old or too frail to be cured with combined radiation and chemotherapy. These patients are often treated with radiation alone or with palliative therapy. Understanding the treatment modalities for cervical cancer is essential, as they can be complex and unique to each patient's specific diagnosis. This case report aims to describe the dramatic response to treatment with combined radiation and chemotherapy for a patient greater than 65 years of age with pelvis-filling cervical cancer with right-sided hydronephrosis. After a five-week course of concurrent chemoradiation, the cervical mass radiographically completely disappeared, with no evidence of disease noted on pelvic MRI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA