Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101679

RESUMEN

Future changes in climate, together with rising atmospheric CO 2 ${\text{CO}}_{2}$ , may reorganise the functional composition of ecosystems. Without long-term historical data, predicting how traits will respond to environmental conditions-in particular, water availability-remains a challenge. While eco-evolutionary optimality theory (EEO) can provide insight into how plants adapt to their environment, EEO approaches to date have been formulated on the assumption that plants maximise carbon gain, which omits the important role of tissue construction and size in determining growth rates and fitness. Here, we show how an expanded optimisation framework, focussed on individual growth rate, enables us to explain shifts in four key traits: leaf mass per area, sapwood area to leaf area ratio (Huber value), wood density and sapwood-specific conductivity in response to soil moisture, atmospheric aridity, CO 2 ${\text{CO}}_{2}$ and light availability. In particular, we predict that as conditions become increasingly dry, height-growth optimising traits shift from resource-acquisitive strategies to resource-conservative strategies, consistent with empirical responses across current environmental gradients of rainfall. These findings can explain both the shift in traits and turnover of species along existing environmental gradients and changing future conditions and highlight the importance of both carbon assimilation and tissue construction in shaping the functional composition of vegetation across climates.

2.
J Exp Bot ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982758

RESUMEN

Allometric rules provide insights into the structure-function relationships across species and scales and are commonly used in ecology. The fields of agronomy, plant phenotyping and modeling also need simplifications such as allometric rules to reconcile data at different temporal and spatial levels (organs/canopy). This paper explores the variations in relationships for wheat regarding (i) the distribution of crop green area between leaves and stems, and (ii) the allocation of above-ground biomass between leaves and stems during the vegetative period, using a large dataset covering different years, countries, genotypes and management practices. Our results show that the relationship between leaf and stem area was linear, genotype-specific, and sensitive to radiation. The relationship between leaf and stem biomass depended on genotype and nitrogen fertilization. The mass per area, associating area and biomass for both leaf and stem, varied strongly by developmental stage and was significantly affected by environment and genotype. These allometric rules were evaluated with satisfactory performance, and their potential use is discussed with regard to current phenotyping techniques and plant/crop models. Our results enable the definition of models and minimum datasets required for characterizing diversity panels and making predictions in various G × E × M contexts.

3.
Plant Biol (Stuttg) ; 26(5): 842-854, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38743618

RESUMEN

Mesophyll resistance for CO2 diffusion (rm) is one of the main limitations for photosynthesis and plant growth. Breeding new varieties with lower rm requires knowledge of its distinct components. We tested new method for estimating the relative drawdowns of CO2 concentration (c) across hypostomatous leaves of Fagus sylvatica. This technique yields values of the ratio of the internal CO2 concentrations at the adaxial and abaxial leaf side, cd/cb, the drawdown in the intercellular air space (IAS), and intracellular drawdown between IAS and chloroplast stroma, cc/cbd. The method is based on carbon isotope composition of leaf dry matter and epicuticular wax isolated from upper and lower leaf sides. We investigated leaves from tree-canopy profile to analyse the effects of light and leaf anatomy on the drawdowns and partitioning of rm into its inter- (rIAS) and intracellular (rliq) components. Validity of the new method was tested by independent measurements of rm using conventional isotopic and gas exchange techniques. 73% of investigated leaves had adaxial epicuticular wax enriched in 13C compared to abaxial wax (by 0.50‰ on average), yielding 0.98 and 0.70 for average of cd/cb and cc/cbd, respectively. The rIAS to rliq proportion were 5.5:94.5% in sun-exposed and 14.8:85.2% in shaded leaves. cc dropped to less than half of the atmospheric value in the sunlit and to about two-thirds of it in shaded leaves. This method shows that rIAS is minor but not negligible part of rm and reflects leaf anatomy traits, i.e. leaf mass per area and thickness.


Asunto(s)
Dióxido de Carbono , Fagus , Luz , Células del Mesófilo , Fotosíntesis , Hojas de la Planta , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Dióxido de Carbono/metabolismo , Fagus/fisiología , Fagus/anatomía & histología , Células del Mesófilo/fisiología , Células del Mesófilo/metabolismo , Isótopos de Carbono/análisis , Ceras/metabolismo
4.
Plants (Basel) ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732439

RESUMEN

Leaf mass per area (LMA) is a key structural parameter that reflects the functional traits of leaves and plays a vital role in simulating the material and energy cycles of plant ecosystems. In this study, vertical whorl-by-whorl sampling of LMA was conducted in a young Larix principis-rupprechtii plantation during the growing season at the Saihanba Forest Farm. The vertical and seasonal variations in LMA were analysed. Subsequently, a predictive model of LMA was constructed. The results revealed that the LMA varied significantly between different crown whorls and growing periods. In the vertical direction of the crown, the LMA decreased with increasing crown depth, but the range of LMA values from the tree top to the bottom was, on average, 30.4 g/m2, which was approximately 2.5 times greater in the fully expanded phase than in the early leaf-expanding phase. During different growing periods, the LMA exhibited an allometric growth trend that increased during the leaf-expanding phase and then tended to stabilize. However, the range of LMA values throughout the growing period was, on average, 40.4 g/m2. Among the univariate models, the leaf dry matter content (LDMC) performed well (adjusted determination coefficient (Ra2) = 0.45, root mean square error (RMSE) = 13.48 g/m2) in estimating the LMA. The correlation between LMA and LDMC significantly differed at different growth stages and at different vertical crown whorls. The dynamic predictive model of LMA constructed with the relative depth in the crown (RDINC) and date of the year (DOY) as independent variables was reliable in both the assessments (Ra2 = 0.68, RMSE = 10.25 g/m2) and the validation (absolute mean error (MAE) = 8.05 g/m2, fit index (FI) = 0.682). Dynamic simulations of crown LMA provide a basis for elucidating the mechanism of crown development and laying the foundation for the construction of an ecological process model.

5.
Am J Bot ; 111(4): e16317, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38634444

RESUMEN

PREMISE: With the global atmospheric CO2 concentration on the rise, developing crops that can thrive in elevated CO2 has become paramount. We investigated the potential of hybridization as a strategy for creating crops with improved growth in predicted elevated atmospheric CO2. METHODS: We grew parent accessions and their F1 hybrids of Arabidopsis thaliana in ambient and elevated atmospheric CO2 and analyzed numerous growth traits to assess their productivity and underlying mechanisms. RESULTS: The heterotic increase in total dry mass, relative growth rate and leaf net assimilation rate was significantly greater in elevated CO2 than in ambient CO2. The CO2 response of net assimilation rate was positively correlated with the CO2 response of leaf nitrogen productivity and with that of leaf traits such as leaf size and thickness, suggesting that hybridization-induced changes in leaf traits greatly affected the improved performance in elevated CO2. CONCLUSIONS: Vegetative growth of hybrids seems to be enhanced in elevated CO2 due to improved photosynthetic nitrogen-use efficiency compared with parents. The results suggest that hybrid crops should be well-suited for future conditions, but hybrid weeds may also be more competitive.


Asunto(s)
Arabidopsis , Atmósfera , Dióxido de Carbono , Hibridación Genética , Nitrógeno , Hojas de la Planta , Dióxido de Carbono/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Nitrógeno/metabolismo , Atmósfera/química , Fotosíntesis , Vigor Híbrido
6.
Front Plant Sci ; 14: 1233794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680357

RESUMEN

Automated high-throughput plant phenotyping (HTPP) enables non-invasive, fast and standardized evaluations of a large number of plants for size, development, and certain physiological variables. Many research groups recognize the potential of HTPP and have made significant investments in HTPP infrastructure, or are considering doing so. To make optimal use of limited resources, it is important to plan and use these facilities prudently and to interpret the results carefully. Here we present a number of points that users should consider before purchasing, building or utilizing such equipment. They relate to (1) the financial and time investment for acquisition, operation, and maintenance, (2) the constraints associated with such machines in terms of flexibility and growth conditions, (3) the pros and cons of frequent non-destructive measurements, (4) the level of information provided by proxy traits, and (5) the utilization of calibration curves. Using data from an Arabidopsis experiment, we demonstrate how diurnal changes in leaf angle can impact plant size estimates from top-view cameras, causing deviations of more than 20% over the day. Growth analysis data from another rosette species showed that there was a curvilinear relationship between total and projected leaf area. Neglecting this curvilinearity resulted in linear calibration curves that, although having a high r2 (> 0.92), also exhibited large relative errors. Another important consideration we discussed is the frequency at which calibration curves need to be generated and whether different treatments, seasons, or genotypes require distinct calibration curves. In conclusion, HTPP systems have become a valuable addition to the toolbox of plant biologists, provided that these systems are tailored to the research questions of interest, and users are aware of both the possible pitfalls and potential involved.

7.
Ann Bot ; 132(5): 963-978, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-37739395

RESUMEN

BACKGROUND AND AIMS: Plasticity of leaf growth and photosynthesis is an important strategy of plants to adapt to shading stress; however, their strategy of leaf development to achieve a simultaneous increase in leaf area and photosynthesis under shading remains unknown. METHODS: In the present study, a pot experiment was conducted using three rapeseed genotypes of Huayouza 50 (HYZ50), Zhongshuang 11 (ZS11) and Huayouza 62 (HYZ62), and the responses of plant growth, leaf morphoanatomical traits, cell wall composition and photosynthesis to shading were investigated. KEY RESULTS: Shading significantly increased leaf area per plant (LAplant) in all genotypes, but the increase in HYZ62 was greater than that in HYZ50 and ZS11. The greater increment of LAplant in HYZ62 was related to the larger decrease in leaf mass per area (LMA) and leaf density (LD), which were in turn related to less densely packed mesophyll cells and thinner cell walls (Tcw). Moreover, shading significantly increased photosynthesis in HYZ62 but significantly decreased it in HYZ50. The enhanced photosynthesis in HYZ62 was related to increased mesophyll conductance (gm) due primarily to thinner cell walls. CONCLUSIONS: The data presented indicate that the different plasticity of mesophyll cell density, cell wall thickness and cell wall composition in response to shading can dramatically affect leaf growth and photosynthesis.


Asunto(s)
Brassica napus , Brassica rapa , Células del Mesófilo/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Plantas , Pared Celular , Dióxido de Carbono
8.
Conserv Physiol ; 11(1): coad051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476152

RESUMEN

Lindera melissifolia is an endangered shrub indigenous to the broadleaf forest of the Mississippi Alluvial Valley (MAV). In this region, extant colonies of the species are found in periodically ponded habitats where a diversity of broadleaf trees can form well-developed overstory and sub-canopies-these habitat characteristics suggest that soil flooding and light availability are primary drivers of L. melissifolia ecophysiology. To understand how these two factors affect its photosynthetic capacity, we quantified leaf characteristics and photosynthetic response of plants grown in a large-scaled, field setting of three distinct soil flooding levels (no flood, 0 day; short-term flood, 45 days; and extended flood, 90 days) each containing three distinct light availability levels (high light, 30% shade cloth; intermediate light, 63% shade cloth; and low light, 95% shade cloth). Lindera melissifolia leaves showed marked plasticity to interacting effects of flooding and light with lamina mass per unit area (Lm/a) varying 78% and total nitrogen content per unit area (Na) varying 63% from the maximum. Photosynthetic capacity (A1800-a) ranged 123% increasing linearly with Na from low to high light. Extended flooding decreased the slope of this relationship 99% through a reduction in N availability and metabolic depression of A1800-a relative to Na. However, neither soil flooding nor light imposed an additive limitation on photosynthetic capacity when the other factor was at its most stressful level, and the A1800-a-Na relationship for plants that experienced short-term flooding suggested post-flood acclimation in photosynthetic capacity was approaching the maximal level under respective light environments. Our findings provide evidence for wide plasticity and acclimation potential of L. melissifolia photosynthetic capacity, which supports active habitat management, such as manipulation of stand structure for improved understory light environments, to benefit long-term conservation of the species in the MAV.

9.
Plant Cell Environ ; 46(8): 2323-2336, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37303271

RESUMEN

Leaf photosynthetic nitrogen-use efficiency (PNUE) diversified significantly among C3 species. To date, the morpho-physiological mechanisms and interrelationships shaping PNUE on an evolutionary time scale remain unclear. In this study, we assembled a comprehensive matrix of leaf morpho-anatomical and physiological traits for 679 C3 species, ranging from bryophytes to angiosperms, to comprehend the complexity of interrelationships underpinning PNUE variations. We discovered that leaf mass per area (LMA), mesophyll cell wall thickness (Tcwm ), Rubisco N allocation fraction (PR ), and mesophyll conductance (gm ) together explained 83% of PNUE variations, with PR and gm accounting for 65% of those variations. However, the PR effects were species-dependent on gm , meaning the contribution of PR on PNUE was substantially significant in high-gm species compared to low-gm species. Standard major axis (SMA) and path analyses revealed a weak correlation between PNUE and LMA (r2 = 0.1), while the SMA correlation for PNUE-Tcwm was robust (r2 = 0.61). PR was inversely related to Tcwm , paralleling the relationship between gm and Tcwm , resulting in the internal CO2 drawdown being only weakly proportional to Tcwm . The coordination of PR and gm in relation to Tcwm constrains PNUE during the course of evolution.


Asunto(s)
Nitrógeno , Hojas de la Planta , Hojas de la Planta/fisiología , Plantas , Fotosíntesis/fisiología , Células del Mesófilo/fisiología , Pared Celular , Dióxido de Carbono
10.
PeerJ ; 11: e15140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065698

RESUMEN

Objectives: This study presents the Integrated Leaf Trait Analysis (ILTA), a workflow for the combined application of methodologies in leaf trait and insect herbivory analyses on fossil dicot leaf assemblages. The objectives were (1) to record the leaf morphological variability, (2) to describe the herbivory pattern on fossil leaves, (3) to explore relations between leaf morphological trait combination types (TCTs), quantitative leaf traits, and other plant characteristics (e.g., phenology), and (4) to explore relations of leaf traits and insect herbivory. Material and Methods: The leaves of the early Oligocene floras Seifhennersdorf (Saxony, Germany) and Suletice-Berand (Ústí nad Labem Region, Czech Republic) were analyzed. The TCT approach was used to record the leaf morphological patterns. Metrics based on damage types on leaves were used to describe the kind and extent of insect herbivory. The leaf assemblages were characterized quantitatively (e.g., leaf area and leaf mass per area (LMA)) based on subsamples of 400 leaves per site. Multivariate analyses were performed to explore trait variations. Results: In Seifhennersdorf, toothed leaves of TCT F from deciduous fossil-species are most frequent. The flora of Suletice-Berand is dominated by evergreen fossil-species, which is reflected by the occurrence of toothed and untoothed leaves with closed secondary venation types (TCTs A or E). Significant differences are observed for mean leaf area and LMA, with larger leaves tending to lower LMA in Seifhennersdorf and smaller leaves tending to higher LMA in Suletice-Berand. The frequency and richness of damage types are significantly higher in Suletice-Berand than in Seifhennersdorf. In Seifhennersdorf, the evidence of damage types is highest on deciduous fossil-species, whereas it is highest on evergreen fossil-species in Suletice-Berand. Overall, insect herbivory tends to be more frequently to occur on toothed leaves (TCTs E, F, and P) that are of low LMA. The frequency, richness, and occurrence of damage types vary among fossil-species with similar phenology and TCT. In general, they are highest on leaves of abundant fossil-species. Discussion: TCTs reflect the diversity and abundance of leaf architectural types of fossil floras. Differences in TCT proportions and quantitative leaf traits may be consistent with local variations in the proportion of broad-leaved deciduous and evergreen elements in the ecotonal vegetation of the early Oligocene. A correlation between leaf size, LMA, and fossil-species indicates that trait variations are partly dependent on the taxonomic composition. Leaf morphology or TCTs itself cannot explain the difference in insect herbivory on leaves. It is a more complex relationship where leaf morphology, LMA, phenology, and taxonomic affiliation are crucial.


Asunto(s)
Hojas de la Planta , Plantas , Animales , Hojas de la Planta/anatomía & histología , Plantas/anatomía & histología , Fenotipo , Fósiles , Herbivoria , Insectos
11.
Plant Physiol Biochem ; 198: 107681, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37054614

RESUMEN

Nitrogen (N) and water are key resources for leaf photosynthesis and the growth of whole plants. Within-branch leaves need different amounts of N and water to support their differing photosynthetic capacities according to light exposure. To test this scheme, we measured the within-branch investments of N and water and their effects on photosynthetic traits in two deciduous tree species Paulownia tomentosa and Broussonetia papyrifera. We found that leaf photosynthetic capacity gradually increased from branch bottom to top (i.e. from shade to sun leaves). Concomitantly, stomatal conductance (gs) and leaf N content gradually increased, owing to the symport of water and inorganic mineral from root to leaf. Variation of leaf N content led to large gradients of mesophyll conductance, maximum velocity of Rubisco for carboxylation, maximum electron transport rate and leaf mass per area (LMA). Correlation analysis indicated that the within-branch difference in photosynthetic capacity was mainly related to gs and leaf N content, with a relatively minor contribution of LMA. Furthermore, the simultaneous increases of gs and leaf N content enhanced photosynthetic N use efficiency (PNUE) but hardly affected water use efficiency. Therefore, within-branch adjustment of N and water investments is an important strategy used by plants to optimize the overall photosynthetic carbon gain and PNUE.


Asunto(s)
Nitrógeno , Agua , Fotosíntesis , Hojas de la Planta , Plantas
12.
Sci Total Environ ; 871: 162036, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36746282

RESUMEN

Elucidating the mechanisms that control the leaf stable carbon isotope values (δ13Cleaf) is the prerequisite for the widespread application of δ13Cleaf. However, the competing effects of physiological and environmental factors on δ13Cleaf variations of the different plant functional types (PFTs) have not been disentangled, and the corresponding mechanisms remain unclear. Based on large-scale δ13Cleaf measurements on the eastern Qinghai-Tibetan Plateau, the relative contributions and regulatory pathways of leaf functional traits (LFTs) and climatic factors to δ13Cleaf variations of the different PFTs were investigated. We found that δ13Cleaf of the different PFTs was correlated with annual mean precipitation negatively, but not a simple linear relationship with annual mean temperature and varied by PFTs. Leaf nitrogen content per unit area and leaf mass per area (correlated with δ13Cleaf positively) had more substantial effects on the δ13Cleaf variations of the different PFTs than other LFTs. The relative contributions of LFTs to the δ13Cleaf variations were greater than that of climatic factors, and the direct and indirect effects of climatic factors on δ13Cleaf variations varied by PFTs. Our findings provide new insights into understanding key drivers of δ13Cleaf variations at the PFT level on a regional scale.


Asunto(s)
Carbono , Clima , Isótopos de Carbono/análisis , Carbono/metabolismo , Tibet , Plantas/metabolismo , Hojas de la Planta/química
13.
Ann Bot ; 131(5): 789-800, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36794926

RESUMEN

BACKGROUND AND AIMS: The existence of sclerophyllous plants has been considered an adaptive strategy against different environmental stresses. Given that it literally means 'hard-leaved', it is essential to quantify the leaf mechanical properties to understand sclerophylly. However, the relative importance of each leaf trait for mechanical properties is not yet well established. METHODS: Genus Quercus is an excellent system to shed light on this because it minimizes phylogenetic variation while having a wide variation in sclerophylly. We measured leaf anatomical traits and cell wall composition, analysing their relationship with leaf mass per area and leaf mechanical properties in a set of 25 oak species. KEY RESULTS: The upper epidermis outer wall makes a strong and direct contribution to the leaf mechanical strength. Moreover, cellulose plays a crucial role in increasing leaf strength and toughness. The principal component analysis plot based on leaf trait values clearly separates Quercus species into two groups corresponding to evergreen and deciduous species. CONCLUSIONS: Sclerophyllous Quercus species are tougher and stronger owing to their thicker epidermis outer wall and/or higher cellulose concentration. Furthermore, section Ilex species share common traits, although they occupy different climates. In addition, evergreen species living in mediterranean-type climates share common leaf traits irrespective of their different phylogenetic origin.


Asunto(s)
Quercus , Filogenia , Hojas de la Planta/química , Clima , Celulosa
14.
Planta ; 257(2): 29, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592261

RESUMEN

MAIN CONCLUSION: ETR/AN ratios should be in the range 7.5-10.5 for non-stressed C3 plants. Ratios extremely out of this range can be reflecting both uncontrolled plant status and technical mistakes during measurements. We urge users to explicitly refer to this ratio in future studies as a proof for internal data quality control. For the last few decades, the use of infra-red gas-exchange analysers (IRGAs) coupled with chlorophyll fluorometers that allow for measurements of net CO2 assimilation rate and estimates of electron transport rate over the same leaf area has been popularized. The evaluation of data from both instruments in an integrative manner can result in additional valuable information, such as the estimation of the light respiration, mesophyll conductance and the partitioning of the flux of electrons into carboxylation, oxygenation and alternative processes, among others. In this review, an additional and more 'straight' use of the combination of chlorophyll fluorescence and gas exchange-derived parameters is presented, namely using the direct ratio between two fully independently estimated parameters, electron transport rate (ETR)-determined by the fluorometer-and net CO2 assimilation rate (AN)-determined by the IRGA, i.e., the ETR/AN ratio, as a tool for fast detection of incongruencies in the data and potential technical problems associated with them, while checking for the study plant's status. To illustrate this application, a compilation of 75 studies that reported both parameters for a total of 178 species under varying physiological status is presented. Values of ETR/AN between 7.5 and 10.5 were most frequently found for non-stressed C3 plants. C4 species showed an average ETR/AN ratio of 4.7. The observed ratios were larger for species with high leaf mass per area and for plants subjected to stressful factors like drought or nutritional deficit. Knowing the expected ETR/AN ratio projects this ratio as a routinary and rapid check point for guaranteeing both the correct performance of equipment and the optimal/stress status of studied plants. All known errors associated with the under- or overestimation of ETR or AN are summarized in a checklist that aims to be routinely used by any IRGA/fluorometer user to strength the validity of their data.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Transporte de Electrón , Fotosíntesis/fisiología , Plantas , Clorofila , Hojas de la Planta/fisiología
15.
New Phytol ; 237(6): 1998-2004, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36308517

RESUMEN

Plant functional traits are powerful ecological tools, but the relationships between plant traits and climate (or environmental variables more broadly) are often remarkably weak. This presents a paradox: Plant traits govern plant interactions with their environment, but the environment does not strongly predict the traits of plants living there. Unpacking this paradox requires differentiating the mechanisms of trait variation and potential confounds of trait-environment relationships at different evolutionary and ecological scales ranging from within species to among communities. It also necessitates a more integrated understanding of physiological and evolutionary equifinality among many traits and plant strategies, and challenges us to understand how supposedly 'functional' traits integrate into a whole-organism phenotype in ways that may be largely orthogonal to environmental tolerances.


Asunto(s)
Hojas de la Planta , Plantas , Hojas de la Planta/genética , Plantas/genética , Evolución Biológica , Fenotipo , Clima
16.
Plant Cell Environ ; 45(12): 3462-3475, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36098093

RESUMEN

The leaf economics spectrum (LES) describes multivariate correlations in leaf structural, physiological and chemical traits, originally based on diverse C3 species grown under natural ecosystems. However, the specific contribution of C4 species to the global LES is studied less widely. C4 species have a CO2 concentrating mechanism which drives high rates of photosynthesis and improves resource use efficiency, thus potentially pushing them towards the edge of the LES. Here, we measured foliage morphology, structure, photosynthesis, and nutrient content for hundreds of genotypes of the C4 grass Miscanthus× giganteus grown in two common gardens over two seasons. We show substantial trait variations across M.× giganteus genotypes and robust genotypic trait relationships. Compared to the global LES, M.× giganteus genotypes had higher photosynthetic rates, lower stomatal conductance, and less nitrogen content, indicating greater water and photosynthetic nitrogen use efficiency in the C4 species. Additionally, tetraploid genotypes produced thicker leaves with greater leaf mass per area and lower leaf density than triploid genotypes. By expanding the LES relationships across C3 species to include C4 crops, these findings highlight that M.× giganteus occupies the boundary of the global LES and suggest the potential for ploidy to alter LES traits.


Asunto(s)
Ecosistema , Poaceae , Poaceae/genética , Tetraploidía , Triploidía , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Nitrógeno
17.
Plants (Basel) ; 11(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36079682

RESUMEN

Verticillium wilt of olive (VWO), caused by the soil borne fungus Verticillium dahliae, is one of the most relevant diseases affecting this crop worldwide. One of the best VWO management strategies is the use of tolerant cultivars. Scarce information is available about physiological and structural responses in the leaves of olive cultivars displaying different levels of tolerance to VWO. To identify links between this phenotype and variations in functional characteristics of the leaves, this study examined the structural and physiological traits and the correlations among them in different olive varieties. This evaluation was conducted in the presence/absence of V. dahliae. On the one hand, no leaf trait but the area was related to VWO tolerance in the absence of the pathogen. On the other hand, after inoculation, susceptible cultivars showed lower leaf area and higher leaf mass per area and dry matter content. Furthermore, at the physiological level, these plants showed severe symptoms resembling water stress. Analyzing the relationships among physiological and structural traits revealed differences between tolerant and susceptible cultivars both in the absence and in the presence of V. dahliae. These results showed that olive leaves of VWO-tolerant and VWO-susceptible cultivars adopt different strategies to cope with the pathogen.

18.
Ann Bot ; 130(3): 265-283, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35947983

RESUMEN

BACKGROUND: Plants invest photosynthates in construction and maintenance of their structures and functions. Such investments are considered costs. These costs are recovered by the CO2 assimilation rate (A) in the leaves, and thus A is regarded as the immediate, short-term benefit. In photosynthesizing leaves, CO2 diffusion from the air to the carboxylation site is hindered by several structural and biochemical barriers. CO2 diffusion from the intercellular air space to the chloroplast stroma is obstructed by the mesophyll resistance. The inverses is the mesophyll conductance (gm). Whether various plants realize an optimal gm, and how much investment is needed for a relevant gm, remain unsolved. SCOPE: This review examines relationships among leaf construction costs (CC), leaf maintenance costs (MC) and gm in various plants under diverse growth conditions. Through a literature survey, we demonstrate a strong linear relationship between leaf mass per area (LMA) and leaf CC. The overall correlation of CC vs. gm across plant phylogenetic groups is weak, but significant trends are evident within specific groups and/or environments. Investment in CC is necessary for an increase in LMA and mesophyll cell surface area (Smes). This allows the leaf to accommodate more chloroplasts, thus increasing A. However, increases in LMA and/or Smes often accompany other changes, such as cell wall thickening, which diminishes gm. Such factors that make the correlations of CC and gm elusive are identified. CONCLUSIONS: For evaluation of the contribution of gm to recover CC, leaf life span is the key factor. The estimation of MC in relation to gm, especially in terms of costs required to regulate aquaporins, could be essential for efficient control of gm over the short term. Over the long term, costs are mainly reflected in CC, while benefits also include ultimate fitness attributes in terms of integrated carbon gain over the life of a leaf, plant survival and reproductive output.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Análisis Costo-Beneficio , Células del Mesófilo , Filogenia , Hojas de la Planta/fisiología
19.
Planta ; 256(2): 39, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35829784

RESUMEN

MAIN CONCLUSION: This study suggests that stomatal and leaf structures are highly correlated, and mesophyll cell size is an important anatomical trait determining the coordination between stomatal size and mesophyll porosity. A comprehensive study of the correlations between the structural traits and on their relationships with gas exchange parameters may provide some useful information into leaf development and improvement in efficiencies of photosynthetic CO2 fixation and transpirational water loss. In the present study, nine plant materials from eight crop species were pot grown in a growth chamber. Leaf structural traits, gas exchange, and leaf nitrogen content were measured. We found that stomatal size, mesophyll cell size (MCS), and mesophyll porosity were positively correlated and that the surface areas of mesophyll cells and chloroplasts facing intercellular air spaces were positively correlated with both stomatal density and stomatal area per leaf area (SA). These results suggested that the developments of stomata and mesophyll cells are highly correlated among different crop species. Additionally, MCS was positively correlated with leaf thickness and negatively correlated with leaf density and leaf mass per area, which indicated that MCS might play an important role in leaf structural investments and physiological functions among species. In summary, this study illustrates the correlations between stomatal and mesophyll structures, and it highlights the importance of considering the covariations among leaf traits with the intent of improving photosynthesis and iWUE.


Asunto(s)
Células del Mesófilo , Estomas de Plantas , Dióxido de Carbono/metabolismo , Productos Agrícolas/metabolismo , Células del Mesófilo/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Estomas de Plantas/fisiología , Agua/metabolismo
20.
Front Plant Sci ; 13: 894690, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783978

RESUMEN

The Chicxulub bolide impact has been linked to a mass extinction of plants at the Cretaceous-Paleogene boundary (KPB; ∼66 Ma), but how this extinction affected plant ecological strategies remains understudied. Previous work in the Williston Basin, North Dakota, indicates that plants pursuing strategies with a slow return-on-investment of nutrients abruptly vanished after the KPB, consistent with a hypothesis of selection against evergreen species during the globally cold and dark impact winter that followed the bolide impact. To test whether this was a widespread pattern we studied 1,303 fossil leaves from KPB-spanning sediments in the Denver Basin, Colorado. We used the relationship between petiole width and leaf mass to estimate leaf dry mass per area (LMA), a leaf functional trait negatively correlated with rate of return-on-investment. We found no evidence for a shift in this leaf-economic trait across the KPB: LMA remained consistent in both its median and overall distribution from approximately 67 to 65 Ma. However, we did find spatio-temporal patterns in LMA, where fossil localities with low LMA occurred more frequently near the western margin of the basin. These western margin localities are proximal to the Colorado Front Range of the Rocky Mountains, where an orographically driven high precipitation regime is thought to have developed during the early Paleocene. Among these western Denver Basin localities, LMA and estimated mean annual precipitation were inversely correlated, a pattern consistent with observations of both fossil and extant plants. In the Denver Basin, local environmental conditions over time appeared to play a larger role in determining viable leaf-economic strategies than any potential global signal associated with the Chicxulub bolide impact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA