Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Antimicrob Agents Chemother ; 68(10): e0055424, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39194203

RESUMEN

It has been shown that an evolutionary tradeoff between vertical (host growth rate) and horizontal (plasmid conjugation) transmissions contributes to global plasmid fitness. As conjugative IncC plasmids are important for the spread of multidrug resistance (MDR), in a broad range of bacterial hosts, we investigated vertical and horizontal transmissions of two multidrug-resistant IncC plasmids according to their backbones and MDR-region rearrangements, upon plasmid entry into a new host. We observed plasmid genome deletions after conjugation in three diverse natural Escherichia coli clinical strains, varying from null to high number depending on the plasmid, all occurring in the MDR region. The plasmid burden on bacterial fitness depended more on the strain background than on the structure of the MDR region, with deletions appearing to have no impact. Besides, we observed an increase in plasmid transfer rate, from ancestral host to new clinical recipient strains, when the IncC plasmid was rearranged. Finally, using a second set of conjugation experiments, we investigated the evolutionary tradeoff of the IncC plasmid during the critical period of plasmid establishment in E. coli K-12, by correlating the transfer rates of deleted or non-deleted IncC plasmids and their costs on the recipient strain. Plasmid deletions strongly improved conjugation efficiency with no negative growth effect. Our findings indicate that the flexibility of the MDR-region of the IncC plasmids can promote their dissemination, and provide diverse opportunities to capture new resistance genes. In a broader view, they suggest that the vertical-horizontal transmission tradeoff can be manipulated by the plasmid to improve its fitness.


Asunto(s)
Conjugación Genética , Farmacorresistencia Bacteriana Múltiple , Escherichia coli , Plásmidos , Plásmidos/genética , Escherichia coli/genética , Farmacorresistencia Bacteriana Múltiple/genética , Transferencia de Gen Horizontal/genética , Genoma Bacteriano/genética , Antibacterianos/farmacología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/transmisión
2.
Int J Antimicrob Agents ; 64(3): 107265, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964622

RESUMEN

More and more ceftazidime-avibactam-resistant KPC-producing Klebsiella pneumoniae have been reported with its widespread use, and the detection rate of KPC variants has increased dramatically. However, the evolutionary mechanism and fitness effects during KPC mutation remained unknown. Here, we report the complex in vivo evolutionary trajectories of two novel KPC variants, KPC-155 (L169P/GT242A) and KPC-185 (D179Y/GT242A), from K. pneumoniae in the same patient. The novel variants were shown to confer ceftazidime-avibactam resistance but restore carbapenem susceptibility based on the results of plasmid transformation assays, cloning experiments, and enzyme kinetic measurements. In vitro, competition experiments highlighted the adaptive advantage conferred by strains carrying these KPC variants, which could lead to the rapid spread of these ceftazidime-avibactam-resistant strains. The growth curve indicated that blaKPC-185 had better growth conditions at lower avibactam concentration compared to blaKPC-155, which was consistent with ceftazidime-avibactam use in vivo. In addition, replicative transposition of the IS26-flanked translocatable unit (IS26-ISKpn6-blaKPC-ISKpn27-IS26) also contributes to the blaKPC amplification and formation of two copies (blaKPC-2 and blaKPC-185), conferring both carbapenem and ceftazidime-avibactam resistance. However, strains with double copies showed reduced competitive advantage and configuration stability. The comparative plasmid analysis of IS26 group (IS26-blaKPC-IS26) and Tn1721 group (Tn1721-blaKPC-IS26) revealed that IS26-insertion could influence the distribution of resistance genes and ability of self-conjugation. The dynamic changes in blaKPC configuration highlight the need for consistent monitoring including antimicrobial susceptibility testing and determination of blaKPC subtypes - during clinical treatment, especially when ceftazidime-avibactam is administered.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Ceftazidima , Combinación de Medicamentos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Klebsiella , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Ceftazidima/farmacología , Compuestos de Azabiciclo/farmacología , Humanos , beta-Lactamasas/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Antibacterianos/farmacología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Proteínas Bacterianas/genética , Evolución Molecular
3.
mLife ; 3(1): 101-109, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38827508

RESUMEN

Insertion sequences (ISs) promote the transmission of antimicrobial resistance genes (ARGs) across bacterial populations. However, their contributions and dynamics during the transmission of resistance remain unclear. In this study, we selected IS26 as a representative transposable element to decipher the relationship between ISs and ARGs and to investigate their transfer features and transmission trends. We retrieved 2656  translocatable  IS 26 -bounded  units with  ARGs (tIS26-bUs-ARGs) in complete bacterial genomes from the NCBI RefSeq database. In total, 124 ARGs spanning 12 classes of antibiotics were detected, and the average contribution rate of IS26 to these genes was 41.2%. We found that  IS 26 -bounded  units (IS26-bUs) mediated extensive ARG dissemination within the bacteria of the Gammaproteobacteria class, showing strong transfer potential between strains, species, and even phyla. The IS26-bUs expanded in bacterial populations over time, and their temporal expansion trend was significantly correlated with antibiotic usage. This wide dissemination could be due to the nonspecific target site preference of IS26. Finally, we experimentally confirmed that the introduction of a single copy of IS26 could lead to the formation of a composite transposon mediating the transmission of "passenger" genes. These observations extend our knowledge of the IS26 and provide new insights into the mediating role of ISs in the dissemination of antibiotic resistance.

4.
Antibiotics (Basel) ; 13(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38786182

RESUMEN

Salmonella Enteritidis was the primary foodborne pathogen responsible for acute gastroenteritis. The growing ceftriaxone resistance poses a significant threat to public health. Infection with S. Enteritidis has emerged as a major public health concern, particularly in developing countries. However, research on ceftriaxone-resistant S. Enteritidis (CRO-RSE) remains limited, particularly concerning its resistance mechanism, plasmid structure, and transmission characteristics. This study aims to address these gaps comprehensively. We collected 235 S. Enteritidis isolates from Hangzhou First People's Hospital between 2010 and 2020. Among these, 8.51% (20/235) exhibited resistance to ceftriaxone. Whole-genome analysis revealed that 20 CRO-RSE isolates harbored blaCTX-M-55 or blaCTX-M-14 on the plasmid. Moreover, the dissemination of the blaCTX-M-type gene was associated with IS26 and ISEcp1. Plasmid fusion entailing the integration of the p1 plasmid with antibiotic resistance genes and the p2 (pSEV) virulence plasmid was observed in certain CRO-RSE. Additionally, the structural analysis of the plasmids unveiled two types carrying the blaCTX-M-type gene: type A with multiple replicons and type B with IncI1 (Alpha) replicon. Type B plasmids exhibited superior adaptability and stability compared to type A plasmids within Enterobacteriaceae. Interestingly, although the type B (S808-p1) plasmid displayed the potential to spread to Acinetobacter baumannii, it failed to maintain stability in this species.

5.
Microbiol Resour Announc ; 13(6): e0005624, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38682768

RESUMEN

Extended-spectrum ß-lactamase-producing Atlantibacter hermannii was isolated from an edible river fish, Anabas testudineus, which was sold in a market located in Vietnam. The genome sequence was obtained by using next-generation sequencing, which involved Oxford Nanopore and Illumina technologies. The 92 kb plasmid encodes the gene blaCTX-M-27.

6.
Antonie Van Leeuwenhoek ; 117(1): 57, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491220

RESUMEN

Carbapenem resistant Klebsiella pneumoniae causing severe infection resulting in morbidity and mortality have become a global health concern. K. pneumoniae with sequence type ST147 is an international high-risk clonal lineage, genomic studies have been done on K. pneumoniae ST147 isolated from clinical origin but genomic data for environmental K. pneumoniae ST147 is very scarce. Herein, K. pneumoniae IITR008, an extensively drug resistant and potentially hypervirulent bacterium, was isolated from Triveni Sangam, the confluence of three rivers where religious congregations are organized. Phenotypic, genomic and comparative genomic analysis of strain IITR008 was performed. Antibiotic susceptibility profiling revealed resistance to 9 different classes of antibiotics including ß-lactams, ß-lactam combination agents, carbapenem, aminoglycoside, macrolide, quinolones, cephams, phenicol, and folate pathway antagonists and was found to be susceptible to only tetracycline. The strain IITR008 possesses hypervirulence genes namely, iutA and iroN in addition to numerous virulence factors coding for adherence, regulation, iron uptake, secretion system and toxin. Both the IITR008 chromosome and plasmid pIITR008_75 possess a plethora of clinically relevant antibiotic-resistant genes (ARGs) including blaCTX-M-15, blaTEM-1, and blaSHV-11, corroborating the phenotypic resistance. Comparative genomic analysis with other ST147 K. pneumoniae provided insights on the phylogenetic clustering of IITR008 with a clinical strain isolated from a patient in Czech with recent travel history in India and other clinical strains isolated from India and Pakistan. According to the 'One Health' perspective, surveillance of antibiotic resistance in the environment is crucial to impede its accelerated development in diverse ecological niches.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Filogenia , Ríos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos , Plásmidos , Genómica , Hierro , Agua , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana
7.
Microbiol Mol Biol Rev ; 88(2): e0011922, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38436262

RESUMEN

SUMMARYIn Gram-negative bacteria, the insertion sequence IS26 is highly active in disseminating antibiotic resistance genes. IS26 can recruit a gene or group of genes into the mobile gene pool and support their continued dissemination to new locations by creating pseudo-compound transposons (PCTs) that can be further mobilized by the insertion sequence (IS). IS26 can also enhance expression of adjacent potential resistance genes. IS26 encodes a DDE transposase but has unique properties. It forms cointegrates between two separate DNA molecules using two mechanisms. The well-known copy-in (replicative) route generates an additional IS copy and duplicates the target site. The recently discovered and more efficient and targeted conservative mechanism requires an IS in both participating molecules and does not generate any new sequence. The unit of movement for PCTs, known as a translocatable unit or TU, includes only one IS26. TU formed by homologous recombination between the bounding IS26s can be reincorporated via either cointegration route. However, the targeted conservative reaction is key to generation of arrays of overlapping PCTs seen in resistant pathogens. Using the copy-in route, IS26 can also act on a site in the same DNA molecule, either inverting adjacent DNA or generating an adjacent deletion plus a circular molecule carrying the DNA segment lost and an IS copy. If reincorporated, these circular molecules create a new PCT. IS26 is the best characterized IS in the IS26 family, which includes IS257/IS431, ISSau10, IS1216, IS1006, and IS1008 that are also implicated in spreading resistance genes in Gram-positive and Gram-negative pathogens.


Asunto(s)
Elementos Transponibles de ADN , Bacterias Gramnegativas , Elementos Transponibles de ADN/genética , Bacterias Gramnegativas/genética , Genoma Bacteriano , Farmacorresistencia Bacteriana/genética , Transposasas/metabolismo , Transposasas/genética , Antibacterianos/farmacología , Transferencia de Gen Horizontal
8.
Microbiol Spectr ; 12(1): e0250423, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38088550

RESUMEN

IMPORTANCE: The horizontal gene transfer events are the major contributors to the current spread of CTX-M-encoding genes, the most common extended-spectrum ß-lactamase (ESBL), and many clinically crucial antimicrobial resistance (AMR) genes. This study presents evidence of the critical role of IS26 transposable element for the mobility of bla CTX-M gene among Escherichia coli isolates from children and domestic animals in the community. We suggest that the nucleotide sequences of IS26-bla CTX-M could be used to study bla CTX-M transmission between humans, domestic animals, and the environment, because understanding of the dissemination patterns of AMR genes is critical to implement effective measures to slow down the dissemination of these clinically important genes.


Asunto(s)
Antiinfecciosos , Infecciones por Escherichia coli , Animales , Niño , Humanos , Infecciones por Escherichia coli/epidemiología , Plásmidos/genética , Ecuador , Escherichia coli/genética , Animales Domésticos/genética , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana
9.
Infect Drug Resist ; 16: 7621-7628, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107435

RESUMEN

Purpose: We aimed to characterize a novel blaNDM-5 and blaKPC-2 co-carrying hybrid plasmid from a clinical carbapenem-resistant Klebsiella pneumoniae (CRKP) strain. Methods: Antimicrobial susceptibility was determined by the broth microdilution method. Plasmid size and localization were estimated using S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting. Plasmid transfer ability was evaluated by conjugation experiments. Whole genome sequencing (WGS) was performed using Illumina NovaSeq6000 and Oxford Nanopore MinION platforms. Genomic characteristics were analyzed using bioinformatics methods. Results: Strain ZY27320 was a multidrug-resistant (MDR) clinical ST11 K. pneumoniae strain that confers high-level resistance to carbapenems (meropenem, MIC 128 mg/L; imipenem, MIC 64 mg/L) and ceftazidime/avibactam (MIC >128/4 mg/L). Both S1-PFGE-Southern blotting and whole genome sequencing revealed that the carbapenemase genes blaKPC-2 and blaNDM-5 were carried by the same IncFIIpHN7A8:IncR:IncN hybrid plasmid (pKPC2_NDM5). Conjugation experiments indicated that pKPC2_NDM5 was a non-conjugative plasmid. Conclusion: This is the first report of a hybrid plasmid carrying both carbapenemase genes blaNDM-5 and blaKPC-2 in a clinical K. pneumoniae ST11 isolate that confers resistance to both ceftazidime/avibactam and carbapenems, thereby presenting a serious threat to treatment in clinical practice.

10.
mSphere ; 8(6): e0048023, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37909767

RESUMEN

IMPORTANCE: In this study, an IncFII plasmid pIncFII-NDM5 carrying blaNDM-5 was found in carbapenem-resistant Salmonella enterica serovar Typhimurium (S. enterica serovar Typhimurium), which has conjugative transferability and carried blaNDM-5, bleMBL, mph(A), and blaTEM-1 four resistance genes that can mediate resistance to multiple antibiotics including cephalosporins, beta-lactamase inhibitor combinations, carbapenems, and macrolides. Phylogenetic analysis showed that 1104-65 and 1104-75 were closely related to other S. enterica serovar Typhimurium in this area. The above-mentioned S. enterica serovar Typhimurium chromosome carries blaCTX-M-55, qnrS1, and tet(A) genes, so the antibiotic resistance of isolates will be further enhanced after obtaining the pIncFII_NDM5-like plasmid. Meanwhile, we discovered a novel genetic structure of blaNDM-5 mediated by the IS26 composite transposon, which will expand our understanding of the emergence and spread of carbapenem-resistance genes. Altogether, the presence of the IncFII plasmid pIncFII-NDM5 further underscores the need for vigilant surveillance and appropriate infection control measures to mitigate the impact of carbapenem-resistant S. enterica serovar Typhimurium in clinical settings.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Salmonella typhimurium , Salmonella typhimurium/genética , Serogrupo , Filogenia , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Plásmidos/genética , Carbapenémicos/farmacología
11.
Microorganisms ; 11(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38004806

RESUMEN

Elevated detection rates of the blaCTX-M-55 gene in animals have been reported as a result of antibiotic misuse in clinics. To investigate the horizontal transfer mechanism of blaCTX-M-55 and its associated mobile genetic elements (MGEs), we isolated 318 nonrepetitive strains of Escherichia coli (E. coli) from bovine samples in Xinjiang and Gansu provinces, China. All E. coli strains were screened for the CTX-M-55 gene using PCR. The complete genomic data were sequenced using the PacBio triplet sequencing platform and corrected using the Illumina data platform. The genetic environment of the plasmids carrying the resistance blaCTX-M-55 gene was mapped using the software Easyfig2.2.3 for comparison. The results showed that all blaCTX-M-55-positive strains were resistant to multiple antibiotics. Five strains of Escherichia coli carry the blaCTX-M-55 gene, which is adjacent to other resistance genes and is located on the IncHI2-type plasmid. Four of the five blaCTX-M-55-harbor strains carried translocatable units (TUs). All the donor bacteria carrying the blaCTX-M-55 genes could transfer horizontally to the recipient (E. coli J53 Azr). This study demonstrates that the transmission of blaCTX-M-55 is localized on IS26-flanked composite transposons. The cotransmission and prevalence of blaCTX-M-55 with other MDR resistance genes on epidemic plasmids require enhanced monitoring and control.

12.
J Glob Antimicrob Resist ; 35: 202-209, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37802302

RESUMEN

OBJECTIVES: To characterize two Escherichia coli strains isolated from a patient pre- and post-treatment, using ß-lactams and ß-lactam/ß-lactamase inhibitor combinations (BLBLIs). METHODS: A combination of antibiotic susceptibility testing (AST) with whole genome sequencing using Illumina and Oxford Nanopore platforms. Long-read sequencing and reverse transcription-quantitative PCR were performed to determine the copy numbers and expression levels of antibiotic resistance genes (ARGs), respectively. Effect on fitness costs were assessed by growth rate determination. RESULTS: The strain obtained from the patient after the antibiotic treatment (XH989) exhibited higher resistance to cefepime, BLBLIs and quinolones compared with the pre-treatment strain (XH987). Sequencing revealed IS26-mediated duplications of a IS26-fosA3-blaCTX-M-65 plasmid-embedded element in strain XH989. Long-read sequencing (7.4 G data volume) indicated a variation in copy numbers of blaCTX-M-65 within one single culture of strain XH989. Increased copy numbers of the IS26-fosA3-blaCTX-M-65 element were correlated with higher CTX-M-65 expression level and did not impose fitness costs, while facilitating faster growth under high antibiotic concentrations. CONCLUSION: Our study is an example from the clinic how BLBLIs and ß-lactams exposure in vivo possibly promoted the amplification of an IS26-multiple drug resistance (MDR) region. The observation of a copy number variation seen with the blaCTX-M-65 gene in the plasmid of the post-treatment strain expands our knowledge of insertion sequence dynamics and evolution during treatment.


Asunto(s)
Cefalosporinas , Escherichia coli , Humanos , Cefalosporinas/farmacología , Variaciones en el Número de Copia de ADN , beta-Lactamasas/genética , Antibacterianos/farmacología , Monobactamas/farmacología , Inhibidores de beta-Lactamasas/farmacología , Farmacorresistencia Microbiana
13.
Cell Rep ; 42(10): 113227, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37837619

RESUMEN

Salmonella enterica subsp. enterica serovar 4,[5],12:i:- (Salmonella 4,[5],12:i:-), derived from S. Typhimurium, has become the dominant serotype causing human salmonellosis. In this study, we define the genetic mechanism of the generation of Salmonella 4,[5],12:i:- from S. Typhimurium through complicated transpositions and demonstrate that Salmonella 4,[5],12:i:- displays more efficient colonization and survival abilities in mice than its parent S. Typhimurium strain. We identified intermediate strains carrying both resistance regions (RRs) and the fljAB operon for the generation of Salmonella 4,[5],12:i:-. The insertion of RR3 into the chromosomal hin-iroB site of S. Typhimurium produced RR3-S. Typhimurium as a primary intermediate. Salmonella 4,[5],12:i:- was then produced by replacing the fljAB operon and/or its flanking sequences through intramolecular transpositions mediated by IS26 and/or IS1R elements in RR3-S. Typhimurium, which was further confirmed both in vitro and in vivo. Overall, we demonstrate the molecular mechanism underlying the origin, generation, and advantage of RRs-Salmonella 4,[5],12:i:- from S. Typhimurium.


Asunto(s)
Infecciones por Salmonella , Salmonella enterica , Humanos , Animales , Ratones , Salmonella typhimurium/genética , Serogrupo , Infecciones por Salmonella/genética , Operón/genética
14.
Antibiotics (Basel) ; 12(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37760759

RESUMEN

Klebsiella michiganensis is a recently emerging human pathogen causing nosocomial infections. This study aimed to characterize the complete genome sequence of a clinical Klebsiella michiganensis strain KMIB106 which exhibited extensive drug-resistance. The whole genome of the strain was sequenced using PacBio RS III systems and Illumina Nextseq 500. Annotation, transposable elements and resistance gene identification were analyzed by RAST, prokka and Plasmid Finder, respectively. According to the results, KMIB106 was resistant to multiple antimicrobials, including carbapenems, but it remained susceptible to aztreonam. The genome of KMIB106 consisted of a single chromosome and three predicted plasmids. Importantly, a novel KPC plasmid pB106-1 was found to carry the array of resistance genes in a highly different order in its variable regions, including mphA, msrE, mphE, ARR-3, addA16, sul1, dfrA27, tetD and fosA3. Plasmid pB106-2 is a typical IncFII plasmid with no resistant gene. Plasmid pB106-IMP consists of the IncN and IncX3 backbones, and two resistance genes, blaIMP-4 and blaSHV-12, were identified. Our study for the first time reported an extensively drug-resistant Klebsiella michiganensis strain recovered from a child with a respiratory infection in Southern China, which carries three mega plasmids, with pB106-1 firstly identified to carry an array of resistance genes in a distinctive order, and pB106-IMP identified as a novel IncN-IncX3 cointegrate plasmid harboring two resistance genes blaIMP-4 and blaSHV-12.

15.
Acta Pharm Sin B ; 13(9): 3678-3693, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37719365

RESUMEN

Polymyxin B and polymyxin E (colistin) are presently considered the last line of defense against human infections caused by multidrug-resistant Gram-negative organisms such as carbapenemase-producer Enterobacterales, Acinetobacter baumannii, and Klebsiella pneumoniae. Yet resistance to this last-line drugs is a major public health threat and is rapidly increasing. Polymyxin S2 (S2) is a polymyxin B analogue previously synthesized in our institute with obviously high antibacterial activity and lower toxicity than polymyxin B and colistin. To predict the possible resistant mechanism of S2 for wide clinical application, we experimentally induced bacterial resistant mutants and studied the preliminary resistance mechanisms. Mut-S, a resistant mutant of K. pneumoniae ATCC BAA-2146 (Kpn2146) induced by S2, was analyzed by whole genome sequencing, transcriptomics, mass spectrometry and complementation experiment. Surprisingly, large-scale genomic inversion (LSGI) of approximately 1.1 Mbp in the chromosome caused by IS26 mediated intramolecular transposition was found in Mut-S, which led to mgrB truncation, lipid A modification and hence S2 resistance. The resistance can be complemented by plasmid carrying intact mgrB. The same mechanism was also found in polymyxin B and colistin induced drug-resistant mutants of Kpn2146 (Mut-B and Mut-E, respectively). This is the first report of polymyxin resistance caused by IS26 intramolecular transposition mediated mgrB truncation in chromosome in K. pneumoniae. The findings broaden our scope of knowledge for polymyxin resistance and enriched our understanding of how bacteria can manage to survive in the presence of antibiotics.

16.
Microbiol Spectr ; 11(4): e0156623, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37358447

RESUMEN

The insertion sequence IS26 plays a key role in the spread of antibiotic resistance genes in Gram-negative bacteria. IS26 and members of the IS26 family are able to use two distinct mechanisms to form cointegrates made up of two DNA molecules linked via directly oriented copies of the IS. The well-known copy-in (formerly replicative) reaction occurs at very low frequency, and the more recently discovered targeted conservative reaction, which joins two molecules that already include an IS, is substantially more efficient. Experimental evidence has indicated that, in the targeted conservative mode, the action of Tnp26, the IS26 transposase, is required only at one end. How the Holliday junction (HJ) intermediate generated by the Tnp26-catalyzed single-strand transfer is processed to form the cointegrate is not known. We recently proposed that branch migration and resolution via the RuvABC system may be needed to process the HJ; here, we have tested this hypothesis. In reactions between a wild-type and a mutant IS26, the presence of mismatched bases near one IS end impeded the use of that end. In addition, evidence of gene conversion, potentially consistent with branch migration, was detected in some of the cointegrates formed. However, the targeted conservative reaction occurred in strains that lacked the recG, ruvA, or ruvC genes. As the RuvC HJ resolvase is not required for targeted conservative cointegrate formation, the HJ intermediate formed by the action of Tnp26 must be resolved by an alternate route. IMPORTANCE In Gram-negative bacteria, the contribution of IS26 to the spread of antibiotic resistance and other genes that provide cells with an advantage under specific conditions far exceeds that of any other known insertion sequence. This is likely due to the unique mechanistic features of IS26 action, particularly its propensity to cause deletions of adjacent DNA segments and the ability of IS26 to use two distinct reaction modes for cointegrate formation. The high frequency of the unique targeted conservative reaction mode that occurs when both participating molecules include an IS26 is also key. Insights into the detailed mechanism of this reaction will help to shed light on how IS26 contributes to the diversification of the bacterial and plasmid genomes it is found in. These insights will apply more broadly to other members of the IS26 family found in Gram-positive as well as Gram-negative pathogens.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Escherichia coli , ADN Cruciforme , Plásmidos , Replicación del ADN , Bacterias Gramnegativas/genética , Proteínas Bacterianas/genética , Proteínas de Escherichia coli/genética
17.
Infect Drug Resist ; 16: 4073-4081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388189

RESUMEN

Background: Emergence of blaKPC and blaNDM co-harboring Klebsiella pneumoniae has escalated the threat of Carbapenem-resistant Klebsiella pneumoniae (CRKP) to healthcare. It remains unknown the prevalence and molecular characteristics of CRKP co-producing KPC and NDMs carbapenemases in Henan. Methods and Results: Twenty-seven CRKP strains isolated from different times were selected randomly in affiliated cancer hospital of Zhengzhou University from January 2019 to January 2021, among which one KPC-2 and NDM-5 positive CRKP named K9 was isolated from an abdominal pus sample of a 63-year-old male patient with leukemia. Sequencing of K9 determined that K9 belonged to ST11-KL47, which is resistant to antibiotics such as meropenem, ceftazidime-avibactam and tetracycline. K9 carried two different plasmids that contained blaNDM-5 and blaKPC-2. Both plasmids were shown to be novel hybrid plasmids and IS26 played an important role in generation of two plasmids. Gene blaKPC-2 was flanked by the NTEKPC-Ib-like genetic structure (IS26-ΔTn3-ISKpn8-blaKPC-2-ISKpn6-IS26) and was located on a conjugative IncFII/R/N type hybrid plasmid. Conclusion: The resistance gene blaNDM-5 located on a region organized as IS26-blaNDM-5-ble-trpF-dsbD-ISCR1-sul1-aadA2-dfrA12-IntI1-IS26 was carried by a phage-plasmid. We described a clinical CRKP co-producing KPC-2 and NDM-5 and emphasized an urgent need to control their further spread.

18.
Infect Genet Evol ; 113: 105471, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37353184

RESUMEN

Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) has been widely reported and poses a global threat. However, the comprehensive genetic structure of ST11-KL64 hv-CRKP and the possible evolutionary mechanisms from a genetic structure perspective of this high-risk clone remain unclear. Here, a blaKPC-2-blaNDM-1-positive ST11-KL64 hv-CRKP isolate was obtained from a human bloodstream infection (BSI). Whole-genome sequencing and bioinformatics analyses revealed that it contained a fusion plasmid, pKPTCM2-1. pKPTCM2-1 is a conjugative plasmid composed of an oriT-positive pLVPK-like virulence plasmid and a type IV secretion system-produced blaNDM-1-bearing IncX3 plasmid mediated by IS26-based co-integration. This progress generated 8-bp target site duplications (TGAAAACC) on both sides. The fusion plasmid possessed self-transferability and could be transferred to blaKPC-2-harboring ST11-KL64 CRKP to form the ST11-KL64 hv-CRKP clone. The pLVPK-like-positive ST11-KL64 strain exhibited virulence levels similar to those of the typical hypervirulent K. pneumoniae NTUH-2044. The mutation, Tet(A) (A276S), which was believed to lead to tigecycline resistance was observed. Overall, this high-risk clone has emerged as a tremendous threat in fatal BSIs and thus, targeted surveillance is an urgent need to contain the hv-CRKP clones.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Humanos , Virulencia/genética , Klebsiella pneumoniae/genética , Evolución Biológica , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , beta-Lactamasas/genética , Carbapenémicos/farmacología , Antibacterianos/farmacología
19.
Microbiol Spectr ; 11(3): e0355422, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37125932

RESUMEN

The coinfection process producing multiple species of pathogens provides a specific ecological niche for the exchange of genetic materials between pathogens, in which plasmids play a vital role in horizontal gene transfer, especially for drug resistance, but the underlying transfer pathway remains unclear. Interspecies communication of the plasmids associated with the transfer of third-generation cephalosporins, quinolones, and colistin resistance has been observed in simultaneously isolated Escherichia coli and Klebsiella pneumoniae from abdominal drainage following surgery. The MICs of antimicrobial agents were determined by the broth microdilution method. The complete chromosome and plasmid sequences were obtained by combining Illumina paired-end short reads and MinION long reads. S1-PFGE, southern blot analysis and conjugation assay confirmed the transferability of the mcr-1-harboring plasmid. Both the E. coli isolate EC15255 and K. pneumoniae isolate KP15255 from the same specimen presented multidrug resistance. Each of them harbored one chromosome and three plasmids, and two plasmids and their mediated resistance could be transferred to the recipient by conjugation. Comparison of their genome sequences suggested that several genetic communication events occurred between species, especially among their plasmids, such as whole-plasmid transfer, insertion, deletion, amplification, or inversion. Exchange of plasmids or the genetic elements they harbor plays a critical role in antimicrobial resistance gene transmission and poses a substantial threat to nosocomial infection control, necessitating the continued surveillance of multidrug resistant pathogens, especially during coinfection. IMPORTANCE The genome sequence of bacterial pathogens commonly provides a detailed clue of genetic communication among clones or even distinct species. The intestinal microecological environment is a representative ecological niche for genetic communication. However, it is still difficult to describe the details of horizontal gene transfer or other genetic events within them because the evidence in the genome sequence is incomplete and limited. In this study, the simultaneously isolated Escherichia coli and Klebsiella pneumoniae from a coinfection process provided an excellent example for observation of interspecies communication between the two genomes and the plasmids they harbor. A complete genome sequence acquired by combining the Illumina and MinION sequencing platforms facilitated the understanding of genetic communication events, such as whole-plasmid transfer, insertion, deletion, amplification, or inversion, which contribute to antimicrobial resistance gene transmission and are a substantial threat to nosocomial infection control.


Asunto(s)
Coinfección , Infección Hospitalaria , Proteínas de Escherichia coli , Infecciones por Klebsiella , Quinolonas , Humanos , Escherichia coli/metabolismo , Colistina , Klebsiella pneumoniae/metabolismo , Antibacterianos/farmacología , Plásmidos/genética , Proteínas de Escherichia coli/genética , Cefalosporinas/farmacología , Comunicación , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética , Farmacorresistencia Bacteriana/genética
20.
Microbiol Res ; 272: 127387, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37084538

RESUMEN

Hybrid plasmids can combine the genetic elements of multiple plasmids, with the potential to carry a variety of antibiotic resistance genes and virulence genes, causing a great public health concern. Hybrid plasmids formed by fusion events may further exacerbate the spread of antibiotic resistance genes as well as plasmid evolution. Salmonella enterica serovar 4,[5],12:i:- is a monophasic variant of S. Typhimurium, which is one of the major causes of foodborne disease outbreaks worldwide. To assess the risk of transmission due to plasmid structure changes, we investigated the structural diversity of plasmids in two S. 4,[5],12:i:- isolates. Nanopore long-read sequencing was performed for plasmid comparison between original plasmids (donor isolates) and reorganized plasmids. We found that the IncHI2-IncHI2A multidrug resistance (MDR) plasmids in S. 4,[5],12:i:- possessed high plasticity, and could undergo recombination with other plasmids to form fusion plasmids of different sizes. Plasmid structural polymorphisms were mainly mediated by insertion sequences such as IS26 and ISPa40, and led to the rearrangement of the plasmid internal structures. To the best of our knowledge, this is the first report of the fusion of the IncHI2-IncHI2A and IncB/O/K/Z plasmids in S. 4,[5],12:i:- mediated by IS26. In addition, we also found that the mcr-1 gene was able to generate duplication during conjugation. Polymorphic changes in MDR plasmids during conjugation may further reduce the choice of clinical therapeutic agents. Therefore, continuous monitoring regarding plasmid polymorphic changes during transmission in both in vitro and in vivo is urgently needed to decipher the MDR plasmid evolution.


Asunto(s)
Elementos Transponibles de ADN , Salmonella enterica , Salmonella enterica/genética , Serogrupo , Salmonella typhimurium , Plásmidos/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA