Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Transl Oncol ; 25(6): 1793-1804, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36737533

RESUMEN

BACKGROUND: Long noncoding RNA (lncRNAs) GMDS-AS1 has been reported as a tumor regulator in tumor growth and metastasis, but its effect in hepatocellular carcinoma (HCC) remains unclear. ESET, a histone H3K9 methyl-transferase, is involved in epigenomic regulation of tumor progression in multiple cancers. However, the correlation between ESET and lncRNA in HCC is less reported. METHODS: Quantitative real-time PCR (qRT-PCR) was taken to determine the expression of ESET and GMDS-AS1. Western blot was taken to determine the target protein levels of ESET and GMDS-AS1. Online database and bioinformatics analysis were used to screen abnormally expressed genes. Luciferase assay was performed to confirm the binding of GMDS-AS1 and PSMB1. Ki67 and Edu were used for evaluated the proliferation of tumor cells. ChIP assay was performed to verify the relationship between H3K9me1 and lncRNA GMDS-AS1 promoter. Transwell was taken to determine the migration and invasion ability of tumor cells. CCK-8 was used for determining the viability of tumor cells. Flow cytometry was performed to detect the cell cycle of tumor cells. RESULTS: The expression of GMDS-AS1 was decreased and the expression of ESET was increased in HCC. GMDS-AS1 inhibition contributed to tumor development, and this effect was closely related to epigenetic inhibition of GMDS-AS1 by ESET. PSMB1, a downstream target of GMDS-AS1, promoted the tumor proliferation and was negatively regulated by GMDS-AS1. CONCLUSION: Our result demonstrates anti-tumorigenic traits of lncRNA GMDS-AS1 in HCC and explains its pattern of regulation mediated by ESET. Our work unmasked an essential role of GMDS-AS1 in HCC progression and detected a novel pathway for ESET to promote HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Hepáticas/patología , Supervivencia Celular , Metiltransferasas/genética , Epigenómica , Proliferación Celular/genética , MicroARNs/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Movimiento Celular/genética
2.
Cancers (Basel) ; 15(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36612292

RESUMEN

Several laboratory and clinical variables have been reported to be associated with the outcome of intensive chemotherapy for acute myeloid leukemia (AML), but only a few have been tested in the context of hematopoietic stem cell transplant (HSCT). This study aimed to identify genes whose expression of AML at diagnosis were associated with survival after HSCT. For this purpose, three publicly available adult AML cohorts (TCGA, BeatAML, and HOVON), whose patients were treated with intensive chemotherapy and then subjected to allogeneic or autologous HSCT, were included in this study. After whole transcriptome analysis, we identified ME1 as the only gene whose high expression was associated with shorter survival in patients subjected to HSCT. In addition, the inclusion of ME1 expression was able to improve the European LeukemiaNet risk stratification. Pathways related to lipid biosynthesis, mainly fatty acids, and cholesterol were positively correlated with ME1 expression. Furthermore, ME1 expression was associated with an M2 macrophage-enriched microenvironment, mature AML blasts hierarchy, and oxidative phosphorylation metabolism. Therefore, ME1 expression can be used as biomarker of poor response to HSCT in AML.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA