Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.634
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062856

RESUMEN

The 3 Screen ICA ELISA is a novel assay capable of simultaneously measuring autoantibodies to glutamic acid decarboxylase (GADA), insulinoma-associated antigen-2 (IA-2A), and zinc transporter 8 (ZnT8A), making it a valuable tool for screening type 1 diabetes. Despite its advantages, it cannot specify which individual autoantibodies are positive or negative. This study aimed to estimate individual positive autoantibodies based on the 3 Screen ICA titer. Six hundred seventeen patients with type 1 diabetes, simultaneously measured for 3 Screen ICA and three individual autoantibodies, were divided into five groups based on their 3 Screen ICA titer. The sensitivities and contribution rates of the individual autoantibodies were then examined. The study had a cross-sectional design. Sixty-nine percent (424 of 617) of patients with type 1 diabetes had 3 Screen ICA titers exceeding the 99th percentile cut-off level (20 index). The prevalence of GADA ranged from 80% to 100% in patients with a 3 Screen ICA over 30 index and 97% of patients with a 3 Screen ICA ≥300 index. Furthermore, the prevalence of all individual autoantibodies being positive was 0% for ≤80 index and as high as 92% for ≥300 index. Significant associations were observed in specific titer groups: the 20-29.9 index group when all the individual autoantibodies were negative, the 30-79.9 index group when positive for GADA alone or IA-2A alone, the 30-299.9 index group when positive for ZnT8A alone, the 80-299.9 index group when positive for both IA-2A and ZnT8A, the 300-499.9 index group when positive for both GADA and ZnT8A, and the ≥300 index group when positive for all individual autoantibodies. These results suggest that the 3 Screen ICA titer may be helpful in estimating individual positive autoantibodies.


Asunto(s)
Autoanticuerpos , Diabetes Mellitus Tipo 1 , Glutamato Descarboxilasa , Transportador 8 de Zinc , Humanos , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Masculino , Femenino , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/diagnóstico , Adulto , Transportador 8 de Zinc/inmunología , Glutamato Descarboxilasa/inmunología , Estudios Transversales , Adolescente , Persona de Mediana Edad , Ensayo de Inmunoadsorción Enzimática/métodos , Islotes Pancreáticos/inmunología , Adulto Joven , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores/inmunología , Niño
2.
Medicina (Kaunas) ; 60(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39064502

RESUMEN

Background and Objectives: Laparoscopic right hemicolectomy (LRHC) is commonly performed for patients with colon cancer, selecting between intracorporeal anastomosis (ICA) or extracorporeal anastomosis (ECA). However, the impact of ICA versus ECA on patient outcomes remains debatable. The varying levels of experience among surgeons may influence the outcomes. Therefore, this study sought to compare the short- and long-term outcomes of LRHC using ICA versus ECA. Materials and Methods: This retrospective study extracted patient data from the medical records database of Changhua Christian Hospital, Taiwan, from 2017 to 2020. Patients with colon cancer who underwent LRHC with either ICA or ECA were included. Primary outcomes were post-surgical outcomes and secondary outcomes were recurrence rate, overall survival (OS), and cancer-specific survival (CSS). Between-group differences were compared using chi-square, t-tests, and Fisher's exact tests and Mann-Whitney U tests. Associations between study variables, OS, and CSS were determined using Cox analyses. Results: Data of 240 patients (61 of ICA and 179 of ECA) with a mean age of 65.0 years and median follow-up of 49.3 months were collected. No recognized difference was found in patient characteristics between these two groups. The ICA group had a significantly shorter operation duration (median (IQR): 120 (110-155) vs. 150 (130-180) min) and less blood loss (median (IQR): 30 (10-30) vs. 30 (30-50) mL) than the ECA group (p < 0.001). No significant differences were found in 30-day readmission (ICA vs. ECA: 1.6% vs. 2.2%, p > 0.999) or recurrence (18.0% vs. 13.4%, p = 0.377) between the two groups. Multivariable analyses revealed no significant differences in OS (adjusted hazard ratio (aHR): 0.65; 95% confidence interval (CI): 0.25-1.44) or CSS (adjusted sub-hazard ratio (aSHR): 0.41, 95% CI: 0.10-1.66) between groups. Conclusions: Both ICA and ECA in LRHC for colon cancer had similar outcomes without statistically significant differences in post-surgical complications, 30-day readmission rates, recurrence rate, and long-term survival outcomes. However, ICA may offer two advantages in terms of a shorter operative duration and reduced blood loss.


Asunto(s)
Anastomosis Quirúrgica , Colectomía , Neoplasias del Colon , Laparoscopía , Humanos , Neoplasias del Colon/cirugía , Neoplasias del Colon/mortalidad , Masculino , Colectomía/métodos , Femenino , Laparoscopía/métodos , Laparoscopía/estadística & datos numéricos , Anciano , Estudios Retrospectivos , Persona de Mediana Edad , Anastomosis Quirúrgica/métodos , Resultado del Tratamiento , Taiwán/epidemiología
3.
Function (Oxf) ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38984978

RESUMEN

OBJECTIVE: Cantu Syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by GoF variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (KATP) channels, and is characterized by low systemic vascular resistance, as well as tortuous, dilated vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with both hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell-autonomously within vascular smooth muscle cells (VSMCs), or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. APPROACH AND RESULTS: Whole-cell voltage-clamp of isolated aortic and mesenteric arterial VSMCs isolated from wild type (WT) and Kir6.1[V65M] (CS) mice revealed no clear differences in voltage-gated K+ (Kv) or Ca2+ currents. Kv and Ca2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. While pinacidil-sensitive KATP currents in control hiPSC-VSMCs were consistent with those in WT mouse VSMCs, they were considerably larger in CS hiPSC-VSMCs. Under current-clamp conditions, CS hiPSC-VSMCs were also hyperpolarized, consistent with increased basal K conductance, and providing an explanation for decreased tone and decreased vascular resistance in CS. Increased compliance was observed in isolated CS mouse aortae, and was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs, suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular KATP GoF. CONCLUSIONS: The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. Results in hiPSC-VSMCs derived from CS patient cells suggest that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by KATP overactivity within VSMCs.

4.
Front Mol Biosci ; 11: 1393564, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044842

RESUMEN

Molecules are essential building blocks of life and their different conformations (i.e., shapes) crucially determine the functional role that they play in living organisms. Cryogenic Electron Microscopy (cryo-EM) allows for acquisition of large image datasets of individual molecules. Recent advances in computational cryo-EM have made it possible to learn latent variable models of conformation landscapes. However, interpreting these latent spaces remains a challenge as their individual dimensions are often arbitrary. The key message of our work is that this interpretation challenge can be viewed as an Independent Component Analysis (ICA) problem where we seek models that have the property of identifiability. That means, they have an essentially unique solution, representing a conformational latent space that separates the different degrees of freedom a molecule is equipped with in nature. Thus, we aim to advance the computational field of cryo-EM beyond visualizations as we connect it with the theoretical framework of (nonlinear) ICA and discuss the need for identifiable models, improved metrics, and benchmarks. Moving forward, we propose future directions for enhancing the disentanglement of latent spaces in cryo-EM, refining evaluation metrics and exploring techniques that leverage physics-based decoders of biomolecular systems. Moreover, we discuss how future technological developments in time-resolved single particle imaging may enable the application of nonlinear ICA models that can discover the true conformation changes of molecules in nature. The pursuit of interpretable conformational latent spaces will empower researchers to unravel complex biological processes and facilitate targeted interventions. This has significant implications for drug discovery and structural biology more broadly. More generally, latent variable models are deployed widely across many scientific disciplines. Thus, the argument we present in this work has much broader applications in AI for science if we want to move from impressive nonlinear neural network models to mathematically grounded methods that can help us learn something new about nature.

5.
Int J Hyperthermia ; 41(1): 2376678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38991553

RESUMEN

PURPOSE: To investigate how passive hyperthermia affect the resting-state functional brain activity based on an acute mouse model after heat stress exposure. MATERIALS AND METHODS: Twenty-eight rs-fMRI data of C57BL/6J male mice which weighing about 24 ∼ 29 g and aged 12 ∼ 16 weeks were collected. The mice in the hyperthermia group (HT, 40 °C ± 0.5 °C, 40 min) were subjected to passive hyperthermia before the anesthesia preparation for scanning. While the normal control group (NC) was subjected to normothermia condition (NC, 20 °C ± 2 °C, 40 min). After data preprocessing, we performed independent component analysis (ICA) and region of interested (ROI)-ROI functional connectivity (FC) analyses on the data of both HT (n = 13) and NC (n = 15). RESULTS: The group ICA analysis showed that the HT and the NC both included 11 intrinsic connectivity networks (ICNs), and can be divided into four types of networks: the cortical network (CN), the subcortical network (SN), the default mode network (DMN), and cerebellar networks. CN and SN belongs to sensorimotor network. Compared with NC, the functional network organization of ICNs in the HT was altered and the overall functional intensity was decreased. Furthermore, 13 ROIs were selected in CN, SN, and DMN for further ROI-ROI FC analysis. The ROI-ROI FC analysis showed that passive hyperthermia exposure significantly reduced the FC strength in the overall brain represented by CN, SN, DMN of mice. CONCLUSION: Prolonged exposure to high temperature has a greater impact on the overall perception and cognitive level of mice, which might help understand the relationship between neuronal activities and physiological thermal sensation and regulation as well as behavioral changes.


Asunto(s)
Encéfalo , Hipertermia , Ratones Endogámicos C57BL , Animales , Ratones , Masculino , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Hipertermia/fisiopatología , Imagen por Resonancia Magnética/métodos
6.
bioRxiv ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39005426

RESUMEN

Multimodal data integration approaches, such as Linked Independent Component Analysis (LICA), increase sensitivity to brain-behaviour relationships and allow us to probe the relationship between modalities. Here we focus on inter-regional functional and structural organisation to determine if organisational patterns persist across modalities and if investigating multi-modality organisations provides increased sensitivity to brain-behaviour associations. We utilised multimodal magnetic resonance imaging (MRI; T1w, resting-state functional [fMRI] and diffusion weighted [DWI]) and behavioural data from the Human Connectome Project (HCP, n=676; 51% female). Unimodal features were extracted to produce individual grey matter density maps, probabilistic tractography connectivity matrices and connectopic maps from the T1w, DWI and fMRI data, respectively. DWI and fMRI analyses were restricted to subcortical regions for computational reasons. LICA was then used to integrate features, generating 100 novel independent components. Associations between these components and demographic/behavioural (n=308) variables were examined. 15 components were significantly associated with various demographic/behavioural measures. 2 components were strongly related to various measures of intoxication, driven by DWI and resemble components previously identified. Another component was driven by striatal functional data and related to working memory. A small number of components showed shared variance between structure and function but none of these displayed any significant behavioural associations. Our working memory findings provide support for the use of fMRI connectopic mapping in future research of working memory. Given the lack of behaviourally relevant shared variance between functional and structural organisation, as indexed here, we question the utility of integrating connectopic maps and tractography data.

7.
J Nanobiotechnology ; 22(1): 423, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026367

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease marked by synovitis and cartilage destruction. The active compound, icariin (ICA), derived from the herb Epimedium, exhibits potent anti-inflammatory properties. However, its clinical utility is limited by its water insolubility, poor permeability, and low bioavailability. To address these challenges, we developed a multifunctional drug delivery system-adipose-derived stem cells-exosomes (ADSCs-EXO)-ICA to target active macrophages in synovial tissue and modulate macrophage polarization from M1 to M2. High-performance liquid chromatography analysis confirmed a 92.4 ± 0.008% loading efficiency for ADSCs-EXO-ICA. In vitro studies utilizing cellular immunofluorescence (IF) and flow cytometry demonstrated significant inhibition of M1 macrophage proliferation by ADSCs-EXO-ICA. Enzyme-linked immunosorbent assay, cellular transcriptomics, and real-time quantitative PCR indicated that ADSCs-EXO-ICA promotes an M1-to-M2 phenotypic transition by reducing glycolysis through the inhibition of the ERK/HIF-1α/GLUT1 pathway. In vivo, ADSCs-EXO-ICA effectively accumulated in the joints. Pharmacodynamic assessments revealed that ADSCs-EXO-ICA decreased cytokine levels and mitigated arthritis symptoms in collagen-induced arthritis (CIA) rats. Histological analysis and micro computed tomography confirmed that ADSCs-EXO-ICA markedly ameliorated synovitis and preserved cartilage. Further in vivo studies indicated that ADSCs-EXO-ICA suppresses arthritis by promoting an M1-to-M2 switch and suppressing glycolysis. Western blotting supported the therapeutic efficacy of ADSCs-EXO-ICA in RA, confirming its role in modulating macrophage function through energy metabolism regulation. Thus, this study not only introduces a drug delivery system that significantly enhances the anti-RA efficacy of ADSCs-EXO-ICA but also elucidates its mechanism of action in macrophage function inhibition.


Asunto(s)
Tejido Adiposo , Artritis Reumatoide , Exosomas , Flavonoides , Macrófagos , Animales , Flavonoides/farmacología , Flavonoides/química , Exosomas/metabolismo , Ratas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Tejido Adiposo/citología , Masculino , Artritis Experimental/tratamiento farmacológico , Ratas Sprague-Dawley , Sistemas de Liberación de Medicamentos/métodos , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos
8.
Technol Health Care ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39031413

RESUMEN

BACKGROUND: Autism Spectrum Disorder (ASD) is a condition with social interaction, communication, and behavioral difficulties. Diagnostic methods mostly rely on subjective evaluations and can lack objectivity. In this research Machine learning (ML) and deep learning (DL) techniques are used to enhance ASD classification. OBJECTIVE: This study focuses on improving ASD and TD classification accuracy with a minimal number of EEG channels. ML and DL models are used with EEG data, including Mu Rhythm from the Sensory Motor Cortex (SMC) for classification. METHODS: Non-linear features in time and frequency domains are extracted and ML models are applied for classification. The EEG 1D data is transformed into images using Independent Component Analysis-Second Order Blind Identification (ICA-SOBI), Spectrogram, and Continuous Wavelet Transform (CWT). RESULTS: Stacking Classifier employed with non-linear features yields precision, recall, F1-score, and accuracy rates of 78%, 79%, 78%, and 78% respectively. Including entropy and fuzzy entropy features further improves accuracy to 81.4%. In addition, DL models, employing SOBI, CWT, and spectrogram plots, achieve precision, recall, F1-score, and accuracy of 75%, 75%, 74%, and 75% respectively. The hybrid model, which combined deep learning features from spectrogram and CWT with machine learning, exhibits prominent improvement, attained precision, recall, F1-score, and accuracy of 94%, 94%, 94%, and 94% respectively. Incorporating entropy and fuzzy entropy features further improved the accuracy to 96.9%. CONCLUSIONS: This study underscores the potential of ML and DL techniques in improving the classification of ASD and TD individuals, particularly when utilizing a minimal set of EEG channels.

9.
Front Cardiovasc Med ; 11: 1385457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978787

RESUMEN

Background: Ischemia with non-obstructive coronary arteries (INOCA) is a major clinical entity that involves potentially 20%-30% of patients with chest pain. INOCA is typically attributed either to coronary microvascular disease and/or vasospasm, but is likely distinct from classical coronary artery disease (CAD). Objectives: To gain insights into the etiology of INOCA and CAD, RNA sequencing of whole blood from patients undergoing both stress testing and elective invasive coronary angiography (ICA) was conducted. Methods: Stress testing and ICA of 177 patients identified 40 patients (23%) with INOCA compared to 39 controls (stress-, ICA-). ICA+ patients divided into 38 stress- and 60 stress+. RNAseq was performed by Illumina with ribosomal RNA depletion. Transcriptome changes were analyzed by DeSeq2 and curated by manual and automated methods. Results: Differentially expressed genes for INOCA were associated with elevated levels of transcripts related to mucosal-associated invariant T (MAIT) cells, plasmacytoid dendritic cells (pcDC), and memory B cells, and were associated with autoimmune diseases such as rheumatoid arthritis. Decreased transcripts were associated with neutrophils, but neutrophil transcripts, per se, were not less abundant in INOCA. CAD transcripts were more related to T cell functions. Conclusions: Elevated transcripts related to pcDC, MAIT, and memory B cells suggest an autoimmune component to INOCA. Reduced neutrophil transcripts are likely attributed to chronic activation leading to increased translation and degradation. Thus, INOCA could result from stimulation of B cell, pcDC, invariant T cell, and neutrophil activation that compromises cardiac microvascular function.

10.
CNS Neurosci Ther ; 30(6): e14754, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38884369

RESUMEN

AIMS: Islet cell autoantigen 1 (ICA1) is involved in autoimmune diseases and may affect synaptic plasticity as a neurotransmitter. Databases related to Alzheimer's disease (AD) have shown decreased ICA1 expression in patients with AD. However, the role of ICA1 in AD remains unclear. Here, we report that ICA1 expression is decreased in the brains of patients with AD and an AD mouse model. RESULTS: The ICA1 increased the expression of amyloid precursor protein (APP), disintegrin and metalloprotease 10 (ADAM10), and disintegrin and metalloprotease 17 (ADAM17), but did not affect protein half-life or mRNA levels. Transcriptome sequencing analysis showed that ICA1 regulates the G protein-coupled receptor signaling pathway. The overexpression of ICA1 increased PKCα protein levels and phosphorylation. CONCLUSION: Our results demonstrated that ICA1 shifts APP processing to non-amyloid pathways by regulating the PICK1-PKCα signaling pathway. Thus, this study suggests that ICA1 is a novel target for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Proteína Quinasa C-alfa , Transducción de Señal , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-alfa/genética , Transducción de Señal/fisiología , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Ratones , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Masculino , Ratones Transgénicos , Femenino , Ratones Endogámicos C57BL , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Encéfalo/metabolismo , Proteínas de Ciclo Celular
11.
Psychiatry Res Neuroimaging ; 343: 111845, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38908302

RESUMEN

BACKGROUND: The incidence rate of Posttraumatic stress disorder (PTSD) is currently increasing due to wars, terrorism, and pandemic disease situations. Therefore, accurate detection of PTSD is crucial for the treatment of the patients, for this purpose, the present study aims to classify individuals with PTSD versus healthy control. METHODS: The resting-state functional MRI (rs-fMRI) scans of 19 PTSD and 24 healthy control male subjects have been used to identify the activation pattern in most affected brain regions using group-level independent component analysis (ICA) and t-test. To classify PTSD-affected subjects from healthy control six machine learning techniques including random forest, Naive Bayes, support vector machine, decision tree, K-nearest neighbor, linear discriminant analysis, and deep learning three-dimensional 3D-CNN have been performed on the data and compared. RESULTS: The rs-fMRI scans of the most commonly investigated 11 regions of trauma-exposed and healthy brains are analyzed to observe their level of activation. Amygdala and insula regions are determined as the most activated regions from the regions-of-interest in the brain of PTSD subjects. In addition, machine learning techniques have been applied to the components extracted from ICA but the models provided low classification accuracy. The ICA components are also fed into the 3D-CNN model, which is trained with a 5-fold cross-validation method. The 3D-CNN model demonstrated high accuracies, such as 98.12%, 98.25 %, and 98.00 % on average with training, validation, and testing datasets, respectively. CONCLUSION: The findings indicate that 3D-CNN is a surpassing method than the other six considered techniques and it helps to recognize PTSD patients accurately.

12.
Front Cell Neurosci ; 18: 1258793, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799987

RESUMEN

Large-scale cortical dynamics play a crucial role in many cognitive functions such as goal-directed behaviors, motor learning and sensory processing. It is well established that brain states including wakefulness, sleep, and anesthesia modulate neuronal firing and synchronization both within and across different brain regions. However, how the brain state affects cortical activity at the mesoscale level is less understood. This work aimed to identify the cortical regions engaged in different brain states. To this end, we employed group ICA (Independent Component Analysis) to wide-field imaging recordings of cortical activity in mice during different anesthesia levels and the awake state. Thanks to this approach we identified independent components (ICs) representing elements of the cortical networks that are common across subjects under decreasing levels of anesthesia toward the awake state. We found that ICs related to the retrosplenial cortices exhibited a pronounced dependence on brain state, being most prevalent in deeper anesthesia levels and diminishing during the transition to the awake state. Analyzing the occurrence of the ICs we found that activity in deeper anesthesia states was characterized by a strong correlation between the retrosplenial components and this correlation decreases when transitioning toward wakefulness. Overall these results indicate that during deeper anesthesia states coactivation of the posterior-medial cortices is predominant over other connectivity patterns, whereas a richer repertoire of dynamics is expressed in lighter anesthesia levels and the awake state.

13.
Curr Med Imaging ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38798227

RESUMEN

BACKGROUND: Idiopathic Sudden Sensorineural Hearing Loss (ISSNHL) is related to alterations in brain cortical and subcortical structures, and changes in brain functional activities involving multiple networks, which is often accompanied by tinnitus. There have been many in-depth research studies conducted concerning ISSNHL. Despite this, the neurophysiological mechanisms of ISSNHL with tinnitus are still under exploration. OBJECTIVE: The study aimed to investigate the neural mechanism in ISSNHL patients with tinnitus based on the alterations in intra- and inter-network Functional Connectivity (FC) of multiple networks. METHODS: Thirty ISSNHL subjects and 37 healthy subjects underwent resting-state functional Magnetic Resonance Imaging (rs-fMRI). Independent Component Analysis (ICA) was used to identify 8 Resting-state Networks (RSNs). Furthermore, the study used a two-sample t-test to calculate the intra-network FC differences, while calculating Functional Network Connectivity (FNC) to detect the inter-network FC differences. RESULTS: By using the ICA approach, tinnitus patients with ISSNHL were found to have FC changes in the following RSNs: CN, VN, DMN, ECN, SMN, and AUN. In addition, the interconnections of VN-SMN, VN-ECN, and ECN-DAN were weakened. CONCLUSION: The present study has demonstrated changes in FC within and between networks in ISSNHL with tinnitus, providing ideas for further study on the neuropathological mechanism of the disease.

14.
Diagnostics (Basel) ; 14(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38786306

RESUMEN

Recent research in the field of cognitive motor action decoding focuses on data acquired from Functional Near-Infrared Spectroscopy (fNIRS) and its analysis. This research aims to classify two different motor activities, namely, mental drawing (MD) and spatial navigation (SN), using fNIRS data from non-motor baseline data and other motor activities. Accurate activity detection in non-stationary signals like fNIRS is challenging and requires complex feature descriptors. As a novel framework, a new feature generation by fusion of wavelet feature, Hilbert, symlet, and Hjorth parameters is proposed for improving the accuracy of the classification. This new fused feature has statistical descriptor elements, time-localization in the frequency domain, edge feature, texture features, and phase information to detect and locate the activity accurately. Three types of independent component analysis, including FastICA, Picard, and Infomax were implemented for preprocessing which removes noises and motion artifacts. Two independent binary classifiers are designed to handle the complexity of classification in which one is responsible for mental drawing (MD) detection and the other one is spatial navigation (SN). Four different types of algorithms including nearest neighbors (KNN), Linear Discriminant Analysis (LDA), light gradient-boosting machine (LGBM), and Extreme Gradient Boosting (XGBOOST) were implemented. It has been identified that the LGBM classifier gives high accuracies-98% for mental drawing and 97% for spatial navigation. Comparison with existing research proves that the proposed method gives the highest classification accuracies. Statistical validation of the proposed new feature generation by the Kruskal-Wallis H-test and Mann-Whitney U non-parametric test proves the reliability of the proposed mechanism.

15.
Emerg Radiol ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806851

RESUMEN

Cerebrovascular complications from blunt trauma to the skull base, though rare, can lead to potentially devastating outcomes, emphasizing the importance of timely diagnosis and management. Due to the insidious clinical presentation, subtle nature of imaging findings, and complex anatomy of the skull base, diagnosing cerebrovascular injuries and their complications poses considerable challenges. This article offers a comprehensive review of skull base anatomy and pathophysiology pertinent to recognizing cerebrovascular injuries and their complications, up-to-date screening criteria and imaging techniques for assessing these injuries, and a case-based review of the spectrum of cerebrovascular complications arising from skull base trauma. This review will enhance understanding of cerebrovascular injuries and their complications from blunt skull base trauma to facilitate diagnosis and timely treatment.

16.
Heliyon ; 10(7): e27198, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560190

RESUMEN

This paper presents an advanced approach for EEG artifact removal and motor imagery classification using a combination of Four Class Iterative Filtering and Filter Bank Common Spatial Pattern Algorithm with a Modified Deep Neural Network (DNN) classifier. The research aims to enhance the accuracy and reliability of BCI systems by addressing the challenges posed by EEG artifacts and complex motor imagery tasks. The methodology begins by introducing FCIF, a novel technique for ocular artifact removal, utilizing iterative filtering and filter banks. FCIF's mathematical formulation allows for effective artifact mitigation, thereby improving the quality of EEG data. In tandem, the FC-FBCSP algorithm is introduced, extending the Filter Bank Common Spatial Pattern approach to handle four-class motor imagery classification. The Modified DNN classifier enhances the discriminatory power of the FC-FBCSP features, optimizing the classification process. The paper showcases a comprehensive experimental setup, featuring the utilization of BCI Competition IV Dataset 2a & 2b. Detailed preprocessing steps, including filtering and feature extraction, are presented with mathematical rigor. Results demonstrate the remarkable artifact removal capabilities of FCIF and the classification prowess of FC-FBCSP combined with the Modified DNN classifier. Comparative analysis highlights the superiority of the proposed approach over baseline methods and the method achieves the mean accuracy of 98.575%.

17.
Indian J Otolaryngol Head Neck Surg ; 76(2): 2051-2056, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38566685

RESUMEN

Pseudoaneurysm of the internal carotid artery following otogenic infection is rare but leads to catastrophic outcomes. In our case series, we present two patients with ICA pseudoaneurysm complicated by malignant otitis externa, and we emphasise the importance of timely diagnosis and management to prevent fatal outcomes. A pseudoaneurysm should be ruled out in a patient with malignant otitis externa presenting with recurrent epistaxis or ear bleed.

18.
Sensors (Basel) ; 24(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38610502

RESUMEN

The demand for precise positioning in noisy environments has propelled the development of research on array antenna radar systems. Although the orthogonal matching pursuit (OMP) algorithm demonstrates superior performance in signal reconstruction, its application efficacy in noisy settings faces challenges. Consequently, this paper introduces an innovative OMP algorithm, DTM_OMP_ICA (a dual-threshold mask OMP algorithm based on independent component analysis), which optimizes the OMP signal reconstruction framework by utilizing two different observation bases in conjunction with independent component analysis (ICA). By implementing a mean mask strategy, it effectively denoises signals received by array antennas in noisy environments. Simulation results reveal that compared to traditional OMP algorithms, the DTM_OMP_ICA algorithm shows significant advantages in noise suppression capability and algorithm stability. Under optimal conditions, this algorithm achieves a noise suppression rate of up to 96.8%, with its stability also reaching as high as 99%. Furthermore, DTM_OMP_ICA surpasses traditional denoising algorithms in practical denoising applications, proving its effectiveness in reconstructing array antenna signals in noisy settings. This presents an efficient method for accurately reconstructing array antenna signals against a noisy backdrop.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38662092

RESUMEN

This study aims to investigate the altered patterns of dynamic functional network connectivity (dFNC) between deficit schizophrenia (DS) and non-deficit schizophrenia (NDS), and further explore the associations with cognitive impairments. 70 DS, 91 NDS, and 120 matched healthy controls (HCs) were enrolled. The independent component analysis was used to segment the whole brain. The fMRI brain atlas was used to identify functional networks, and the dynamic functional connectivity (FC) of each network was detected. Correlation analysis was used to explore the associations between altered dFNC and cognitive functions. Four dynamic states were identified. Compared to NDS, DS showed increased FC between sensorimotor network and default mode network in state 1 and decreased FC within auditory network in state 4. Additionally, DS had a longer mean dwell time of state 2 and a shorter one in state 3 compared to NDS. Correlation analysis showed that fraction time and mean dwell time of states were correlated with cognitive impairments in DS. This study demonstrates the distinctive altered patterns of dFNC between DS and NDS patients. The associations with impaired cognition provide specific neuroimaging evidence for the pathogenesis of DS.

20.
Curr Med Imaging ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38639287

RESUMEN

BACKGROUND: Carotid duplex ultrasonography (DUS) is the primary screening tool for carotid artery stenosis, but has low reliability. MHR, which is the ratio of monocytes to high-density lipoprotein cholesterol (HDL-C), can be a marker for the degree and distribution of extracranial and intracranial atherosclerotic stenosis. OBJECTIVE: We determined the diagnostic value of DUS+MHR for internal carotid artery (ICA) stenosis. METHODS: We divided 273 hospitalized patients into non-stenosis (<50%) and ICA stenosis (≥50%) groups based on Digital Subtraction Angiography (DSA). We determined the peak systolic velocity (PSV) in the ICA on DUS, calculated the MHR, and investigated their relationship with ICA stenosis. RESULTS: On DSA, 34.1% (93/273) patients had moderate-to-severe ICA stenosis. DUS and DSA showed low concordance for detecting ICA stenosis (kappa = 0.390). With increasing age, the incidence of moderate-to-severe ICA stenosis increased. PSV, monocyte count, and MHR were significantly greater in the stenosis group than in the non-stenosis group (P < 0.001), while the HDL-C level was significantly lower (P = 0.001). PSV (OR: 1.020, 95% CI: 1.011-1.029, P < 0.001) and MHR (OR: 5.662, 95% CI: 1.945-16.482, P = 0.002) were independent risk factors for ICA stenosis. The area under the receiver operating characteristic curve of PSV+MHR (0.819) was significantly higher than that of PSV or MHR alone (77.42% sensitivity, P = 0.0207; 73.89% specificity, P = 0.0032). CONCLUSION: The combination of ICA PSV on DUS and MHR is better than PSV alone at identifying ICA stenosis and is well-suited to screen high-risk patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...