Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
ACS Chem Neurosci ; 15(13): 2520-2531, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38875216

RESUMEN

Neuroimaging biomarkers are needed to investigate the impact of smoking withdrawal on brain function. NFL-101 is a denicotinized aqueous extract of tobacco leaves currently investigated as an immune-based smoking cessation therapy in humans. However, the immune response to NFL-101 and its ability to induce significant changes in brain function remain to be demonstrated. Brain glucose metabolism was investigated using [18F]fluoro-deoxy-glucose ([18F]FDG) PET imaging in a mouse model of cigarette smoke exposure (CSE, 4-week whole-body inhalation, twice daily). Compared with control animals, the relative uptake of [18F]FDG in CSE mice was decreased in the thalamus and brain stem (p < 0.001, n = 14 per group) and increased in the hippocampus, cortex, cerebellum, and olfactory bulb (p < 0.001). NFL-101 induced a humoral immune response (specific IgGs) in mice and activated human natural-killer lymphocytes in vitro. In CSE mice, but not in control mice, single-dose NFL-101 significantly increased [18F]FDG uptake in the thalamus (p < 0.01), thus restoring normal brain glucose metabolism after 2-day withdrawal in this nicotinic receptor-rich region. In tobacco research, [18F]FDG PET imaging provides a quantitative method to evaluate changes in the brain function associated with the withdrawal phase. This method also showed the CNS effects of NFL-101, with translational perspectives for future clinical evaluation in smokers.


Asunto(s)
Encéfalo , Glucosa , Tomografía de Emisión de Positrones , Cese del Hábito de Fumar , Animales , Glucosa/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Ratones , Tomografía de Emisión de Positrones/métodos , Cese del Hábito de Fumar/métodos , Humanos , Masculino , Extractos Vegetales/farmacología , Ratones Endogámicos C57BL , Fluorodesoxiglucosa F18 , Nicotiana , Humo , Síndrome de Abstinencia a Sustancias/metabolismo
2.
Inflammopharmacology ; 32(4): 2253-2283, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878142

RESUMEN

This article is an autobiographical account of a research career in inflammatory diseases, mechanisms and pharmacotherapy, drug research and development, in academia and industry in various European countries spanning the last 55 years. The author describes how tenacity and independent thought, learned in formative years, and tempered later by the development of good relationships with colleagues have guided his career. This has spanned research, among other fields, on prostaglandins as pro-and anti-inflammatory mediators, oxidative stress and antioxidants, phospholipid mediators, cytokines, innate and adaptive immune responses and the establishment of various inflammatory and immunological models. The author has helped discover and develop novel therapeutic approaches to pain, arthritic, dermatological, respiratory, and autoimmune disorders and contributed to bringing eight drug candidates to clinical trials. He has helped establish new research labs in four different centres and been involved in teaching undergraduate and mature students in three different universities. With extensive experience in scientific publishing and several international awards, he emphasises that without good teamwork, little can be achieved in scientific research.


Asunto(s)
Inflamación , Animales , Humanos , Historia del Siglo XXI , Historia del Siglo XX , Inflamación/tratamiento farmacológico , Roedores , Investigación Biomédica/métodos , Farmacología/métodos
3.
Biomol Ther (Seoul) ; 32(4): 460-466, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38835138

RESUMEN

Asthma is characterized by chronic inflammation and respiratory tract remodeling. Peroxisome proliferator-activated receptors (PPARs) play important roles in the pathogenesis and regulation of chronic inflammatory processes in asthma. The role of PPARγ has been studied using synthetic PPARγ agonists in patients with asthma. However, involvement of PPARα/δ has not been studied in asthma. In the present study, we investigated if elafibranor, a PPARα/δ dual agonist, can modulate ovalbumin (OVA)-induced allergic asthma, which is a potential drug candidate for non-alcoholic fatty liver in obese patients. Elafibranor suppresses antigen-induced degranulation in RBL-2H3 mast cells without inducing cytotoxicity in vitro. In mice with OVA-induced allergic asthma, the administration of elafibranor suppressed OVA-induced airway hyper-responsiveness at a dose of 10 mg/kg. Elafibranor also suppressed the OVA-induced increase in immune cells and pro-inflammatory cytokine production in the bronchoalveolar lavage fluid (BALF). Histological studies suggested that elafibranor suppressed OVA-induced lung inflammation and mucin hyper-production in the bronchial airways. In addition, elafibranor suppressed OVA-induced increases in serum immunoglobulin E and IL-13 levels in BALF. Conversely, the present study suggests that elafibranor has the potential for use in patients with allergic asthma.

4.
Biomol Ther (Seoul) ; 32(4): 451-459, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38844790

RESUMEN

Apoptosis signal-regulating kinase 1 (ASK1) is an upstream signaling molecule in oxidative stress-induced responses. Because oxidative stress is involved in asthma pathogenesis, ASK1 gene deficiency was investigated in animal models of allergic asthma. However, there is no study to investigate whether ASK1 inhibitors could be applied for asthma to date. Selonsertib, a potent and selective ASK1 inhibitor, was applied to BALB/c mice of an ovalbumin (OVA)-induced allergic asthma model. Selonsertib suppressed antigen-induced degranulation of RBL-2H3 mast cells in a concentration-dependent manner. The administration of selonsertib both before OVA sensitization and OVA challenge significantly reduced airway hyperresponsiveness, and suppressed eosinophil numbers and inflammatory cytokine levels in the bronchoalveolar lavage fluid. Histopathologic examination elucidated less inflammatory responses and reduced mucin-producing cells around the peribronchial regions of the lungs. Selonsertib also suppressed the IgE levels in serum and the protein levels of IL-13 in the bronchoalveolar lavage fluid. These results suggest that selonsertib may ameliorate allergic asthma by suppressing immune responses and be applicable to allergic asthma.

5.
Br J Pharmacol ; 181(17): 3246-3262, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38744683

RESUMEN

BACKGROUND AND PURPOSE: Pulpitis is associated with tooth hypersensitivity and results in pulpal damage. Thermosensitive transient receptor potential (TRP) ion channels expressed in the dental pulp may be key transducers of inflammation and nociception. We aimed at investigating the expression and role of thermo-TRPs in primary human dental pulp cells (hDPCs) in normal and inflammatory conditions. EXPERIMENTAL APPROACH: Inflammatory conditions were induced in hDPC cultures by applying polyinosinic:polycytidylic acid (poly(I:C)). Gene expression and pro-inflammatory cytokine release were measured by RT-qPCR and ELISA. Functions of TRPA1 channels were investigated by monitoring changes in intracellular Ca2+ concentration. Mitochondrial superoxide production was measured using a fluorescent substrate. Cellular viability was assessed by measuring the activity of mitochondrial dehydrogenases and cytoplasmic esterases. TRPA1 activity was modified by agonists, antagonists, and gene silencing. KEY RESULTS: Transcripts of TRPV1, TRPV2, TRPV4, TRPC5, and TRPA1 were highly expressed in control hDPCs, whereas TRPV3, TRPM2, and TRPM3 expressions were much lower, and TRPM8 was not detected. Poly(I:C) markedly up-regulated TRPA1 but not other thermo-TRPs. TRPA1 agonist-induced Ca2+ signals were highly potentiated in inflammatory conditions. Poly(I:C)-treated cells displayed increased Ca2+ responses to H2O2, which was abolished by TRPA1 antagonists. Inflammatory conditions induced oxidative stress, stimulated mitochondrial superoxide production, resulted in mitochondrial damage, and decreased cellular viability of hDPCs. This inflammatory cellular damage was partly prevented by the co-application of TRPA1 antagonist or TRPA1 silencing. CONCLUSION AND IMPLICATIONS: Pharmacological blockade of TRPA1 channels may be a promising therapeutic approach to alleviate pulpitis and inflammation-associated pulpal damage.


Asunto(s)
Pulpa Dental , Estrés Oxidativo , Pulpitis , Canal Catiónico TRPA1 , Regulación hacia Arriba , Humanos , Estrés Oxidativo/efectos de los fármacos , Canal Catiónico TRPA1/metabolismo , Canal Catiónico TRPA1/antagonistas & inhibidores , Pulpitis/metabolismo , Pulpitis/patología , Pulpa Dental/citología , Pulpa Dental/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Células Cultivadas , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Poli I-C/farmacología , Supervivencia Celular/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Calcio/metabolismo , Superóxidos/metabolismo
6.
Basic Clin Pharmacol Toxicol ; 134(5): 629-642, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501576

RESUMEN

The effectiveness of natural killer (NK) cells transferred adoptively in combating solid tumours is limited by challenges such as their difficulty in penetrating tumours from the bloodstream and maintaining viability without the support of interleukin-2 (IL-2). Genetically modified NK-92MI cells, which can release IL-2 to sustain their viability, have been identified as a promising alternative. This adaptation addresses the negative consequences of systemic IL-2 administration. The role of PSD-95/discs large/ZO-1 (PDZ)-binding kinase (PBK) in cancer development is recognized, but its effects on immunity are not fully understood. This study explores how PBK expression influences the ability of NK-92MI cells to infiltrate ovarian tumours. Elevated levels of PBK expression have been found in various cancers, including ovarian cancer (OV), with analyses showing higher PBK mRNA levels in tumour tissues compared to normal ones. Immunohistochemistry has confirmed increased PBK expression in OV tissues. Investigations into PBK's role in immune regulation reveal its association with immune cell infiltration, indicating a potentially compromised immune environment in OV with high PBK expression. The small-molecule inhibitor HI-TOPK-032, which inhibits PBK, enhances the cytotoxicity of NK-92MI cells toward OV cells. It increases the production of interferon-γ and tumour necrosis factor-α, reduces apoptosis and encourages cell proliferation. Mechanistic studies showed that contact with OV cells treated with HI-TOPK-032 upregulates CD107a on NK-92 cells. In vivo studies demonstrated that HI-TOPK-032 improves the antitumour effects of NK-92MI cells in OVCAR3Luc xenografts, extending survival without significant side effects. Safety assessments in mice confirm HI-TOPK-032's favourable safety profile, highlighting its potential as a viable antitumour therapy. These results suggest that combining NK-92MI cells with HI-TOPK-032 enhances antitumour effectiveness against OV, indicating a promising, safe and effective treatment strategy that warrants further clinical investigation.


Asunto(s)
Indolizinas , Interleucina-2 , Neoplasias Ováricas , Quinoxalinas , Humanos , Ratones , Animales , Femenino , Apoptosis , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Quinasas MAP Reguladas por Señal Extracelular , Células Asesinas Naturales
7.
Int Immunopharmacol ; 130: 111800, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38447416

RESUMEN

p38 MAPK has been implicated in the pathogenesis of rheumatoid arthritis and psoriasis. To assess the therapeutic efficacy of the p38 MAPK inhibitor NJK14047 in the treatment of rheumatoid arthritis and psoriasis, we developed mouse models of collagen-induced rheumatoid arthritis (CIA) and imiquimod-induced psoriasis (IIP). NJK14047 was found to suppress arthritis development and psoriasis symptoms and also suppressed histopathological changes induced by CIA and IIP. Furthermore, we established that CIA and IIP evoked increases in the mRNA expression levels of Th1/Th17 inflammatory cytokines in the joints and skin, which was again suppressed by NJK14047. NJK14047 reversed the enlargement of spleens induced by CIA and IIP as well as increases in the levels of inflammatory cytokine in spleens following induction by CIA and IIP. In human SW982 synovial cells, NJK14047 was found to suppress lipopolysaccharide-induced increases in the mRNA expression of proinflammatory cytokines. NJK14047 inhibition of p38 MAPK suppressed the differentiation of naïve T cells to Th17 and Th1 cells. Our findings in this study provide convincing evidence indicating the therapeutic efficacy of the p38 MAPK inhibitor NJK14047 against CIA and IIP, which we speculate could be associated with the suppression on T-cell differentiation.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Inhibidores de Proteínas Quinasas , Psoriasis , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Humanos , Ratones , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Diferenciación Celular , Citocinas/genética , Citocinas/metabolismo , Imiquimod , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , ARN Mensajero/metabolismo , Células Th17 , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Ratones Endogámicos DBA , Masculino , Línea Celular
8.
Annu Rev Pharmacol Toxicol ; 64: 481-506, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37722722

RESUMEN

The exponential rise in the prevalence of allergic diseases since the mid-twentieth century has led to a genuine public health emergency and has also fostered major progress in research on the underlying mechanisms and potential treatments. The management of allergic diseases benefits from the biological revolution, with an array of novel immunomodulatory therapeutic and investigational tools targeting players of allergic inflammation at distinct pathophysiological steps. Prominent examples include therapeutic monoclonal antibodies against cytokines, alarmins, and their receptors, as well as small-molecule modifiers of signal transduction mainly mediated by Janus kinases and Bruton's tyrosine kinases. However, the first-line therapeutic options have yet to switch from symptomatic to disease-modifying interventions. Here we present an overview of available drugs in the context of our current understanding of allergy pathophysiology, identify potential therapeutic targets, and conclude by providing a selection of candidate immunopharmacological molecules under investigation for potential future use in allergic diseases.


Asunto(s)
Hipersensibilidad , Humanos , Hipersensibilidad/tratamiento farmacológico , Anticuerpos Monoclonales , Citocinas , Inflamación , Transducción de Señal
9.
Medicina (Kaunas) ; 59(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38003966

RESUMEN

Background and Objectives: Fragaria nubicola has never been evaluated scientifically for its anti-arthritic potential despite its use in folkloric systems of medicine. The research was conducted to assess the potential of F. nubicola against rheumatoid arthritis. Materials and Methods: The current study provided scientific evidence by evaluating the effects of plants using an in vivo CFA-induced model of arthritic rats and subsequent microscopic histopathological evaluation of ankle joints along with the determination of paw edema using a digital water displacement plethysmometer. The study also gave insight by determining levels of pro-inflammatory cytokines, matrix metalloproteinase enzymes (MMPs), prostaglandin E2 (PGE2), nuclear factor kappa B (NF-κB), vascular endothelial growth factor (VEGF), and biochemical and hematological parameters. GCMS analysis was also conducted for the identification of possible anti-inflammatory plant constituents. Results: The data showed that F. nubicola-treated groups attenuated the progression of arthritis and paw edema. Microscopic histopathological evaluation validated the anti-arthritic potential by showing amelioration of bone erosion, infiltration of inflammatory cells, and pannus formation. RT-PCR analysis displayed that treatment with F. nubicola down-regulated IL1ß, IL6, TNFα, NF-κB, VEGF, MMP2, MMP3, and MMP9 levels. Moreover, ELISA exhibited a reduction in levels of PGE2 levels in treatment groups. The levels of RBCs, platelets, WBCs, and Hb content were found to be nearly similar to negative control in the treated group. Statistically, a non-significant difference was found when all groups were compared for urea, creatinine, ALT, and AST analysis, indicating the safety of plant extract and fractions at test doses. GCMS analysis of extract and fractions showed the existence of many anti-inflammatory and antioxidant phytochemicals. Conclusion: In conclusion, F. nubicola possessed anti-arthritic properties that might be attributed to the amelioration of MMPs and pro-inflammatory cytokines.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Fragaria , Ratas , Animales , Ratas Sprague-Dawley , Fragaria/metabolismo , Factor A de Crecimiento Endotelial Vascular , Mediadores de Inflamación , FN-kappa B , Dinoprostona/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Reumatoide/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Citocinas/metabolismo , Edema/tratamiento farmacológico , Metaloproteinasas de la Matriz
10.
J Pharmacol Exp Ther ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770200

RESUMEN

Immune cells play a critical role in surveilling and defending against cancer, emphasizing the importance of understanding how they interact and communicate with cancer cells to determine cancer status, treatment response, and the formation of the tumor microenvironment (TME). To this end, we conducted a study demonstrating the effectiveness of an enzyme-mediated intercellular proximity labeling (EXCELL) method, which utilizes a modified version of the sortase A enzyme known as mgSrtA, in detecting and characterizing immune-tumor cell interactions. The mgSrtA enzyme is expressed on the membrane of tumor cells, which is able to label immune cells that interact with tumor cells in a proximity-dependent manner. Our research indicates that the EXCELL technique can detect and characterize immune-tumor cell interactions in a time- and concentration-dependent manner, both in vitro and in vivo, without requiring pre-engineering of the immune cells. We also highlight its ability to detect various types of immune cell subpopulations in vivo that have migrated out of tumor into the spleen, providing insights into the role of peripheral T cell recruitment in tumor progression. Overall, our findings suggest that the EXCELL method has great potential for improving our understanding of immune cell dynamics within the TME, ultimately leading to more potent pharmacological effects and cancer immunotherapy strategies. Significance Statement The EXCELL method holds promise for detecting immune cell interactions with cancer cells, both in vitro and in vivo. It has important implications for studying immune tumor cell dynamics and potentially uncover novel subtypes of immune cells within the TME, both prior to and during immunotherapeutic interventions.

12.
Biomol Ther (Seoul) ; 31(6): 611-618, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37317820

RESUMEN

Rhizome of Alisma orientale has been used as a traditional medicine for treating kidney diseases in East Asian countries. Its inhibitory effects on hypersensitivity responses have been reported for methanol extracts, with alisol B 23-acetate (AB23Ac) being the most active constituent among six terpenes in inhibiting the direct passive Arthus reaction. However, whether AB23Ac has efficacy against allergic asthma has not been tested to date. The in vivo efficacy of AB23Ac in an ovalbumin (OVA)-induced allergic asthma mouse model was evaluated by administrating AB23Ac before OVA sensitization or OVA challenge in BALB/c mice. AB23Ac suppressed antigen-induced degranulation of RBL-2H3 mast cells in a concentration-dependent manner. The administration of AB23Ac both before OVA sensitization and OVA challenge greatly lowered pulmonary resistance and the increase in immune cell counts and inflammatory responses around the peribronchial and perivascular regions. In addition, the inflammatory cytokine levels of Th1/Th2/Th17 cells in the bronchoalveolar lavage fluid decreased in the AB23Ac-treated groups. AB23Ac reduced the number of PAS-stained cells in the lungs. Furthermore, a computer modeling study indicated that AB23Ac can bind tightly to spleen tyrosine kinase (Syk). These results suggest that AB23Ac may ameliorate allergic asthma by suppressing immune responses in dendritic cells during sensitization and in mast cells during challenge periods.

13.
Heliyon ; 9(2): e13290, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36816265

RESUMEN

Liquiritin is a natural flavone with a variety of pharmacological effects derived from the medicinal food homology plant Glycyrrhiza uralensis Fisch. As a kind of lethal allergic reactions, pseudo-allergic reactions (PARs) arise from the Mas-related G protein coupled receptor X2 (MRGPRX2)-triggered fast degranulation of mast cells (MCs). In the current work, the anti-pseudo-allergy action and potential mechanisms of liquiritin were explored in vivo and in vitro. Liquiritin suppressed the calcium influx and degranulation elicited by Compound 48/80 (C48/80) in mouse peritoneal mast cells (MPMCs). In mice, liquiritin also inhibited the C48/80-elicited hind paw extravasation, as well as the elevations in TNF-α and histamine levels. Molecular docking combined with detection of HEK293T cells expressing human MRGPRX2 showed that liquiritin was a potential MRGPRX2 antagonist and inhibited PARs through the PI3K/AKT and PLCγ signaling pathways downstream of MRGPRX2. The present work opens a new avenue for the PARs management.

15.
J Clin Pharmacol ; 63(6): 672-680, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36624662

RESUMEN

Atezolizumab, a humanized monoclonal antibody against programmed cell death ligand 1 (PD-L1), was initially approved in 2016, around the same time that the sponsor published the minimum serum concentration to maintain the saturation of receptor occupancy (6 µg/mL). The initially approved dose regimen of 1200 mg every 3 weeks (q3w) was subsequently modified to 840 mg q2w or 1680 mg q4w through pharmacokinetic simulations. Yet, each standard regimen yields steady-state trough concentrations (CMIN,SS ) far exceeding (≈ 40-fold) the stated target concentration. Additionally, the steady-state area under the plasma drug concentration-time curve (AUCSS ) at 1200 mg q3w was significantly (P = .027) correlated with the probability of adverse events of special interest (AESIs) in patients with non-small cell lung cancer (NSCLC) and, coupled with excess exposure, this provides incentive to explore alternative dose regimens to lower the exposure burden while maintaining an effective CMIN,SS . In this study, we first identified 840 mg q6w as an extended-interval regimen that could robustly maintain a serum concentration of 6 µg/mL (≥99% of virtual patients simulated, n = 1000), then applied this regimen to an approach that administers 2 "loading doses" of standard-interval regimens for a future clinical trial aiming to personalize dose regimens. Each standard dose was simulated for 2 loading doses, then 840 mg q6w thereafter; all yielded cycle-7 CMIN,SS values of >6 µg/mL in >99% of virtual patients. Further, the AUCSS from 840 mg q6w resulted in a flattening (P = .63) of the exposure-response relationship with adverse events of special interest (AESIs). We next aim to verify this in a clinical trial seeking to validate extended-interval dosing in a personalized approach using therapeutic drug monitoring.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resultado del Tratamiento , Neoplasias Pulmonares/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/farmacocinética , Simulación por Computador
16.
Biomol Ther (Seoul) ; 31(2): 183-192, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36171179

RESUMEN

p38 MAPK has been implicated in the pathogenesis of asthma as well as pro-allergic Th2 cytokines, orosomucoid-like protein isoform 3 (ORMDL3), regulation of sphingolipid biosynthesis, and regulatory T cell-derived IL-35. To elucidate the role of p38 MAPK in the pathogenesis of asthma, we examined the effect of NJK14047, an inhibitor of p38 MAPK, against ovalbumin (OVA)-induced allergic asthma; we administrated NJK14047 before OVA sensitization or challenge in BALB/c mice. As ORMDL3 regulation of sphingolipid biosynthesis has been implicated in childhood asthma, ORMDL3 expression and sphingolipids contents were also analyzed. NJK14047 inhibited antigen-induced degranulation of RBL-2H3 mast cells. NJK14047 administration both before OVA sensitization and challenge strongly inhibited the increase in eosinophil and lymphocyte counts in the bronchoalveolar lavage fluid. In addition, NJK14047 administration inhibited the increase in the levels of Th2 cytokines. Moreover, NJK14047 reduced the inflammatory score and the number of periodic acid-Schiff-stained cells in the lungs. Further, OVA-induced increase in the levels of C16:0 and C24:1 ceramides was not altered by NJK14047. These results suggest that p38 MAPK plays crucial roles in activation of dendritic and mast cells during sensitization and challenge periods, but not in ORMDL3 and sphingolipid biosynthesis.

17.
Biology (Basel) ; 11(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36552276

RESUMEN

Background and aim: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a rare multisystem autoimmune disease developed by autoantibody production against human neutrophilic granulocytes, including proteinase-3 (PR3) and myeloperoxidase (MPO). The management of AAV patients is difficult due to the multiorgan involvement, high rate of relapse, and complications of immunosuppressive agents that make it challenging. This study aims to investigate the efficacy and safety of rituximab (RTX) therapy in patients with granulomatosis with polyangiitis (GPA) or microscopic polyangiitis (MPA) subtypes. Method: The PubMed/Medline database was searched for any studies related to RTX therapy in ANCA-associated vasculitis (GPA and MPA subtypes), from inception to 1 August 2022, and proceeded in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results: Our search resulted in 1082 initial records. After the elimination of review papers, irrelevant studies, and non-English records, 223 articles were included, and the data related to the efficacy and safety of RTX therapy were extracted. Several randomized and non-randomized studies showed that RTX is an effective treatment option for patients with AAV. Most of the studies showed the very effective effect of RTX in controlling disease in AAV patients, including pediatrics, adults, and elderlies, although RTX cannot completely prevent relapse. However, maintenance therapy helps delay the disease's relapse and causes sustained remission. Not only the licensed dose (375 mg/m2 intravenous per week for 4 weeks) could induce disease remission, but studies also showed that a single infusion of RTX could be effective. Although RTX could resolve many rare manifestations in AAV patients, there are few reports showing treatment failure. Additionally, few sudies have reported the unexpeted worsening of the disease after RTX administration. Generally, RTX is relatively safe compared to conventional therapies, but some serious adverse effects, mainly infections, cytopenia, hypogammaglobinemia, malignancy, and hypersensitivity have been reported. Conclusions: RTX is an effective and relatively safe therapeutic option for AAV. Studies on the evaluation of the safety profiles of RTX and the prevention of severe RTX-related side effects in AAV patients are required.

18.
J Clin Pharmacol ; 62 Suppl 1: S36-S52, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36106778

RESUMEN

We are living in a golden age of medicine in which the availability of prenatal diagnosis, fetal therapy, and gene therapy/editing make it theoretically possible to repair almost any defect in the genetic code. Furthermore, the ability to diagnose genetic disorders before birth and the presence of established surgical techniques enable these therapies to be delivered safely to the fetus. Prenatal therapies are generally used in the second or early third trimester for severe, life-threatening disorders for which there is a clear rationale for intervening before birth. While there has been promising work for prenatal gene therapy in preclinical models, the path to a clinical prenatal gene therapy approach is complex. We recently held a conference with the University of California, San Francisco-Stanford Center of Excellence in Regulatory Science and Innovation, researchers, patient advocates, regulatory (members of the Food and Drug Administration), and other stakeholders to review the scientific background and rationale for prenatal somatic cell gene therapy for severe monogenic diseases and initiate a dialogue toward a safe regulatory path for phase 1 clinical trials. This review represents a summary of the considerations and discussions from these conversations.


Asunto(s)
Feto , Terapia Genética , Femenino , Humanos , Parto , Embarazo , Estados Unidos , United States Food and Drug Administration
19.
Bioorg Med Chem ; 72: 116966, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998390

RESUMEN

Chagas disease is a potentially fatal infection in 21 endemic Latin America countries for which the effectiveness of reference antiparasitic chemotherapy is limited. Thus, we developed three biopharmaceuticals and evaluated the effectiveness of different immunization strategies (recombinant protein NTPDase-1 [rNTPDase-1], DNA plasmid encoding Trypanosoma cruzi NTPDase-1 [TcNTPDase-1] and DNA-NTPDase-1 prime/rNTPDase-1 boost [Prime-boost]) based on the surface ecto-nucleoside triphosphate diphosphohydrolase (ecto-NTPDase) enzyme of T. cruzi in animals challenged with a virulent strain (Y) of this parasite. BALB/c mice were immunized three times at 30 days intervals, challenged with T. cruzi 15 days after the last immunization, and euthanized 30 days after T. cruzi challenge. Our results showed limited polarization of specific anti-ecto-NTPDase immunoglobulins in mice receiving both immunization protocols. Conversely, the Prime-boost strategy stimulated the Th1 protective phenotype, upregulating TNF-α and downregulating IL-10 production while increasing the activation/distribution of CD3+/CD8+, CD4+/CD44hi and CD8+/CD44hi/CD62L cells in immunized and infected mice. Furthermore, IL-6 and IL10 levels were reduced, while the distribution of CD4+/CD44hi and CD3+/CD8+ cells was increased from rNTPDase-1 and DNA-NTPDase1-based immunization strategies. Animals receiving DNA-NTPDase1 and Prime-boost protocols before T. cruzi challenged exhibited an enhanced immunological response associated with IL-17 upregulation and remarkable downregulation of heart parasitism (T. cruzi DNA) and mortality. These findings indicated that NTPDase-1 with Prime-boost strategy induced a protective and sustained Th17 response, enhancing host resistance against T. cruzi. Thus, ecto-NTPDase is a potentially relevant and applicable in the development of biopharmaceuticals with greater immunoprophylactic potential for Chagas disease.


Asunto(s)
Productos Biológicos , Enfermedad de Chagas , Trypanosoma cruzi , Animales , Antiparasitarios , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/prevención & control , Interleucina-10 , Interleucina-17 , Interleucina-6 , Ratones , Ratones Endogámicos BALB C , Nucleósidos , Polifosfatos , Proteínas Recombinantes/farmacología , Factor de Necrosis Tumoral alfa
20.
Cancers (Basel) ; 14(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35884414

RESUMEN

Acute myeloid leukemia (AML) is an aggressive malignancy that requires rapid treatment with chemotherapies to reduce tumor burden. However, these chemotherapies can compromise lymphocyte function, thereby hindering normal anti-tumor immune responses and likely limiting the efficacy of subsequent immunotherapy. To better understand these negative impacts, we assessed the immunological effects of standard-of-care AML therapies on lymphocyte phenotype and function over time. When compared to healthy donors, untreated AML patients showed evidence of lymphocyte activation and exhaustion and had more prevalent CD57+NKG2C+ adaptive NK cells, which was independent of human cytomegalovirus (HCMV) status. HMA/venetoclax treatment resulted in a greater fraction of T cells with effector memory phenotype, inhibited IFN-γ secretion by CD8+ T cells, upregulated perforin expression in NK cells, downregulated PD-1 and 2B4 expression on CD4+ T cells, and stimulated Treg proliferation and CTLA-4 expression. Additionally, we showed increased expression of perforin and CD39 and enhanced IFN-γ production by T cells from pre-treatment blood samples of venetoclax-resistant AML patients. Our results provide insight into the lymphocyte status in previously untreated AML patients and the effects of standard-of-care treatments on their biology and functions. We also found novel pre-treatment characteristics of T cells that could potentially predict venetoclax resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA